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The ever-increasing human population associated with high rate of waste

generation may pose serious threats to soil ecosystem. Nevertheless,

conversion of agricultural and food wastes to biochar has been shown as a

beneficial approach in sustainable soil management. However, our

understanding on how integration of biochar obtained from different wastes

and mineral fertilizers impact soil microbiological indicators is limited.

Therefore, in the present study the effects of agricultural (AB) and food waste

derived (FWB) biochars with and without mineral fertilizer (MF) on crop growth

and soil health indicators were compared in a pot experiment. In particular, the

impacts of applied amendments on soil microbiological health indicators those

related to microbial extracellular (C, N and P acquiring) enzymes, soil basal as

well as different substrate induced respirations along with crop’s agronomic

performance were explored. The results showed that compared to the control,

the amendment with AB combined with MF enhanced the crop growth as

revealed by higher above and below ground biomass accumulation. Moreover,

both the biochars (FWB and AB) modified soil chemical properties (pH and

electric conductivity) in the presence or absence of MF as compared to control.

However, with the sole application of MF was most influential strategy to

improve soil basal and arginin-induced respiration as well as most of the soil

extracellular enzymes, those related to C, N and P cycling. Use of FWB resulted
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in enhanced urease activity. This suggested the role of MF and FWB in nutrient

cycling and plant nutrition. Thus, integration of biochar and mineral fertilizers is

recommended as an efficient and climate smart package for sustainable soil

management and crop production.
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Introduction

The world’s population has been increasing exponentially

and is expected to turn up to 9.6 billion until 2050 (Tripathi

et al., 2019) and is projected to be linked with a 60% increase in

food demand (Boretti and Rosa, 2019). This overwhelming pace

of human population, high food consumption and agricultural

waste production will put pressure on the global agriculture

which may outcome in negative environmental and socio-

economic aspects. In fact, the higher food production and

waste generat ion due to human consumption are

concomitantly linked and approximately 1/3rd of the food

produced is annually wasted around the globe (Kibler et al.,

2018; Ishangulyyev et al., 2019). It has been estimated that the

annual amount of this food waste is approximately 1.3 billion

tons globally (Gustavsson et al., 2011). A big part of this amount

(56%) is produced by developed world while the rest (44%) is

being generated by the less developed countries (Bond et al.,

2013; Lipinski et al., 2013). However, a big part of the wasted

food material is lost, incinerated or buried in the landfills,

causing soil and water pollution which is another of the main

global concerns (Parry et al., 2007; Abiad and Meho, 2018). In

this way, only in USA, around US$90 billion–US$100 billion a

year is lost (Lundqvist et al., 2008). Therefore, the situation

demands for the safer utilization of food and viable approaches

to deal with the wasted materials to ensure the food security and

environmental protection.

Several types of organic (including food and agricultural)

wastes are generated worldwide with the potential to be utilized

as soil amendments for enhancing soil health and crop

production (Toscano et al., 2013; Sayara et al., 2020; Naveed

et al., 2021). However, direct application of such wastes may

cause risks to soil health, especially to soil chemical and

microbiological characters (Urra et al., 2019). Therefore,

bioconversion of agricultural and food wastes to non-

hazardous and stable soil amendments is a viable alternative.

This will not only reduce the risks associated with environmental

burdens, but also ensures the safe disposal and utilization of end

product as sustainable soil amendments (Sulok et al., 2021;

Brtnicky et al., 2022). Conversion of agricultural and food
02
wastes into biochar (a C rich) product produced by the

pyrolysis is an effective way in this regard too. Biochar has

been reported to enhance soil fertility, improve soil health and

ultimately increasing crop yields (Ahmad et al., 2020; Karimi

et al., 2020; Rasool et al., 2022). We took advantage of converting

the collected food and agricultural wastes into biochars and

utilized them for this study.

It has been recognized that intensive agricultural practices,

injudicious use of chemical fertilizers, removal of crop straw and

heavy tillage operations have resulted in the loss of soil fertility

and degradation of arable lands (Sonmez et al., 2016). Currently,

farmers heavily rely on the use of chemical fertilizers and crop

protection chemicals to produce higher crop yields (Mustafa

et al., 2019). This behavior of farmers has aggravates the soil

degradation and its productive capacity as the higher use of

chemicals and fertilizers deteriorate the environmental resources

and cause soil salinity, eutrophication and heavy metal pollution

in arable soils (Bouraoui and Grizzetti, 2014; Ali et al., 2019;

Zulfiqar et al., 2022). To entail these challenges, researchers are

focusing on developing alternative strategies, which ensure high

crop yields without negative effects on the soil quality and water

resources (Bais-Moleman et al., 2019; Tan et al., 2021; Kang

et al., 2022; Wali et al., 2022). Nevertheless, chemical fertilizers

have shown a potential to increase crop yields by modifying soil

properties, the sole utilization of chemical fertilizers have been

questioned in the face of climate change (Srivastav, 2020; Meena

et al., 2020). In this respect, the combination of biochar together

with mineral fertilizers could be an effective strategy to enhance

soil health and crop biomass yields while keeping the mineral

fertilizers at low levels. Previously many studies have shown the

improvements in crop yields and soil fertility under the

application of either chemical fertilizers or biochar (Atkinson

et al., 2010; Khadem and Raiesi, 2017) or the combination of

both (Singh et al., 2019a; Singh et al., 2019b). Most of these

studies have shown the variable effects of biochar derived from

various sources on soil properties (Prendergast-Miller et al.,

2014; Hussain et al., 2017; Mohan et al., 2018) and agronomic

and physiological responses of crops (Carter et al., 2013;

Kuppusamy et al., 2016; Singh et al., 2020). Majority of these

studies have only focused on soil physico-chemical properties
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and the role of applied biochar amendments on soil

microbiological attributes those elated to (soil extracellular

enzymes and soil basal as well as substrate induced

respirations) remained relatively unexplored till date.

Moreover, the comparison of effects of biochars (derived from

agricultural and food wastes) with and without mineral

fertilizers on crop’s photosynthetic efficiency remained

neglected in the past. Therefore, we compared the effects of

two types of biochars with and without mineral fertilizers on soil

physico-chemical and microbiological properties and how they

respond to crop growth and physiology. We considered the soil

extracellular enzymes activity and microbial respiration as soil

health indicators and crop’s photosystem efficiency as

agronomic performance respectively for evaluating the effects

of applied biochars together with mineral fertilizer. The specific

objectives of the present study were to (i) compare and analyze

the effects of produced biochars with and without mineral

fertilizer on soil basal and substrate induced respirations and

extracellular enzymes, and (ii) assess the growth and

physiological responses of crop under applied amendments.
Materials and methods

Procurement and preparation of
biochars

For the purposes of pot experiment, the food waste biochar

(FWB) was prepared in two steps. The first step involved the

pre-treatment process, which consists of two consequent steps

i.e., the dried food waste (dry matter approx. 90%) was mixed

with 25% of spruce sawdust and subsequently the mixture was

pelletized at a briquetting press for the production of pellets

type JGE 260 with a matrix at a size of 6 mm of extrusion holes

and a pellet length of 40 mm. The second step was the heat

treatment of the samples, whereby thermal pyrolysis (TP) was

performed in laboratory, small-scale conditions, in a small-

scale TP unit working under 600°C. This unit works

discontinuously, and the maximum capacity is around 5

kg·batch-1 of feedstock. The glass condenser attached to the

pyrolyzer was used for the separation of gaseous products and

the pyrolysis oil. The input weight of feedstock samples was 3

000 g·batch-1. The feedstock was placed into the TP unit in a

stainless-steel cylindrical reactor. During the experiments, the
Frontiers in Plant Science 03
residence time was 340 - 410 minutes, and the temperature did

not exceed 600°C.

Moreover, commercial biochar from agricultural waste was

purchased from the manufacturer (Sonnenerde GmbH, Austria).

This biochar was produced with a high-technology production

unit Pyreg500 from grain husks, sunflower pods and pulp mud.

The process temperature was set up at 650°C. The chemical

composition of applied biochars is given in (Table 1).
Experimental design and treatments

The growth substrate used for the pot experiment was

prepared by mixing a silty clay loam (USDA Textural

Triangle) Haplic Luvisol (WRB soil classification) collected at

field near the town Troubsko (Czech Rep., 49°10’28”N 16°

29’32”E) with a fine quartz sand (0.1–1.0 mm; ≥95% SiO2) in

a weight ratio of 1:1. The soil properties were as follows: total C

14.0 g·kg−1, total N 1.60 g·kg−1, available P 0.10 g·kg−1, available

S 0.15 g·kg−1, available Ca 3.26 g·kg−1, available Mg 0.24 g·kg−1,

available K 0.23 g·kg−1; pH (CaCl2) 7.3.

One kilogram of this growth substrate was mixed with 32 g

(equivalent to 40 t.ha-1) of a particular biochar (Table 1) and

filled to experimental plastic pots (volume 1 L, top diameter

11 cm, bottom diameter 9 cm, height 13 cm). Control treatment

was left without the addition of biochar. The mineral fertilizer

(MF) NPK (16:16:16) was dissolved in demineralised water and

applied on soil surface of specific variants in dose equal to 0.1 g

N·kg-1 of soil. Following biochar treatments were applied in the

presence and absence of mineral fertilizer; (i) control (no

biochar) (ii) foodwaste biochar (FWB) with and without

mineral fertilizer (hereinafter referred to as FWB+MF) and

(iii) agricultural waste derived biochar (AB) with and without

mineral fertilizer (hereinafter referred to as AB+MF). The

experimental treatments are shown in (Table 2). Each

treatment was carried out in 3 replicates (pots).
Pot experiment

The pot experiment with lettuce (Lactuca sativa L. var.

capitata) took place in growth chamber Climacell EVO (BMT,

Czech Rep.) under controlled conditions: full-spectrum LED

lighting, light intensity 20,000 lux; photoperiod 12 h;
TABLE 1 Chemical composition of used biochars.

TC[%] ROC [%] TIC [%] TOC [%] N[%] H[%] O[%] C:N H:C O:C

AB 50.13±
0.02

0.45±
0.06

0.33±
0.00

49.80±
0.02

1.01±
0.06

1.60±
0.04

17.28±
0.21

49.67±
2.89

0.03±
0.00

0.34±
0.00

FWB 81.25±
0.03

0.28±
0.01

0.07±
0.00

81.18±
0.03

3.58±
0.05

3.04±
0.06

8.10±
0.25

22.71±
0.30

0.04±
0.00

0.10±
0.00
frontiers
TC, total carbon; ROC, resistant organic carbon; TIC, total inorganic carbon; TOC, total organic carbon; N, nitrogen; H, hydrogen; O, oxygen.
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temperature 18/22°C (night/day); relative humidity 70%. Lettuce

seeds were sprouted on wet filter paper for two days and then

five of them were sown to the depth of approximately 2 mm in

each pot. After sowing, each pot was watered with 100 mL of

distilled water. The 10-day-old seedlings were reduced to one

plant per pot. Pot placement in the growth chamber was

randomized. Soil humidity was controlled, and water content

was maintained during the experiment at approximately 60% of

water holding capacity. The pots were variably rotated once per

week. The plants were harvested 8 weeks after sowing.
Plant biomass and photosynthesis
characteristics measurements

At harvest time, determination of photochemical efficiency

of photosystem II (PSII) of lettuce plants was carried out. The

quantum yield of the PSII (FPSII) was determined (at light

intensity 2400 mmol·m-2·s-1) by the fluorometer PAR-FluorPen

FP 110-LM/S (Photon Systems Instruments, Drásov, Czech

Republic) and the software FluorPen 1.1 was used for the

analysis of the measured data. Determination of normalized

difference vegetation index (NDVI) was carried out too with

PlantPen NDVI 310 (Photon System Instruments, Drásov,

Czech Republic). The spectral reflectance of chlorophyll

pigments, expressed as NDVI, is a measure of chlorophyll

content (Garty et al., 2001) and its integrity (Castro and

Sanchez-Azofeifa, 2008) and correlates with photosynthetic

rate (Garty et al., 2001). Then, the lettuce shoots were cut at

ground level, and the roots were gently cleaned of soil and

washed with water. Fresh aboveground (AGB) and root biomass

were estimated gravimetrically by weighing on the

analytical scales.
Soil analysis for microbiological soil
health indicators

A mixed soil sample was taken from each pot after harvesting

the lettuce. Soil samples were homogenized by sieving through a

sieve with mesh size 2 mm. Air dried samples were analyzed for pH
Frontiers in Plant Science 04
(ISO 10390, 2005) and electric conductivity (EC) (Hardie et al.,

2012). Freeze-dried samples were used for the analyses of enzymatic

activities: b-glucosidase (GLU), phosphatase (PHOS), urease (URE)
and N-acetyl-b-D-glucosaminidase (NAG) (ISO 20130, 2018). The

samples stored at 4 °C were used for determination of

dehydrogenase activity (DHA) using standard method based on

triphenyltetrazolium chloride (TTC) (Małachowska-Jutsz and

Matyja, 2019), soil basal respiration (BR) and substrate induced

respirations (IR) – D-glucose (Glc-IR), L-alanine (Ala-IR) and L-

arginine (Arg-IR) (Campbell et al., 2003) using MicroResp® device

(The James Hutton Institute, Scotland).
Statistical analyses

The obtained data were statistically analyzed using the one-

way analysis of variance (ANOVA), Treatment means were

compared using Tukey HSD post-hoc test (at significance level

p = 0.05).

To evaluate the effects of applied amendments, principal

component analysis (PCA) was plotted for observed variables

and observations using Rstudio.
Results

Plant growth and chlorophyll
fluorescence

The application of biochars with and without mineral

fertilizer (MF) differently affected the plant growth and

photosynthetic parameters. The plant fresh above ground

biomass (AGB-fresh) was significantly highest under AB+MF

as compared to control and other treatments (Figure 1A). This

trend was followed by MF alone and food waste biochar with

mineral fertilizer (FWB+MF). The highest root fresh weight

(Root-fresh) was observed under the application of AB+MF

which was followed by FWB+MF relative to control (Figure 1B).

The quantum yield of the electron transport of the PSII (FPSII),

which expresses the real capacity of the PSII for photochemical

reactions, was relatively increased by MF application. There was

no significant increase found for FPSII, which acts as a measure

of the overall efficiency of PSII reaction centers in light, under

applied amendments (Figure 1C). The spectral reflectance of

chlorophyll pigments, expressed as NDVI (Figure 1D) was

correlated with FPSII values (Figure 1C).
Soil chemical properties

The application of food waste biochar with and without

mineral fertilization significantly enhanced the soil pH as

compared to control (Figure 2A). The highest pH values were
TABLE 2 Description of experimental treatments.

Variant FWB AB MF

Control – – –

MF – – ✔

FWB ✔ – –

FWB+MF ✔ – ✔

AB – ✔ –

AB+MF – ✔ ✔
FWB, foodwaste derived biochar; AB, agricultural waste derived biochar;MF,mineral fertilizer.
– means (not inculded) or (absent).✔ means (included) or (present).
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observed in soils receiving FWB, FWB+MF and AB, while the

lowest was found under MF control which was statistically

similar with the pH value under AB+MF application

(Figure 2A). Remarkable variations were however observed for

soil electrical conductivity (EC) under the applied biochars with

and without MF. Specifically, the highest EC was observed under

the application of FWB+MF and FWB without MF (Figure 2B)

which were statistically significant as compared to other

treatments and control.
Soil extracellular enzymes activities

The highest dehydrogenase activity (DHA) was observed

under the sole application of MF (Figure 3A). All other

amendments except AB significantly reduced DHA as

compared to control (Figure 3A). Similar to DHA, the same

treatment i.e., MF resulted in highest glucosidase (Glu) and

phosphatase (PHOS) activities (Figures 3B, C). All other
Frontiers in Plant Science 05
amendments resulted in reduced activities of Glu and PHOS

as compared to control. Regarding urease, the significantly

highest activity was recorded under the application of FWB

and AB without MF as compared to control (Figure 3D).

Moreover, the MF alone enhanced N-acetyl-glucosaminase

(NAG) activity as compared to other treatments (Figure 3E),

while no clear trend was observed for aryl sulphatase activity

under applied treatments (Figure 3F).
Soil basal and substrate induced
respiration

The application of food waste and agricultural biochars with

and without mineral fertilization considerably affected the basal

as well as substrate induced respirations (SIR). A significantly

highest increase in soil basal respiration (BR) was observed

under the sole application of MF and AB (Figure 4A) as

compared to control and other treatments. The application of
A B DC

FIGURE 1

Comparative effects of applied food waste (FWB) and agricultural waste biochar (AB) with and without mineral fertilization (MF) on (A) above
ground fresh biomass (B) root fresh biomass, quantum yield of the PSII (C) and NDVI (D). Values are mean of three replicates. Different
lowercase letters indicate statistical significance at p<0.05.
A B

FIGURE 2

Comparative effects of applied food waste (FWB) and agricultural waste biochar (AB) with and without mineral fertilization (MF) on (A) soil pH
and (B) soil electrical conductivity (EC). Values are mean of three replicates. Different lowercase letters indicate statistical significance at p<0.05.
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AB without MF resulted in significantly highest glucose-induced

respiration (Glu-IR) and alanine-induced respiration (Ala-IR)

respectively as compared to control (Figures 4B, C). This trend

was followed by the application of MF alone. However, the sole

application of MF enhanced the arginine-induced respiration

(Arg-IR), which was significantly highest as compared to other

treatments (Figure 4D).
Results from principal component
analysis

The score and loading plots of principal component analysis

(PCA) regarding the observed soil and plant characteristics are

shown in (Figure 5). The extracted components (Dim1 and Dim

2) maximally (82.7%) accounted for the observed variations in

the data set. The applied amendments were successfully

separated by the principal components (as marked by different

colors). This suggests the positive influence of applied

amendments on the observed parameters. The treatments MF,

AB and AB+MF were distributed in components 1 and FWB and

FWB+MF were distributed in component 2 of the PCA

(Figure 5). This clearly indicated the differential roles of

applied amendments on the listed soil and plant parameters.
Frontiers in Plant Science 06
As indicated by the PC1, the applied MF was found as the most

influential treatment on most of the measured soil enzymes in

the present study. While PC2 showed FWB and FWB+MF as

most influential treatments regarding soil chemical properties

(pH and EC). The most displaced parameters were soil pH, EC

and plant chlorophyll fluorescence parameters FPSII and NDVI,

suggesting the differential effects of applied amendments on soil

characteristics and plant growth and physiology.
Discussion

Agricultural and food wastes derived biochars have been

regarded as alternative sources for enhancing soil chemical,

physico-chemical and biological health and crop growth and

development. However, the sole utilization of biochar does not

always result in an increase in soil fertility and crop biomass. The

present study, therefore, aimed to compare the effectiveness of

agricultural and food wastes derived biochars with and without

mineral fertilization for improving soil chemical, physico-

chemical and biological properties related to microbial soil

health indicators and crop growth. The results revealed that

the application of agricultural biochar with mineral fertilization

enhanced crop biomass (Figure 1). This enhancement might be
A B

D E F

C

FIGURE 3

Comparative effects of applied food waste (FWB) and agricultural waste biochar (AB) with and without mineral fertilization (MF) on
(A) dehydrogenase activity; (B) glucosidase activity; (C) phosphatase activity; (D) urease activity; (E) N-acetyl-glucosaminase activity and (F) aryl-
sulphatase activity. Values are mean of three replicates. Different lowercase letters indicate statistical significance at p<0.05.
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associated with the increased acquisition of readily available

plant nutrients under the applied biochar plus mineral fertilizer

combination (Sadaf et al., 2017). Similarly, Jeffery et al. (2017),

reported enhanced crop growth and yield. The authors stated

that the enhancement of crop growth and yield is mainly related

to enhanced soil nutrients under biochar application. These

results are further substantiated by the findings of Lai et al.

(2017) and Dong et al. (2015), who reported enhanced crop

biomass and yield under applied biochar. In our work, the

highest increase in biomass accumulation was observed under

combined application of biochar with MF (Figures 1A, B), which
Frontiers in Plant Science 07
agrees with the results of Ali et al. (2020), who reported higher

crop biomass accumulation under combined application of

biochar and nitrogenous fertilizers. This comparatively higher

crop performance observed in the present study under AB+MF

and FWB+MF revealed that integrated use of biochar and

mineral fertilizers could be a suitable approach for enhancing

crop production in a similar pattern observed by Singh

et al. (2019a).

The higher crop growth might also be related to enhanced

physiological parameters of crops under applied biochar and

mineral fertilizer treatments (Qian et al., 2019; Ali et al., 2021).
A B DC

FIGURE 4

Comparative effects of applied food waste (FWB) and agricultural waste biochar (AB) with and without mineral fertilization (MF) on (A) soil basal
respiration; (B) glucose-induced-respiration; (C) alanine-induced respiration; and (D) arginine-induced respiration. Values are mean of three
replicates. Different lowercase letters indicate statistical significance at p<0.05.
FIGURE 5

Principal component analysis of the observed microbiological and chemical soil health indicators and crop biomass and physiological
parameters under the influence of applied food waste (FWB) and agricultural waste biochar (AB) with and without mineral fertilization (MF).
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Despite the fact that we found no significant variations in the

plant physiological parameters (FPSII, NDVI), their relative

increase in MF fertilized treatments (Figures 1C, D) confirms the

direct dependence of chlorophyll content and photosynthesis on

nutrient availability, especially nitrogen (Huang et al., 2004; Mu

and Chen, 2021). This shows that the applied biochars were

unable to cast any additional benefit on crop’s physiological

parameters, however, their combination with mineral fertilizers

shows the potential to increase plant growth, as demonstrated

also by other studies (Kizito et al., 2019; Li et al., 2020; Ndoung

et al., 2021; Liu et al., 2022). The improved crop performance

under combined application of biochars and mineral fertilizers

could be due to the improved crop nutrient and water

availability coming from fertilizer and the mechanisms of

biochar on retention and exchange of these nutrients on

biochar surfaces which lead consistent supply of nutrients to

crops (Agbna et al., 2017; Singh et al., 2019b; Faloye et al., 2019).

On the other hand, the reduced or lower crop growth

performance under sole application of biochar might be due to

the clogging of micropores and reduced availability of crop

nutrients (Singh et al., 2019b).

Soil chemical and physico-chemical properties are important

determinants of soil quality. It has been shown that biochar

application results in the modification of soil chemical properties

mainly pH and electrical conductivity and soil nutrient status

(Joseph et al., 2020; Holatko et al., 2022). We found enhanced

soil pH under the application of food waste biochar (FWB) with

and without MF (Figure 2A). This enhanced soil pH under

biochar addition is related to the higher pH of the biochar itself

and its liming effect as has been previously reported by many

researchers (Ali et al., 2020; Hammerschmiedt et al., 2022).

Moreover, the highest increase in EC under FWB+MF treatment

than control (Figure 2B) might be the outcome of direct release

of nutrients from MF which could be retained on the biochar

surfaces and resulted in increased soluble salts in soil solution

eventually showing higher EC. This is further supported by the

results of PCA (Figure 5) suggesting FWB with and without MF

as most influential treatments for soil chemical properties

observed here. Moreover, higher pH and EC might be due to

the higher porosity and surface area of biochar which together

with applied fertilizers might have improved the soil physico-

chemical properties through nutrient retention on biochar

surfaces resulting in higher pH and EC (Jaafar et al., 2015).

Our results are in line with Ali et al. (2021) who reported

enhanced soil physico-chemical properties due to the

application of biochar and N fertilizers.

Soil extracellular enzymes mediate the cycling of C, N and

P in agroecosystems and are important determinants of soil

organic matter decomposition (Bilen and Turan, 2022). We

found differential responses of applied organic amendments

with and without MF on various soil enzymes involved in C, N
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and P cycling (Figures 3A–F). In most of the cases, application

of MF enhanced soil enzyme activities. Our findings agree with

Tian et al. (2016) reporting enhanced soil enzyme activities

under the application of mineral fertilization. Both mineral

fertilization and biochar have been recognized to improve soil

extracellular enzyme activities. The enhancement of enzyme

activities under MF in the present study could be related to the

increased availability of limiting nutrients to microbes as

speculated by Zhang et al. (2014). Moreover, it has been

acknowledged that the application of mineral fertilizers

causes rapid mineralization of native soil organic matter

(Foley et al., 2005; Liu et al., 2010), which is reflective in the

findings obtained on enhanced activity of nutrient

mineralizing enzymes under MF application in the present

study (Figure 3). Moreover, Lehman et al. (2011) postulated

that the alterations of soil pH due to biochar addition might

affect the activities of enzymes especially phosphatases.

Furthermore, in line with our findings, Song et al. (2020) in

another study reported enhanced activity of C and N acquiring

enzymes under the influence of mineral fertilization and

biochar additions (Figure 3). Thus, the higher enzyme

activities under applied amendments are suggestive for

increased nutrients (C, N, P) mineralization in this study.

Soil respiration is one of the biological soil health indicators

and is of significant concern in the face of climate change (Singh

et al., 2019b). Considerable variations were observed for soil

basal, and substrate induced respirations in soils subjected to

various amendments (Figures 4A–D). The soil basal and SIR are

considered active indicators of soil microbial biomass (Hassink,

1993). The sole application of MF yielded highest BR and Arg-IR

while the amendment with AB without MF enhanced Glu-IR

and Ala-IR in the present study (Figures 4A–C). We ascribe the

higher BR and Arg-IR to increased utilization of nutrient sources

by microbes and their proliferation under the application of MF

and arginine (substrate). Moreover, the role of biochar in

improving SIR has been well studied in many studies (Gul

et al., 2015; Karimi et al., 2020). The enhanced SIR under AB

in the present study might be related to an enhanced substrate

availability and release of other biologically active compounds

(Hermann et al., 2019). Moreover, biochar porosity provides the

microbes with essential microenvironment, water and aeration,

thereby enhancing their activity (Gul et al., 2015; Xu et al., 2016;

Hermann et al., 2019). Generally, higher soil respiration is

observed in biochar treated soils which further gets increased

or decreased depending on biochar types and the amount of

labile carbon present (Jones et al., 2012; Brunn et al., 2014;

Mohan et al., 2018). The increase in Glu-IR and Ala-IR in the

present study under applied AB treatment might reveal higher

microbial activity due to the presence of more labile C (Hussain

et al., 2017). Moreover, the higher variations observed for soil

enzymes (Figure 3) and soil respiration (Figure 4) under applied
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amendments might be associated with the large differences in C:

N ratios of applied biochars (Table 1). This could have caused

large variations in microbial growth and nutrient turnover and

hence caused variations on observed microbial attributes.
Conclusion

Comparison and analysis of food and agricultural wastes

derived biochar in combination/absence of mineral fertilizer

revealed differential responses of soil microbial indicators and

plant growth and physiological alteration. The study demonstrated

that agricultural waste derived biochar enhanced crop growth and

its combination with mineral fertilizers had the potential to

improve its physiological attributes in terms of chlorophyll

fluorescence indicators. This shows that the integration of

biochar with mineral fertilizers could be a sustainable approach

for enhancing crop production. The food waste derived biochar on

the other hand, was found to enhance soil chemical properties

owing to its alkaline nature and higher nutrient contents.

Furthermore, the mineral fertilizer was most influential strategy

in improving soil basal respiration and C, N and P cycling enzymes

which suggests the role of fertilizers in nutrient cycling as indicated

by the principal component analysis as well. It is thus concluded

that, the application of food and agricultural waste derived

biochars not only helps in waste recycling but also help in

modification of soil bio-chemical properties together with

mineral fertilizers. Based on findings, it can be concluded that a

combination of biochar and mineral fertilizers is a viable approach

for sustainable soil management and crop production in agro-

ecosystems. However, further studies taking into account the

functional groups characterization and surface chemistry of

biochars derived from various wastes are required to deepen our

understanding on the mechanisms by which biochar affects soil

quality attributes and improve crop performance.
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