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Spermidine exogenous
application mollifies
reproductive stage heat stress
ramifications in rice

Sourabh Karwa1,2, Jyoti Taunk1,3, Sadhana Maurya1,
Adhip Das1, G. K. Krishna1,4, Sunder Singh Arya2,
Awadhesh Kumar5, Sudhir Kumar1*, Pramod Kumar1,
Viswanathan Chinnusamy1 and Madan Pal1
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2Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, India, 3Department of
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Mohali, Punjab, India, 4Department of Plant Physiology, College of Agriculture, Kerala Agricultural
University, Thrissur, India, 5Crop Physiology and Biotechnology Division, Indian Council of
Agricultural Research-National Rice Research Institute (ICAR-NRRI), Cuttack, Odisha, India
Introduction: Rice productivity is severely hampered by heat stress (HS) which

induces oxidative stress in this crop. This oxidative stress can be alleviated using

various exogenous chemicals, including spermidine (Spd). Therefore, the

present study was carried out to characterize HS components and to

elucidate the role of exogenous Spd application in rice at the flowering stage.

Methods: Two contrasting rice genotypes, i.e. Nagina22 (N22) and Pusa

Basmati-1121 (PB-1121) were placed in temperature tunnels and exposed to

HS (38–43°C) with and without Spd (1.5 mM) foliar application during the

heading stage till the end of the anthesis stage.

Result: Heat stress induced the production of H2O2 and thiobarbituric acid

reactive substances, which resulted in lower photosynthesis, spikelet sterility,

and reduced grain yield. Interestingly, foliar application of Spd induced

antioxidant enzyme activities and thus increased total antioxidant capacity

resulting in higher photosynthesis, spikelet fertility, and improved grain yield

under HS in both genotypes. Under HS with Spd, higher sugar content was

recorded as compared to HS alone, which maintained the osmotic equilibrium

in leaf and spikelets. Spd application initiated in vivo polyamine biosynthesis,

which increased endogenous polyamine levels.

Discussion: This study corroborates that the exogenous application of Spd is

promising in induction of antioxidant defence and ameliorating HS tolerance in

rice via improved photosynthesis and transpiration. Thereby, the study
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proposes the potential application of Spd to reduce HS in rice under current

global warming scenario.
KEYWORDS

Antioxidant enzymes, flowering, heat stress, polyamine, rice, spermidine,
spikelet fertility
Introduction

Rice is the most important staple food crop cultivated over

167.13 mha across the globe (http://www.fao.org/faostat/en/

#compare, accessed on 20th January 2021), feeding over 3.5

billion people (FAO, 2014). Rice production is facing an

unprecedented challenge with increasing global mean

temperature and diminishing freshwater resources. The

climate change scenario predicted a rise in temperature by 1.6-

4.4°C by 2100 and a more frequent occurrence of heat episodes

during the sensitive growth stages such as flowering in case of

rice (Teixeira et al., 2013; IPCC, 2021). At this stage, heat stress

(HS) could result in anther dehiscence, poor pollen germination,

ultimately reducing spikelet fertility and grain yield (Hu et al.,

2021). Under HS, the plant follows various tolerance and

avoidance mechanisms to cope with the HS conditions

(Hasanuzzaman et al., 2013), including high transpirational

cooling (Karwa et al., 2020).

Heat stress induces oxidative stress at the tissue level by

overproducing reactive oxygen species (ROS), damaging protein

function and membrane integrity (Zhao et al., 2018). In addition,

gas exchange, membrane permeability, sugar and starch

accumulation are also vulnerable to HS at the flowering stage

in rice and other crops (Paupière et al., 2014). Under stress

conditions (HS), the plant responds via an orchestrated and

complex network of different plant regulators that plays a vital

role in acquiring tolerance (Garay-Arroyo et al., 2012). Growth

regulators or stress hormones such as salicylic acid, proline,

betaine and brassinosteroids can ameliorate the negative effect

of oxidative stress by fortifying antioxidant defence machinery

(Ghosh et al., 2022; Hossain et al., 2022; Raza et al., 2022).

Recently, a new class of small and low molecular weight aliphatic

amines, i.e. polyamines, have been suggested to improve plant
02
tolerance towards various abiotic stresses such as drought,

salinity and heavy metals (Capell et al., 2004; Zhao et al., 2004;

Handa and Mattoo, 2010; Do et al., 2014; Soudek et al., 2016).

There are three common and naturally occurring polyamines,

namely putrescine (Put), spermidine (Spd) and spermine (Spm).

Spd has been documented to directly act as a stress protecting

compound (Chen et al., 2021) and is involved in various stress

signal transduction pathways (Kasukabe et al., 2004). The

potential of Spd to improve plant tolerance towards various

abiotic stresses like drought (Kubiś, 2001; Kubiś, 2003), salinity

(Roy et al., 2005; ElSayed et al., 2018), heat (Tian et al., 2009) and

submergence (Liu et al., 2015) is well documented. Spd

application on rice seedlings under HS has reduced H2O2,

proline and malondialdehyde (MDA) contents (Mostofa et al.,

2014). Spd alleviated drought stress in maize seedlings by

protecting the photosynthetic apparatus, which improved their

photosynthetic performance (Li et al., 2018). However, the effect

of Spd in ameliorating HS has not been investigated in rice,

particularly at the flowering stage. Therefore, the present study

was aimed to analyse the impact of HS on rice growth and yield

metrics; and to authenticate the hypothesis that exogenous Spd

application induces HS tolerance in rice at the reproductive stage.
Materials and methods

Plant material and growth conditions

Effects of HS on physio-biochemical traits and mitigation

response of Spd against HS were studied in two rice genotypes

viz. Nagina22 (N22) (03911) and Pusa Basmati-1121 (PB-1121)

(Table 1). The experiments were conducted in the Pot culture

facility, Division of Plant Physiology, Indian Council of
TABLE 1 Rice genotypes tested under this study.

Genotype Origin Species Stress tolerance Reference(s)

Nagina22 (N22) (03911) India Oryza sativa aus Heat tolerant Prasad et al. (2006); Jagadish et al. (2008); Jagadish et al. (2010),
Selote and Khanna-Chopra (2004)

Pusa Basmati-1121
(PB-1121)

India Oryza sativa indica Heat sensitive Singh et al. (2018)
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Agricultural Research (ICAR)-Indian Agricultural Research

Institute (IARI), New Delhi, during Kharif, 2016. Plants were

raised in pots (14 cm diameter and 12 cm height) by

transplanting 21 days old rice seedlings from the nursery. Each

pot was filled with 20 kg of clay-loam soil supplemented with

farmyard manure (800 g pot-1). The N: P: K fertilizer was

provided as (NH4)2SO4 (0.375 g kg-1), SSP (0.075 g kg-1) and

KCl (0.075 g kg-1), respectively, in split doses. Another dose of N

(0.125 g kg-1 soil) was top-dressed 25–30 d. Fifteen biological

replicates were followed in all the experiments. All pots were

arranged randomly as per the layout obtained through Statistical

Tool for Agricultural Research (STAR; Version: 2.0.1) and

placed at the Net house facility. Plants were kept under

flooded conditions (water 3-5 cm above the soil surface) till

their physiological maturity. Heat stress treatment was

commenced at the heading stage by shifting the pots in a

temperature tunnel, with an average temperature of ~5˚C

more than the ambient temperature and was kept for at least

ten days, covering flowering and post-flowering representative

genotypes. Sampling was done on the main tiller, tagged before

stress treatments. No significant insects or pests were observed

during the experiment. For the present study, three sets of

treatments were designed as (1) C: Ambient temperature

(Control); (2) HS: Heat stress (elevated temperature) and (3)

HS+Spd: Heat stress (elevated temperature) with Spd

(1.5mM) application.
Heat stress treatment in the high-
temperature tunnel

The plants were grown in ambient conditions until booting

and were shifted to high temperature tunnel (HTT) at the

heading stage. The design and control system of the

temperature tunnel was followed as described by Sinclair et al.

(1995). The air temperature and relative humidity (RH) were

recorded on a real-time basis at every 30 min interval by

MINCER (Micrometeorological Instrument for the Near-

Canopy Environment of Rice) as per Fukuoka et al. (2012).

MINCER was installed at the centre of the HTT, and sensor

height was kept at the height of the rice canopy. For comparison,

data represented in the figures includes the HS period (heading

to 100% flowering) for both ambient net house and HTT. The

ambient and HTT was recorded diurnally and expressed as the

mean day (0700–1800 h)/night (1800–0700 h) temperature for

both the experiments.
Growth environments in ambient
and HTT

The mean maximum temperature (Tmax) was 34.3°C (SD ±

1.68), andmeanminimum temperature (Tmin) was 22.6°C (SD ± 0.78)
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in ambient conditions, while inHTT, Tmax was 39.2°C (SD± 2.78), and

Tmin was 26.3°C (SD± 1.03) (Supplementary Figures 1A, B). Therewas

an increment of 4.8°C during day and 3.7°C at night over ambient

conditions in HTT. In the present study, both the genotypes differed in

the onset of flowering, first observed in N22, followed by PB-1121.
Exogenous Spd application

Spd (Himedia, India) stock solution (1.5 mM) was prepared

in distilled water containing 0.01% (v/v) Tween-20 as surfactant

to enhance foliar adhesion. For foliar application, 20–25 ml of

solution per plant was sprayed during 1700 to 1900 h before HS.
Sampling

The flag leaf and spikelets were used as samples for

evaluating all the biochemical parameters, and the evaluations

were performed at 100% flowering of the respective genotype.

Only the tagged panicles were harvested to avoid sampling error.

The samples were flash-frozen in liquid nitrogen and stored

at -80°C until further analysis.
Evaluation of spikelet fertility and yield-
associated traits

Data on spikelet fertility, grain weight plant-1 and 1000 grain

weight were recorded according to Prasad et al. (2006). At

physiological maturity, panicle and biomass were separately

harvested and packed into separate envelopes. Panicle was sun

dried for 3-4 days or till the constant weight was achieved. Then

grains were threshed from the panicles and weight was measured

using analytical balance (model: BSA124S-CW, Sartorius AG,

Germany) which was expressed as grain weight plant-1. From the

harvested panicles, five random panicles per plants were selected

and counting of filled and unfilled grains per panicle was

performed manually. The ratio of filled grains with total

number of spikelet per panicle was expressed in percentage.

The 1000 grain weight of seeds was counted manually from final

thrashed gra ins and weight was ca lcu la ted us ing

analytical balance.
Physiological parameters

Measurement of relative water content and
membrane stability index

To derive RWC, the fresh weight (FW) of the flag leaf was

recorded, then it was hydrated overnight to take the turgid

weight (TW) and oven-dried for two days for dry weight (DW)
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analysis. RWC was calculated according to Barrs and

Weatherley (1962).

Fresh leaf samples were cut into pieces of equal sizes and

transferred to test tubes containing distilled water to obtain MSI.

The samples were incubated in the water bath at 45°C for

60 min. After cooling, the conductivity (C1) of the solution

was measured. Samples were further kept at 100°C for 10 min,

and then conductivity was again measured after cooling. After

that, MSI was calculated according to Sairam et al. (2002).

Measurement of net photosynthesis rate and
associated gas exchange parameters

Gas exchange parameters such as net photosynthesis rate

(PN ; mmolCO2 m−2s−1) , s tomatal conductance (gS ;

molH2Om
−2s−1) and transpiration rate (E; mmolH2Om

-2s-1)

were measured using the LI-COR portable photosynthesis

system (LI-6400 model, LI-COR, Lincoln, NE). The gas

exchange measurements were recorded from the flag leaf

between 0830 and 1130 hours. The CO2 concentration of the

reference air entering the leaf chamber (3 x 2 cm; Model 6400–

02B; LI-COR Inc. USA) was adjusted with a CO2 mixer control

unit, keeping it at 400 µmol mol–1 with a constant flow rate of

500 µmol s–1. Measurements were recorded with a

Photosynthetic photon flux density (PPFD) at 1200 mmol m–

2s–1 supplied with red LEDs (LI-6400–02; LI-COR Inc.).

Chamber block temperature was set as per ambient conditions,

and the RH was kept close to 60% (Bahuguna et al., 2018).
Biochemical parameters

Measurement of sugar and starch content
Sugar and starch contents were measured in flag leaf and

spikelets spectrophotometrically, as described by McCready

et al. (1950). In brief, samples were grounded in pestle motar

using liquid nitrogen. Sample (0.1g) was then mixed with 80%

ethanol (V/V) and centrifuged. The extract was collected and

sugar analysis was performed using anthrone reagent. Remaning

pellet was dried after sugar anlaysis and perchloric acid was

added for starch extraction from the sample. Again it was

centrifuged and further analyzed using anthrone reagent.

Quantitative estimation of these samples was performed using

UV-visible spectrophotometer at an absorbance of 630 nm

(Model: Specord Bio. 200, AnalytikJena, Germany).

Measurement of hydrogen peroxide and
thiobarbituric acid reactive substances

The H2O2 and TBARS contents were calculated in both flag

leaves and spikelets. H2O2 content (mmolg−1FW) was measured

spectrophotometrically as described by Alexieva et al. (2001).
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The concentration of H2O2 was calculated from the standard

curve plotted against Hydrogen peroxide solution (Merck,

Germany). TBARS content (mmolg−1FW) was measured

spectrophotometrically as described by Larkindale and Knight

(2002) and calculated using an extinction coefficient of 155

mM cm−1.
Measurement of total antioxidant capacity
TAC was measured by Ferric reducing antioxidant power

(FRAP) assay as per Benzie and Strain (1999) and expressed as

the ferric-reducing ability of mmol L-1 FeSO4. In brief, sample

was grounded using liquid nitrogen in pestle and mortar.

Grounded sample was aliquoted with 70% ethanol (v/v). After

centrifugation, supernatant was collected and further analyzed

using FRAP reagent (3 ml) in dark. It was then incubated in

water bath for 10 min at 370C and absorbance was recorded at

593 nm using UV-visible spectrophotometer (Model: Specord

Bio. 200, AnalytikJena, Germany).
Measurement of antioxidant
enzyme activity

Total soluble protein extraction
Total protein was extracted from flag leaf and spikelets to

estimate antioxidant enzyme activities. The samples were

homogenized and transferred to microcentrifuge tubes containing

ice-cold potassium phosphate buffer (0.1 M, pH=7.0) and 0.1 mM

disodium ethylene diamine tetra acetate dehydrate (Na-EDTA). In

case of protein extraction for estimation of ascorbate peroxidase

activity, Na-EDTA was replaced by 10 mM ascorbate in the buffer.

The homogenate was then centrifuged at 18,400 g for 20min at 4°C,

and the supernatant was used as crude enzyme extract. Protein

content was estimated following the Bradford method

(Bradford, 1976).
Antioxidant enzyme assays
Superoxide dismutase (SOD; EC 1.15.1.1) activity was assayed

by monitoring the inhibition of photochemical reduction of nitro

blue tetrazolium (NBT) following the method of Jiang and Zhang

(2002). It was expressed as one unit of SOD activity mg−1 protein.

Catalase (CAT; EC 1.11.1.6) activity was assayed by measuring the

disappearance of H2O2 at 240 nm (extinction coefficient = 39.4

mM−1cm−1) and was expressed as mmol of H2O2 consumed mg−1

proteinmin−1 (Jiang and Zhang, 2002). Ascorbate peroxidase (APX;

EC 1.11.1.11) activity was determined by decrement in absorbance

at 290 nm, as described by Sharma and Dubey (2004). The enzyme

was quantified using the extinction coefficient of 2.8 mM−1cm−1 and

expressed as mmol ascorbate mg−1 protein min−1. Guaiacol
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peroxidase (GPX; EC 1.11.1.7) activity was determined as described

by de Azevedo Neto et al. (2006). Enzyme activity was quantified

using molar extinction coefficient (26.6 mM−1cm−1) to calculate the

formation of tetraguaiacol and was expressed as mmol H2O2 mg−1

protein min−1.
Estimation of endogenous
free-polyamines

The extraction and estimation of free polyamines (Put, Spd and

Spm) were performed following the perchloric acid method given by

Flores andGalston (1982). Derivatization offree polyamineswas done

by alkali (NaOH) treatment followed by benzoylation. The reaction

was terminated using saturated NaCl. Cold diethyl ether (2 mL) was

used for extracting polyamines from benzyl polyamine. The ether

phasewas collected and evaporated to dryness and re-dissolved in 100

µL High-Performance Liquid Chromatography (HPLC) grade

methanol (Merck, Germany). HPLC analysis was performed using

the reverse-phase (C18) column (Agilent) on Agilent 1100.

Benzoylated polyamine sample (20 µL) was injected by an

autosampler with a flow rate of 1 mL/min of mobile phase

(acetonitrile: water; 52:48 v/v) (Merck, Germany). The area and data

retrieval calculations were performed using CHEMSTATION for LC

system Rev B.040.3 (16) software. The concentrations of individual

polyamines were calculated from the standard curve plotted against

HPLC grade standards of Put, Spd and Spm (Sigma chemicals, USA)

and expressed as nmol g−1 FW (Supplementary Figure 2).
Statistical analysis

Data were analyzed by two-way Analysis of variance

(ANOVA) in a completely randomized design using Statistical

Package for the Social Sciences (SPSS) 13.0 (LEAD Technologies

Inc.) to compare the differences between cultivars, treatments

and their interaction. Post-hoc test (Tukey’s) was performed to
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retrieve the difference between treatments and genotypes at least

significant (LSD) of 5% and 1%.
Results

Effect of Spd on yield-related parameters
under HS

The reduction was recorded in spikelet fertility, grain yield

plant-1 and 1000 grain weight under HS. Spikelet fertility and grain

yield plant-1 showed significant genotype (G) x treatment (T)

interaction (P<0.05-0.001) under HS at the flowering stage

(Table 2). Heat stress significantly reduced spikelet fertility in

both the genotypes, as 23.5% and 6.5% reduction was recorded in

PB-1121 and N22, respectively with respect to the control.

Application of Spd significantly decreased yield penalty under HS.

Compared to HS alone (without any exogenous application of

polyamine), Spd application under HS significantly improved

spikelet fertility by 9.5% and 2.0% in PB-1121 and N22,

respectively. Under HS, maximum reduction of 67.3% grain yield

plant-1 was recorded in case of PB-1121, and minimum reduction

(8.1%) was recorded in case of N22 (Table 2). Under HS, a

significant reduction in 1000 grain weight was recorded in PB-

1121 (28.8%) while a lower reduction was observed in N22 (8.1%)

as compared to the ambient conditions. In addition, 1000 grain

weight showed significant (P<0.001) treatment interaction

(Table 2). Spd application under HS resulted in comparatively

lesser reductions of 1000 grain weight which was estimated to be

11% and 6.5% in PB-1121 and N22 genotypes, respectively.
Effect of Spd on net photosynthesis rate
and associated gas exchange parameters

PN varied significantly in G and T (P<0.001) (Figure 1A;

Supplementary Table 1). Within the genotypes, PN reduced on
TABLE 2 Yield components (spikelet fertility, grain yield plant-1 and 1000 grain weight) of rice genotypes under heat stress.

Genotype Treatment Spd application Grain yield plant-1 (g) Spikelet fertility (%) 1000 grain weight (g)

N22 Ambient -Spd 51.2 ± 3.66 93.7 ± 1.26 20.70 ± 0.12

HS -Spd 47.1 ± 4.92 87.6 ± 1.48 19.02 ± 0.59

+Spd 48.8 ± 4.43 89.3 ± 0.97 20.27 ± 0.37

PB-1121 Ambient -Spd 55.8 ± 4.19 89.8 ± 0.59 22.97 ± 0.92

HS -Spd 18.2 ± 2.01 68.7 ± 2.56 16.37 ± 0.37

+Spd 29.0 ± 5.83 75.2 ± 3.99 17.72 ± 0.09

Lsd<0.05 G 7.71*** 2.32*** 0.89*

T 8.95*** 2.81*** 1.09***

G X T 12.66** 3.98** 1.504***
Each point represents the mean of five replicates with their ± SE. Least significant difference (Lsd) P<0.05, 0.01 and 0.001 were denoted by *, **, and*** respectively. G, Genotypes; T,
Treatment; HS, Heat stress; SE, Standard error; Spd, Spermidine.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1027662
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Karwa et al. 10.3389/fpls.2022.1027662
A

B

C

FIGURE 1

Net Photosynthesis rate (A), Stomatal conductance (B) and Transpiration rate (C) under different treatments in the contrasting rice genotypes
(N22 and PB-1121). Bars indicatemean ± SE. Comparison of means was obtained from Tukey’s honestly significant difference test where means
with the same letter are not significantly different at 5%. C, Control; HS, Heat stress; Spd, Spermidine. Least significant difference values at 5% for
comparison are given in Supplementary Table 1.
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the 7th day of HS in the range 11–15% with respect to the C

(Figure 1A). There was a significant reduction in PN by 15.1% in

PB-1121 and by 11.1% in N22 under HS with respect to the

ambient. Spd application significantly recovered the PN in tested

genotypes. When compared with HS, the maximum rescue of PN
was recorded in N22 (16.5%) followed by PB-1121 (21.9%)

under HS+Spd. The gS showed significant variation within G x

T interaction (P<0.001) (Figure 1B; Supplementary Table 1).

Compared to the ambient, HS showed reductions in the range of

5.0-57%, with a minimum reduction in N22 and a maximum in

PB-1121. Spd application significantly improved gS by 10.9%

and 119.9% in N22 and PB-1121, respectively, compared to HS.

A similar trend was recorded in E, with significant G x T

interaction on the 7th day of HS (Figure 1C; Supplementary

Table 1). HS+Spd significantly increased E in both the tested

genotypes. When compared with HS, a higher increase in E was

recorded in N22 (43%) and lower in PB-1121 (41%).
Effect of Spd on RWC and MSI

RWC showed significant variation between genotypes (G)

and treatment (T) (P<0.001) (Table 3). Within the two

genotypes, RWC reduction was recorded in the range of 18–

30% under HS with respect to the ambient. Spd application

significantly increased water retention efficiency under HS+Spd

(9-19%) over corresponding HS treated plants on the 7th day of

heat exposure. Compared to HS alone, RWC increased by 19.0%

in PB-1121 and 9.2% in N22 after Spd application under HS.

MSI also showed a significant G and T (P<0.001) response

(Table 3). Across the genotypes, reduction in MSI was recorded

in a range of 16.0–24.0% under HS. Spd application significantly

improved membrane stability by 6.0% and 5.0% in PB-1121 and

N22, respectively.
Frontiers in Plant Science 07
Effect of Spd on H2O2 and TBARS

To understand the impact of heat stress on flag leaf and

spikelets and the protective role of Spd, H2O2 and TBARS were

measured at the flowering stage. H2O2 accumulation showed

significant G x T interaction (P<0.001) in flag leaf and spikelet

(Table 3) with higher accumulation in former. The flag leaf of

PB-1121 showed H2O2 accumulation of 15.2 µmol g-1 FW, while

in case of spikelet, 11.7 µmol g-1 FW was observed under HS on

the 7th day of heat exposure. When compared with HS alone,

Spd application reduced H2O2 production in both the genotypes.

Higher H2O2 accumulation was recorded in flag leaf and

spikelets of PB-1121 (13.7 and 10.8 µmol g-1FW, respectively)

under HS+Spd as compared to N22 (12.4 and 10.5 µmol g-1FW,

respectively). TBARS, which was calculated in terms of MDA

accumulation, showed significant G x T interaction (P<0.001) in

flag leaf and spikelet (Table 3). TBARS accumulated maximally

in both flag leaf and spikelets with 44.3% and 118.7%,

respectively, in PB-1121 under HS compared to ambient.

Compared with HS, Spd application reduced MDA

accumulation in N22 (10.0% and 0.6%) and PB-1121 (13%

and 26%) in flag leaf and spikelets, respectively.
Effect of Spd on sugar and
starch content

Total soluble sugar content in flag leaf and spikelets showed

significant variation (P<0.01-0.001) among genotypes and

treatment (Figure 2) after exposure to HS. On the 7th day of

HS, significant sugar reduction was recorded in flag leaf (13%

and 34%) and spikelets (10% and 57%) of N22 and PB-1121,

respectively with respect to the control. Heat stress with Spd

foliar application enhanced sugar accumulation in N22 (4% and
TABLE 3 Stress responses RWC, MSI, H2O2 accumulation, TBARS and TAC) in rice genotypes (N22 and PB-1121) under heat stress in flag leaf
and spikelets.

Genotypes Treatment Spd applications RWC (%) MSI (%) H2O2 (µmol g-1 FW) TBARS (µmol g-1

FW)
TAC (mM g-1 FW)

Flag leaf Flag leaf Flag leaf Spikelets Flag leaf Spikelets Flag leaf Spikelets

N22 Ambient -Spd 88.3 ± 1.32 88.3 ± 1.24 11.5 ± 0.06 10.4 ± 0.01 20.4 ± 0.43 10.2 ± 0.56 56.5 ± 4.54 23.8 ± 3.39

HS -Spd 72.1 ± 0.85 74.1 ± 2.13 12.6 ± 0.14 10.5 ± 0.01 22.1 ± 1.18 11.0 ± 0.62 57.3 ± 1.79 23.1 ± 0.88

+Spd 78.7 ± 1.03 77.7 ± 2.50 12.4 ± 0.04 10.5 ± 0.01 19.7 ± 0.54 10.9 ± 0.45 60.1 ± 1.83 33.0 ± 2.09

PB-1121 Ambient -Spd 87.2 ± 0.91 81.9 ± 2.76 12.9 ± 0.19 10.5 ± 0.03 28.1 ± 2.05 31.0 ± 1.40 50.5 ± 2.08 13.6 ± 0.95

HS -Spd 61.8 ± 1.28 61.8 ± 1.58 15.2 ± 0.15 11.7 ± 0.02 40.6 ± 0.97 67.8 ± 2.29 53.3 ± 2.24 11.1 ± 0.25

+Spd 73.1 ± 1.07 65.3 ± 1.45 13.7 ± 0.34 10.8 ± 0.12 35.2 ± 2.72 50.2 ± 2.83 64.8 ± 0.41 19.4 ± 0.84

Lsd<0.05 G 1.94*** 3.60*** 0.32*** 0.09*** 2.75*** 2.91*** ns 3.10***

T 2.37*** 4.40*** 0.39*** 0.11*** 3.37** 3.57*** 5.38* 3.80***

G X T 3.36** ns 0.55** 0.16*** 4.77* 5.50*** ns ns
fron
Each point represents the mean of five replicates with their SE. Least significant difference (Lsd) P<0.05, 0.01 and 0.001 were denoted by *, **, and *** respectively, and ns denotes non-
significant; FW, Fresh weight; G, Genotypes; T, treatment; GxT, Interaction between genotype and treatment; HS, Heat stress; RWC, Relative water content; MSI, Membrane stability index;
TBARS, lipid peroxidation; H2O2, reactive oxygen spices; TAC, Total antioxidant capacity; SE, Standard error; Spd, Spermidine.
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8%) and PB-1121 (36% and 86%) in flag leaf and spikelets,

respectively with respect to HS. Similarly, starch content showed

significant variation (P<0.05-0.001) among the genotypes and

under treatment. On the 7th day of HS, a significant reduction of

starch content was recorded in flag leaf (39% and 34%) and

spikelet (32.6% and 51.5%) of N22 and PB-1121, respectively

with respect to the control. When Spd application under HS was

compared with HS alone, it was found that starch content was

increased in both the genotypes in case of both flag leaf and

spikelets. In case of spikelets higher increase in starch content

was noticed in N22 (55%) as compared to PB-1121 (23%).
Effect of Spd on total antioxidant
capacity and enzymes activity

To underline the decrease in the accumulation of H2O2 and

MDA contents, we also analyzed TAC and corresponding
Frontiers in Plant Science 08
enzymes’ activities. TAC showed significant interaction in T

of flag leaf (P<0.05), whereas G and T interation was presented

in spikelets (P<0.001) of rice genotypes (Table 3). In flag leaf,

maximum TAC was recorded in N22, while HS+Spd showed

significant enhancement in TAC in PB-1121 (64.8 mMg-1FW).

A similar trend was observed in spikelets of both the genotypes.

A significant rise in TAC was recorded under HS+Spd

treatment in both N22 (33.0 mM g-1FW) and PB-1121 (19.4

mM g-1FW).

Heat stress significantly induced activities of antioxidant

enzymes viz. SOD, CAT, APX and GPX. SOD activity

recorded significant variability in G and T in flag leaf

(P<0.001-0.01), while in spikelet, significant G x T interactions

were present (P<0.01) (Figure 3; Supplementary Table 2). In flag

leaf, SOD activity was recorded in a range of 0.21-0.30 units mg-

1protein. Under HS, its maximum activity was recorded in N22

(0.28 units mg-1protein) followed by PB-1121 (0.23 units mg-

1protein). Spd application under HS significantly induced SOD
D

A B

C

FIGURE 2

Effect of heat stress on sugar and starch contents under different treatments in rice flag leaf (A, C) and spikelets (B, D), respectively. Each point
represents mean of five replicates. C, Control; DW, Dry weight; HS, Heat stress; Spd, Spermidine. Significance level: **P < 0.01; ***P < 0.001; ns,
nonsignificant.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1027662
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Karwa et al. 10.3389/fpls.2022.1027662
activity in N22 (0.30 units mg-1protein) as well as PB-1121 (0.27

units mg-1protein). In spikelets, SOD activity was recorded in a

range of 0.34-0.50 units mg-1protein. A similar trend was

recorded in spikelets as well. CAT activity showed a significant

difference among G and T in flag leaf (P<0.001-0.01) (Figure 3;

Supplementary Table 2), whereas non-significant interaction

was recorded in spikelets. Induction in CAT activity was

recorded by Spd application in HS as shown in N22 (0.054

mmol H2O2 min−1g−1 protein) and PB-1121 (0.038 mmol

H2O2 min−1g−1 protein) in flag leaf, whereas the marginal

increase was recorded in spikelets of PB-1121.

APX activity showed a significant difference for G x T

interaction among flag leaf (P<0.05), whereas in case of

spikelets it was G and T interaction (P<0.001) (Figure 3;

Supplementary Table 2). In flag leaf, APX activity was
Frontiers in Plant Science 09
recorded in the range of 0.28-0.99 mmol ascorbate

min−1g−1protein, whereas in spikelets, it ranged from 0.56 to

1.00 mmol ascorbate min−1g−1protein. Under HS, its maximum

activity was induced in N22 (0.77 mmol ascorbate

min−1g−1protein) followed by PB-1121 (0.42 mmol ascorbate

min−1g−1protein). After Spd application under HS, significant

APX activity was induced in N22 (0.99 mmol ascorbate

min−1g−1protein) followed by PB-1121 (0.47 mmol ascorbate

min−1g−1protein). A similar trend was recorded in spikelets

where APX was recorded in the range of 0.56-1.0 mmol

ascorbate min−1g−1protein. GPX activity was significant for G

x T interaction in both flag leaf and spikelets (P<0.001) (Figure 3;

Supplementary Table 2). In flag leaf, its activity ranged from

0.51–1.3 units, whereas in spikelet, the values ranged between

0.78-1.70 units. Higher GPX activity was recorded under HS
FIGURE 3

Response of antioxidant enzymes in contrasting rice genotypes (N22 and PB-1121) under different treatments in flag leaf (A) and spikelets (B).
Each point represents mean of five replicates. APX, Ascorbate peroxidase; CAT, Catalase; GPX, Guaiacol peroxidase; HS, Heat stress; Spd,
Spermidine; SOD, Superoxide dismutase. SOD was expressed as units µmol; CAT and GPX was expressed as mmol of H2O2 consumption min−1
mg−1 protein and for APX, µmol ascorbate oxidized (APX) min−1 mg−1 protein, respectively. Least significant difference values at 5% for
comparison are given in Supplementary Table 2.
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+Spd in N22 (1.6 mmol H2O2 min−1g−1 protein). In general, Spd

application significantly improved GPX activity in the flag leaf of

PB-1121 among the genotypes and within treatments. In

spikelets, its activity varied significantly in the range of 0.78–

1.70 mmol H2O2 min−1g−1 protein with the highest activity in

N22 (1.70 units).
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Effect of Spd on endogenous free-
polyamines

Endogenous Put, Spd and Spm contents (units; nmoles g-

1FW) showed significant variation among G and T in both flag

leaf and spikelets (P<0.001-0.01) (Figure 4). Across the
C

E

F

A D

B

FIGURE 4

Effect of treatments on the endogenous content of polyamines in flag leaf (A–C) and spikelet (D–F) of rice genotypes. Bars indicate mean ± SE.
Comparison of means was obtained from Tukey’s honestly significant difference test and means with the same letter are not significantly
different at 5%. Fw, Fresh weight; Put, Putrescine; Spd, Spermidine; Spm, Spermine; LSD, least significant difference; G, Genotypes; T, treatment;
GxT, Interaction between genotype and treatment. Significance level: *P < 0.05; **P < 0.01; ***P < 0.001; ns, nonsignificant.
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genotypes, endogenous Put levels in flag leaf varied significantly

in the range of 23–495 nmoles g-1FW on the 7th day of the

treatment (Figure 4A). A significantly higher endogenous Put

level under HS was recorded in Pusa-1121 (333 nmoles g-1FW),

while it was comparatively lower in N22 (67 nmoles g-1FW).

Compared to HS alone, Spd foliar application under HS

significantly increased Put contents of PB-1121 by 48.6% while

lowering its content in N22 by 50%. In spikelets significant

increase in Put contents was recorded in both N22 and PB-1121

(271.8 and 1296 units, respectively) under HS. Spd application

under HS significantly decreased Put contents in spikelets of

b o t h N 2 2 a n d P B - 1 1 2 1 ( 3 5 . 9 % a n d 2 7 . 0 % ,

respectively) (Figure 4D).

Among the genotypes, endogenous Spd level in flag leaf

varied significantly in the range of 43–151 nmoles g-1FW

(Figure 4B) on the 7th day of treatment. A significantly higher

endogenous level of Spd under HS was recorded in N22 (61.4

nmoles g1FW), while it was lower in PB-1121 (48.7 nmoles g-

1FW). When compared to HS alone, Spd foliar application under

HS significantly increased Spd contents of PB-1121 by 63.1%,

while in N22, it increased by 147.1% in flag leaf. A similar trend

was observed in spikelets, where a significant increase in Spd

content was recorded in N22 (74 unit), which was lower in PB-

1121 (51 unit) under HS. Exogenous application of Spd under

HS significantly increased endogenous Spd content in spikelets

of both N22 and PB-1121 (24.1% and 18%, respectively)

(Figure 4E). Among the genotypes, endogenous Spm level in

flag leaf varied significantly in the range of 78–113 nmoles g-

1FW (Figure 4C) on the 7th day of treatment. A significantly

higher endogenous level of Spm under HS was recorded in both

N22 (107 nmoles g-1FW) and PB-1121 (82.4 nmoles g-1FW).

When compared with HS alone, Spd foliar application in HS

significantly increased Spm content of PB-1121 by 7.6%, while in

case of N22, it showed a non-significant increase under HS. A

similar trend was observed in spikelets, where a significant

increase in Spm content was observed in PB-1121 (114.74

units) which was lower in N22 (77.8 units) under HS. Spd

application under HS significantly increased Spm content in

spikelets of both N22 and PB-1121 (4.37 and 22.4%,

respectively) with respect HS (Figure 4F).
Discussion

Heat stress (HS), particularly at the flowering stage, has

detrimental effects on rice grain yield and quality (Barnabás, et

al., 2008; Lyman et al., 2013; Jagadish et al., 2015; Jagadish,

2020). Predication suggested that short spells of heat spikes at

the flowering stage have critical effects on rice (Krishnan et al.,

2011). Therefore, increasing stress tolerance in rice at the most

sensitive stage, i.e. flowering, is an ideal strategy to develop

future climate-resilient varieties (Horie et al., 1996). Heat stress

tolerance is majorly contributed by the robust antioxidant
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mechanism in crops like rice (Bahuguna et al., 2015), chickpea

(Kumar et al., 2013) and many other crops (Hasanuzzaman

et al., 2020). This mechanism has contributed towards high

spikelet fertility and reproductive success under HS in rice

(Bahuguna et al., 2015; Karwa et al., 2020).

It is documented that polyamines act as an essential

regulatory component in response to various abiotic stresses in

rice (Yang et al., 2007; Do et al., 2014; Karwa et al., 2020). Some

reports of Spd for alleviating stress were presented under

drought (Farooq et al., 2009) and heat (Mostofa et al., 2014)

stresses. However, no studies are presented at the flowering

stage. Therefore, this study was planned to address the vital gap,

i.e. which polyamine regulates the defence mechanism under HS

and how it helps maintain spikelet fertility and grain yield

components under HS.

Heat stress at the flowering stage showed adverse effects on

spikelet fertility and grain yield in PB-1121. However, in the case

of N22, lower reduction was recorded (Table 2), illustrating HS

resilience in the latter genotype. Qi andWu (2022) has suggested

that spikelet fertility in rice plants under HS is primarily

attributed to poor pollination manifesting. It has also been

suggested that under HS, pollen viability and pollen

dehiscence are severely affected, which would ultimately result

in a decline in spikelet fertility when exposed during the

flowering stage (Jagadish et al., 2010; Bahuguna et al., 2015;

Karwa et al., 2020). Another reason was reported by Zhang et al.

(2018) who explained that cross talk among auxins and ROS

occur during HS, which inhibits pollen tube elongation in pistil.

This decline in spikelet fertility results in grain yield reduction

under HS. We recorded grain yield per plant reduction of 67% in

PB-1121, while only 8% reduction was observed in N22 under

HS. Spd is associated with pollen maturation and pollen tube

growth in plants (Falasca et al., 2010; Aloisi et al., 2016). In our

study, Spd application showed an alleviated effect of HS as its

exogenous application improved spikelet fertility and grain yield

per plant in both the genotypes (Figure 5).

Gaseous exchange traits viz. photosynthesis rate (i.e. CO2

uptake) and transpiration rate (i.e. H2O loss) are regulated

through the stomatal behaviour of the plants. Stomatal pore

opening and closing maintain the tissue temperature and

movement of metabolites or signalling compounds in plants

(Brownlee, 2001; Lake et al., 2001). Limitations in gas exchange

can limit plant growth and development in various stresses

(Wahid et al., 2007). In our study, it was observed that HS

caused a higher decrease in PN in PB-1121 than N22 (Figure 1A).

Degradation of chlorophyll and impartment of PSII system are

the major factors for reduction in PN under HS (Efeuglee and

Terzider, 2009). Therefore, these systems must have been

severely impacted in case of PB-1121 as compared to N22

under HS. Polyamines regulate the voltage-dependent inward

K+ channel in the plasma membrane of the guard cells and

modulate stomatal aperture. All polyamines including Spd

strongly induces closure of stomata under stress condition (Liu
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et al., 2000). Polyamine especially Spm and Spd induces

secondary messenger in guard cell viz. NO causing stomatal

closure. This increase in NO have a direct relation with H2O2

content (Gayatri et al., 2013). Recently, Spd application showed

higher chlorophyll accumulation and relieved stomatal damage

under HS that was maintaining PN under stress conditions

(Yang et al., 2022). Our results are consistent with these

findings as PN was directly linked with gS and E under HS,

and a decrease in both the traits was recorded in PB-1121.

In contrast, higher E was recorded in N22, which maintained

canopy temperature under HS (Figures 1B, C). The reduction in

gS was due to the loss of leaf water potential under HS. We also

annotated it in RWC under HS, which suggest that water content

was reduced and membrane stability was also affected under HS

(Table 3). Spd application under HS has improved water

content, membrane stability, increased chlorophyll content

and delayed leaf senescence in bentgrass (Li et al., 2015). In

this study, we also observed similar trends with Spd application

under HS where RWC and MSI were improved in PB-1121

followed by N22 with respect to HS. Torabian et al. (2018) have

reported that exogenous Spd application alleviates water stress

through protection of photosynthetic pigments, increase of
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prol ine and carotenoid contents and reduction of

malondialdehyde content.

Sugar and starch are the essential components for regulating

plant metabolism under HS. The role of sugar in osmotic

adjustment in case of rice and other crops has previously been

discussed in many reports (Morsy et al., 2007). There are various

studies with divergent points of view that sugar is either

accumulated (Lu et al., 2009) or decreased (Liu et al., 2008;

Liao et al., 2013) under HS. Our results suggest that under HS,

total sugar and starch contents were reduced in flag leaf and

spikelets. This can be explained by the fact that the source to sink

relationship from flag leaf to spikelet is impaired under HS.

Because of this, sugar transportation and its conversion to starch

is also hindered (Kim et al., 2011; Ahmed et al., 2015). Present

study suggest that, Spd application enhanced sugar

accumulation and also supports the conversion of sugar into

starch via regulating activity of soluble starch synthase, sucrose

synthase and ADP glucose pyrophosphorylase (Wang et al.,

2012; Fu et al., 2019). Fu et al. (2019) have reported that

exogenous Spd application in rice upregulated the expression

of starch synthetases genes which led to the increased

accumulation of amylose in rice grains. This might be one of
FIGURE 5

Exogenous Spermidine mediated response under heat stress in rice. Heat stress negatively imapcts photosynthesis, spikelet fertility and
consequently grain yield in rice. Heat sress causes oxidative stress by producing ROS which leads to lipid peroxidation and thereby cell
membrane damage. Damaged cell membrane often reduces spikelet fertility. Foliar application of Spd under heat stress induces antioxidant
machinery (ROS scavenging mechanism) in rice plants which increases total antioxidant capacity resulting in higher photosynthesis, spikelet
fertility and improved grain yield under HS. SPD, spermidine; ROS, Reactive oxygen species. This figure is created by Biorender.com.
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the reasons for significant variation of 1000 grain weight under

HS with and without Spd application. Now, since N22 has more

effective HS mitigation process/adaptive mechanism as

compared to PB-1121, so in case of spikelets, these enzymes

were more effectively operative under N22 as compared to PB-

1121, when Spd was applied under HS, consequently resulting in

higher increase in starch content in N22 as compared to

PB-1121.

Like various other abiotic stresses, HS inhibits metabolic

pathways, resulting in ROS production at the tissue level (Asada,

2006). ROS accumulation further induces membrane lipid

damage in the form of increased MDA content. To counter

ROS induced membrane damage, robust antioxidant machinery

is required in plants (Gill and Tuteja, 2010). Conversely, the

accumulation of ROS is also essential for stress signalling in

plants; but beyond the optimal range, it damages metabolic

processes in plants (Gupta et al., 2016). Our study indicates that

H2O2 andMDA accumulated more in both flag leaf and spikelets

of PB-1121 under HS than N22 (Table 3). These results are

consistent with previous studies, which suggested that under HS,

ROS and MDA accumulates in rice (Bahuguna et al., 2015;

Karwa et al., 2020). Also, to metabolize these ROS radicals in

cells, scavenging mechanisms in both enzymatic and non-

enzymatic systems were reported in this crop (Basu et al.,

2017; Szymańska et al., 2017). Various reports suggest that

exogenous polyamines induce scavenging enzymes under

stress conditions (Minocha et al., 2014, Liu et al., 2015);

however, the nature of their interaction is a topic of debate

(Groppa et al., 2001; Groppa et al., 2007). In our study, we

recorded higher activities of APX and GPX under HS (Figure 3).

Under HS, it was reported that downregulation of salicylic acid-

binding protein (CAT) favours a rise in APX and GPX activities

(Conrath et al., 1995; Dat et al., 1998). Upregulation of APX and

GPX enzymes triggers a compensating mechanism to maintain

H2O2 levels (Apel and Hirt, 2004; Sofo et al., 2015). In the

present study, we observed that Spd application under HS

significantly induced APX in flag leaf while in spikelets, GPX

was induced under HS+Spd.

It was inferred that free polyamines (Put, Spd and Spm)

levels behave genotype-dependently under various

environmental conditions (Yang et al., 2007; Do et al., 2013;

Pál et al., 2015). Endogenous polyamines serve as membrane

surface stabilizers and increases the PN of plants by increasing

photochemical efficiency of PSII (Shu et al., 2012). Further, it has

been reported that exogenous application of polyamines might

result in more substrate for proline biosynthesis specially under

stress conditions (Farooq et al., 2009; Shi and Chan, 2014; Pál

et al., 2018). Osmolytes like proline helps in osmotic

adjustments, increases cell protoplasm concentration to

maintain normal membrane function under heat and drought

stresses. Exogenous Spd application has improved drought

tolerance in bentgrass, maize and white clover by regulating

endogenous polyamine metabolism (Li et al., 2015; Li et al., 2018;
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Li et al., 2016). Raziq et al. (2022) has found that exogenous Spd

application has increased the biosynthesis of endogenous Spd

and Spm from Put.

In the present study, HS increased Put content more in

spikelets than flag leaf of PB-1121 (Figures 4A, D). These results

are consistent with reports under heat (Mostafa et al., 2014) and

drought stresses in rice (Mostafa et al., 2014). These results are

collinear with the rise in endogenous Put accumulation, where a

higher accumulation was observed in sensitive genotype—Pusa-

1121. In this study, foliar application of Spd also alleviated Put

content in spikelets and flag leaf of both the genotypes, where the

most prominent rise was recorded in PB-1121. Put is

biosynthesized from arginine via ADC or from ornithine via

ODC. Qin et al. (2019) proposed that exogenous Spd augmented

the content of Put as former increased ADC1 and ODC1

expression in case of Malus domestica.

Foliar application led to significant change in endogenous

Spd content across the stress treatments in both the tissues, with

the highest increase in N22 spikelets (Figures 4B, E). N22

consistently recorded higher Spd, while PB-1121 recorded

lowest Spd across the treatments. Saha and Giri (2017)

suggested that the increase in level of Spd was because of

higher induction of OsSPDS in tolerant as compared to

sensitive genotype. This can be the possible reason for rise in

Spd content under HS. Exogenous Spd treatment has been

reported to improve endogenous content together with

imparting tolerance towards HS in rice (Mostafa et al., 2014)

and towards drought stress in Rosa damascena (Hassan et al.,

2018). We also observed a similar response in rice genotypes

under HS.

It has been noted that another polyamine, Spm, was also

elevated in the flag leaf of N22 and spikelets of PB-1121 under

HS. Spd application resulted in increase in Spm endogenous

content in PB-1121, whereas it was unchanged in N22. Elevated

levels of both Spd and Spm has been reported to contribute

towards plant stress tolerance under HS and other abiotic

stresses (Liu et al., 2004; Do et al., 2014; Ikbal et al., 2014). For

example, in case of oats, HS induced lipid peroxidation and

membrane destabilization, but increased levels of Spd and Spm

reversed this action by interaction with macromolecules

(Tiburcio et al., 1994). In the present study, a marked decrease

in Put accumulation was concomitant with an increase in

endogenous levels of both Spd and Spm in N22. This

accumulation pattern of the three polycations was previously

reported in various crops under drought (Hassan et al., 2018)

and salinity (Duan et al., 2008) stresses. Xu and Wu (2009)

suggested that higher levels of Spd and Spm with respect to Put

contributed towards water stress tolerance in pine. We found

endogenous Put accumulation in the sensitive genotype, PB-

1121. This might be due to lesser conversion of Put into Spd and

Spm in the sensitive genotype. Bouchereau et al. (1999) proposed

that a higher accumulation of Put indicates stress sensitivity of

any organism. This is in agreement with the findings of Liu et al.
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(2004), where drought-tolerant wheat genotypes exhibited

higher levels of Spd, whereas sensitive genotypes had more Put.
Conclusion

The present study confirms that HS elevates oxidative stress

in rice by increasing H2O2 and TBARS, decreasing

photosynthesis, spikelet fertility and grain yield. Robust

antioxidant machinery in tolerant genotype, N22 allowed

minimum damage across the stress conditions. However,

antioxidant defence in sensitive genotype was not at par to

combat stress without applying Spd. Our study found that foliar

application of Spd significantly induced ROS scavenging

mechanism that resulted in increased photosynthesis, spikelet

fertility, and grain yield under HS. This study highlights the

probable association of Spd in HS tolerance in rice at the

flowering stage via regulating robust antioxidant machinery,

photosynthesis and spikelet fertility. There might be two

possibilities for induction of antioxidant enzymes, either they

bind with the polyamines and restore their functional stability

and integrity, or catabolism of polyamine produces H2O2

byproduct, which acts as a signalling molecule and regulates

series of signal transduction steps which activates antioxidant

defence system to counter stress responses. Major research

direction in the future should be to study the regulatory

mechanism of Spd at molecular level and to study its role in

stress signalling pathways. Development of overexpression lines

or mutant lines of Spd synthase might help to elucidate the

precise role of Spd to act as stress signal regulator or stress

protecting compound under HS in rice. Also, future analyses

focusing on manipulation of Spd metabolism and its

environmental impact when applied exogenously are

important to cope with the problem of climate change and for

sustainable agricultural practices.
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