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Rice Chalky Grain 5 regulates
natural variation for grain
quality under heat stress
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Larissa Irvin1, Puneet Paul1, Balpreet K. Dhatt1,
Waseem Hussain2, Tian Gao3, Paul Staswick1, Hongfeng Yu3,
Gota Morota4 and Harkamal Walia1*

1Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United
States, 2Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), Los Banos,
Philippines, 3Department of Computer Science and Engineering, University of Nebraska-Lincoln,
Lincoln, NE, United States, 4Department of Animal and Poultry Sciences, Virginia Polytechnic
Institute and State University, Blacksburg, VA, United States
Heat stress occurring during rice (Oryza sativa) grain development reduces

grain quality, which often manifests as increased grain chalkiness. Although

the impact of heat stress on grain yield is well-studied, the genetic basis of

rice grain quality under heat stress is less explored as quantifying grain quality

is less tractable than grain yield. To address this, we used an image-based

colorimetric assay (Red, R; and Green, G) for genome-wide association

analysis to identify genetic loci underlying the phenotypic variation in rice

grains exposed to heat stress. We found the R to G pixel ratio (RG) derived

from mature grain images to be effective in distinguishing chalky grains from

translucent grains derived from control (28/24°C) and heat stressed (36/32°C)

plants. Our analysis yielded a novel gene, rice Chalky Grain 5 (OsCG5) that

regulates natural variation for grain chalkiness under heat stress. OsCG5

encodes a grain-specific, expressed protein of unknown function.

Accessions with lower transcript abundance of OsCG5 exhibit higher

chalkiness, which correlates with higher RG values under stress. These

findings are supported by increased chalkiness of OsCG5 knock-out (KO)

mutants relative to wildtype (WT) under heat stress. Grains from plants

overexpressing OsCG5 are less chalky than KOs but comparable to WT

under heat stress. Compared to WT and OE, KO mutants exhibit greater

heat sensitivity for grain size and weight relative to controls. Collectively,

these results show that the natural variation at OsCG5 may contribute

towards rice grain quality under heat stress.
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Introduction
Heat stress (HS) poses a serious threat to agriculture

production and food security. Maximum daytime temperature

that exceeds 33°C during reproductive development affects

pollen viability and multiple yield parameters (Hatfield and

Prueger, 2015). In the absence of genetic improvement of

crops for enhanced heat resilience, every 1°C temperature

increment is predicted to result in yield loss of 3.2% for rice,

6% for wheat, 7.4% for maize, and 3.1% for soybean (Zhao et al.,

2017). Rice yield loss is particularly detrimental as it serves as a

major dietary source for nearly 3.5 billion people (Wing et al.,

2018). Besides yield, HS occurring during grain development

also reduces rice grain quality (Ishimaru et al., 2009; Krishnan

et al., 2011; Sreenivasulu et al., 2015; Nakata et al., 2017; Shi et al.,

2017; Wada et al., 2019; Zhen et al., 2019; Paul et al., 2020).

These yield and quality constraints highlight the need for

developing heat resilient rice cultivars (Fragkostefanakis et al.,

2015; Geange et al., 2021). Various crop improvement programs

have used genome-wide association studies (GWAS), genetic

mapping or reverse genetics approaches to characterize major

QTLs for rice yield and grain size (Huang et al., 2013). However,

our understanding of the genetic basis of grain yield and

especially quality under HS is still limited due to challenges in

imposing a targeted HS for large number of accessions (Xu et al.,

2021). The common prioritization of grain yield over grain

quality in breeding programs has also led to development of

many varieties that are preferred by farmers for their yield, but

not by consumers. Climate driven higher temperature during

grain development is predicted to further exacerbate this

problem (Morita et al., 2016).

Rice quality traits are highly correlated with the market price

(Cuevas et al., 2016; Custodio et al., 2019; Yang et al., 2021). For

instance, milled grains are graded on their percentage of

chalkiness, chalky grains being more prone to breakage in the

milling process due to the lower intrinsic grain strength caused

by airspace among the abnormal starch granules (Misra et al.,

2021). Grain chalkiness is a polygenic trait identified as opaque

white discoloration of the translucent endosperm (Armstrong

et al., 2019). HS occurring during grain development triggers an

increase in grain chalkiness (Tashiro and Wardlaw, 1991;

Yamakawa et al., 2007; Fitzgerald and Resurreccion, 2009;

Masutomi et al., 2015; Morita et al., 2016; Paul et al., 2020).

HS causes misregulation of genes that control starch and storage

protein metabolic pathways (Liu et al., 2010; Yamakawa &

Hakata, 2010; Hakata et al., 2012; Kaneko et al., 2016;

Ishimaru et al., 2019; Gann et al., 2021; Wang et al., 2021).

For instance, Chalk5 andUGPase1 are two of the genes known to

contribute to variation in grain chalkiness (Li et al., 2014a; Woo

et al., 2008). Other grain quality genes affected by HS include

transcription factors and genes regulating phytohormone

homeostasis (Zhu et al., 2011; Wang et al., 2013; Kaneko et al.,
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2016; Zhang et al., 2018; Wang et al., 2020; Xu et al., 2020; Baysal

et al., 2020). However, the extent to which the determinants of

natural variation for grain quality under normal temperatures

will be involved in grain quality variation under HS is

not known.

Grain properties such as chalkiness, color, and shape have

been quantified using imaging systems. For instance, support

vector machine (SVM) and digital image processing have been

used to analyze grain chalkiness and detect structural

abnormalities in rice (Yoshioka et al., 2007; Sun et al., 2014;

Chen et al., 2019; Ma et al., 2020; Aznan et al., 2021). Significant

improvement to these approaches, deep learning-based

supervised segmentation methods can estimate HS-induced

grain chalkiness (Wang et al., 2022). Apart from area-based,

two-dimensional imaging systems, the three-dimensional high-

resolution X-ray microcomputed tomography technique has

also been utilized as a volume-based approach to accurately

quantify grain chalkiness (Su and Xiao, 2020). Hyperspectral

imaging system has also been recently used to analyze grain

quality (Caporaso et al., 2018; Armstrong et al., 2019; Feng et al.,

2019; Gao et al., 2021). For instance, recent studies have

combined hyperspectral imaging and genetic association

studies to identify several loci associated with grain chalkiness

(Barnaby et al., 2020; Xiao et al., 2022). However, a similar

approach combining imaging and genetic association analysis

has not been explored for grain quality determination under HS.

Conventional phenotypic evaluation of grain chalkiness

adopts commercial grain analytical scanners and imaging

systems (Qiu et al., 2015; Marschalek et al., 2017; Misra et al.,

2021). These typically require large grain quantities that are

intended for field-scale experiments. However, conducting

precisely timed HS experiments for a diverse set of accessions

with varying flowering time is not practical in the field

environment. Rather, controlled environment conditions

combined with image-based software that can rapidly quantify

the optical properties of small quantities of grains is preferred for

mapping grain traits from a diverse set of accessions (Velesaca

et al., 2021). SeedExtractor, an open source imaging software, can

accurately measure grain colors in three broadband color

intensities, Red (R), Green (G), and Blue (B) (Zhu et al.,

2021a). Each pixel in digital images in RGB format ranges

from 0-0-0 to 255-255-255 and produce a single-color value

for that pixel in the image (Dell’Aquila, 2006; Elmasry et al.,

2019). RGB intensities associated with grain pixel are then used

to analyze changes in grain properties. The ratio of R to G

spectral reflectance (RRED : RGREEN) is a robust index to quantify

leaf pigmentation patterns (Gamon and Surfus, 1999). However,

the significance of RGB channel intensities and their ratios in the

context of grain chalkiness is not reported. In this study, we

examined the potential of using the R to G pixel ratio (RG) as an

indicator of grain quality. To achieve this, we first imposed a HS

treatment on a set of accessions from rice diversity panel 1

(RDP1) (Eizenga et al., 2014). Using grains derived from these
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treatments for imaging, we obtained RG values as a derived

phenotypic trait under control and HS for genome-wide

association (GWA) analysis. We have identified a candidate

gene, rice chalky grain 5 (OsCG5) associated with a significant

locus on chromosome 5. Higher OsCG5 transcript level

negatively correlates with grain chalkiness under HS. Grains of

mutant plants deficient in OsCG5 have greater sensitivity to HS

and those from overexpression plants are less sensitive to HS.
Material and methods

Plant material and growth conditions

We selected 229 accessions from RDP1 representing

different sub-populations of rice germplasm for evaluating the

phenotypic variation in grain quality in response to HS (Zhao

et al., 2011; Eizenga et al., 2014; McCouch et al., 2016).

Accessions selected from RDP1 panel represent five major sub-

populations spanning diverse geographical origins, including 41

indica, 55 temperate japonica, 50 tropical japonica, 39 aus, 7

aromatic, 25 admixed indica or japonica and a set of 12

accessions lacking subspecies information (Figure S1; Table

S1). Dehulled rice grains, sterilized with bleach (40% v/v) for

40 min, and soaked in sterile water overnight, were germinated

on half-strength Murashige and Skoog (MS) media for 2d in the

dark, followed by 1d growth in light. Seedlings transplanted in

10 cm square pots that contained natural soil mix were grown

under a controlled greenhouse diurnal setting with temperature

28/24 ± 1°C, light/dark 16/8 h, and relative humidity of 55-60%.

Spikelets were marked to record the flowering time, and half of

the plants (2-8 replicates per accession for each treatment) were

given HS treatment (36/32 ± 1°C) 1d after flowering of marked

spikelets. HS condition was maintained for 5 d, and treated

plants were moved back to the control (28/24°C) greenhouse

until maturity. Marked mature dehulled grains harvested from

both control and HS treated plants were used for grain

image analysis.
Mature seed morphometric and
colorimetric analysis

Harvested panicles from control and HS treated plants were

dried for two weeks (28°C), and dehulled marked grains were

collected for imaging. Dehulled grains were scanned using Epson

Expression 12000 XL scanner (Epson America Inc., Los

Alamitos, CA, USA) at 600 dpi resolution. Scanned images

were processed using a MATLAB application, SeedExtractor

(Zhu et al., 2021a). After removing the grain shape outliers

and filtering for normality, the adjusted mean for each accession

across replicates were obtained with the statistical model as

described previously (Zhu et al., 2021a).
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Genome-wide association study (GWAS)

A 700K high-density rice array marker dataset was used to

run the GWAS (McCouch et al., 2016). In total, 411,066 SNPs

were retained after filtering for missing data (< 20%) and minor

allele frequency (< 5%). The population structure of the studied

accessions was assessed using principal component analysis

(PCA) on the constructed genomic relationship matrix (Zheng

et al., 2012) (Figure S1). GWAS was conducted in rrBLUP R

package (Endelman, 2011) using the linear mixed model

described earlier (Dhatt et al., 2021). SNP markers were

declared significant using the P-value threshold of –log10(P) >

6.5, based on method of Li and Ji (2005) using effective number

of markers (Li and Ji, 2005; Hussain et al., 2020). Manhattan plot

and Q-Q plot were created using R package qqman (Turner,

2018). Phenotypic variance (R2) explained by each SNP was

estimated using the mixed.solve () function from the rrBLUP R

package (Endelman, 2011) with SNP having variance equal to

Ks2u, where K is the design matrix of SNP and u is the random

effect of the SNP. Additionally, R2 explained by the locus having

all the significant SNPs was estimated using BGLR R package

(Pérez and De Los Campos, 2014). For this, all the SNPs were

fitted jointly accounting the LD between the markers via a

genomic restricted maximum likelihood method (Dhatt

et al., 2021).
Vector construction and
transgenics generation

We generated mutant and overexpression lines of OsCG5

(LOC_Os05g40850) associated with SNP-5.23896968 at the

position 23,959,548 bp (chr 5) to investigate the genetic basis

of grain chalkiness. For OsCG5 CRISPR-Cas9 mutants, the

single-guide RNAs (sgRNAs) designed using CRISPR-P 2.0

(http://crispr.hzau.edu.cn/CRISPR/) was cloned as described

by Lowder et al. (2015) (Lei et al., 2014; Lowder et al., 2015).

The single-guide sequence cloned in pYPQ141C (using

Esp3I/BsmBI site) was recombined with pANIC6B and

pYPQ167 (Cas9) using LR-clonase. Overexpression construct

for OsCG5 was generated using Gateway cloning system. For

this, the genic region and ~2kb upstream of OsCG5 amplified

from Kitaake DNA using Phusion High Fidility PCR master mix

(ThermoScientific, USA) was cloned in pENTR-D-Topo vector

(ThermoScientific, USA) to get an entry clone. The entry clone

was recombined with modified pMDC99 that contained NOS

terminator (Curtis and Grossniklaus, 2003; Campbell et al.,

2017) to construct the destination overexpression. For

generating stable GUS lines, OsCG5 promoter (~2 kb kb

upstream of the start codon) amplified from Kitaake DNA was

cloned into pENTR-D-Topo vector and then recombined with

pMDC163 to get destination clone with GUS reporter. These
frontiersin.org
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destination constructs were then transformed into

Agrobacterium tumefaciens strain EHA105, which was used

for rice callus transformation (Cheng et al., 1998; Chen et al.,

2016). For CRISPR-Cas9 lines, T1 plants were screened for the

presence of Cas9 construct using GUS-based screening assay.

The DNA extracted from plants lacking the Cas9 construct was

used to screen for the presence of a mutation using Sanger

sequencing. Homozygous plants from T3 or later generations

were used for phenotypic evaluation. For overexpression lines,

homozygous plants were used to confirm the overexpression of

OsCG5 using qPCR assay. For GUS assay, different plant tissues

were stained with GUS solution as described previously (Schmitz

et al., 2015). Primers used in the study are listed in Table S2.
Phenotypic evaluation of grains from
CRISPR-Cas9 and Overexpression
transgenic plants

For analyzing the HS response of grains from transgenic

plants and Kitaake (WT), spikelets were marked at flowering,

and plants were exposed to either HS 1d after flowering (5d HS,

36/32°C) and returned to control condition or grown

throughout in control greenhouse. At maturity, marked,

dehulled grains were used for grain size and colorimetric

analysis. In total, 6-7 plants for each genotype per treatment

were used for phenotypic analysis (Table S3). Cumulatively, we

used 3,988 marked grains from different genotypes and

treatments for this analysis.
Hyperspectral imaging of grains from
transgenic plants

We measured hyperspectral reflectance (600-1700 nm) of

grains from transgenic lines using the HyperSeed imaging

platform (Gao et al., 2021). Briefly, grains from control and HS

groups were placed on a constantly moving platform and scanned

by a hyperspectral camera (Micro-Hyperspec Imaging Sensors,

Extended VNIR version, Headwall Photonics, Fitchburg, MA,

USA) with Exposure Time and Frame Period set to 12 ms and 18

ms, respectively. The images were captured in the form of three-

dimensional (x, y, l) hypercubes where x, y represented the

position of the pixel in spatial dimensions, and l referred to the

index of wavelength in spectral dimension. Then the images were

preprocessed by removing 5% of bands at the beginning and end

of the spectrum for better accuracy and calibrated using dark and

white references. Afterward, these images were further processed

using a two-step grain segmentation algorithm to extract the grain

spectra and remove the background. Spectral reflectance of grains

from the same plant was averaged along spatial dimensions for

further analysis.
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Statistical analysis of grain RG,
morphometrics and gene
expression data

The significance level for grain RG and morphometrics data

[grain length, grain width, grain area, and single grain weight

(sgw)] was determined using two-way ANOVA. Students t-test

was used to test for statistical significance for gene expression

within and between allelic groups. PCA was used to inspect the

RDP1 population structure using the R packages FactoMineR

and factoextra (Lê et al., 2008). Pairwise Pearson correlation

coefficient (PCC) of OsCG5 with all other grain expressed genes

were calculated using rcorr function with the Pearson option in

Hmisc R package (Harrell, 2014). All statistical analyses in this

study were performed in the R environment (R Core

Team, 2019).
Results

Phenotypic variation in heat stress
response of grain colorimetric
parameters

To elucidate the phenotypic variation in grain quality in

response to HS, we exposed 229 accessions from the RDP1 to 5 d

of HS (36/32 ± 1°C) treatment beginning at 1d after flowering

(DAF) and a corresponding set to control (28/24 ± 1°C)

treatment. Flowering spikelets were individually marked on

the day of fertilization and tracked during the course of the HS

treatment. We collected the mature, marked grains and dehulled

them before scanning for grain color (R, G and B) pixels using

the SeedExtractor (Zhu et al., 2021a). We only used R and G

channel colors for examining the impact of HS on the R and G

pixel intensities from control and HS treatment grains. We

sought to determine if the ratio of R to G pixel intensities

(RG) for grains can be used as proxy for grain chalkiness caused

by HS treatment. Visual examination of grains indicates that

even a transient HS treatment increases grain chalkiness. To test

this, we measured the RG values of translucent and chalky grains

obtained from control and HS treated plants of Kitaake cv,

respectively (Figure 1A). The RG value of HS-treated chalky

grains were significantly higher than the translucent control

grains (Figure 1B). A similar measurement for the RDP1

accessions had a range of grain RG (1.03 to 1.57), with mean

RG values under control and HS to be 1.13 and 1.12, respectively

(Table S4). The RDP1 mean values for RG for control and HS

were similar due to the fact that grains from many accessions

vary in opposite directions in their response to HS.

We next examined whether the HS sensitivity for the RG

trait among RDP1 accessions correlated with chalkiness for

several diverse accessions and obtained the percentage change
frontiersin.org
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of their RG values under HS (HS/Control) (Figure 1; Table S4).

We visually confirmed that the accessions with higher HS/

Control for RG values generally had higher chalkiness under

HS compared to corresponding controls and, hence, were

considered more heat-sensitive in grain quality context

(Figures 1C, D). Conversely, accessions with lower HS/Control

for RG exhibited relatively lower grain chalkiness in general.

These results suggest that RG values are associated with grain

chalkiness under HS among the diverse accessions, although

there are some accessions where this relationship does not hold

true (Figures 1C, D).
Genome-wide association analysis for
loci associated with RG

Given the association between RG values and chalkiness, we

incorporated the RG values as a phenotypic trait to dissect the

genetic basis of grain chalkiness. We conducted independent

GWA analysis for control and HS treatments. The GWA

analysis identified 106 significant SNPs that are strongly

associated (–log10(P) > 6.5) with RG values (Figure 2). Of
Frontiers in Plant Science 05
these 30 SNPs were detected from analysis of control

condition grains and 76 SNPs from the HS treatment. Only

seven SNPs, underlying seven peaks were detected in both

conditions (Table S5). Under control conditions SNP-

11.21577974 on Chr 11 was the most significant (P=10.9) and

was also detected under HS (P=8.28). This SNP localizes to the

second intronic region of a pentatricopeptide repeat domain

(PPR) protein-coding gene (LOC_Os11g37330). A mutant of

another gene (non-homolog) from this domain family in Chr 11,

small kernel 1 (LOC_Os11g10740), is involved in grain

development in rice and maize, and has a chalky and

shrunken phenotype (Li et al., 2014b). We also identified SNPs

that co-localize to genes functioning in grain development with a

potential auxiliary role in chalkiness. For instance, SNP-

1.42949271 (Control P=8.62, HS P=8.60) is located within a

cell cycle switch 52B gene OsCCS52B (LOC_Os01g74146) that

controls cell size and regulates endoreduplication to determine

the grain size (Su’udi et al., 2012). Although it did not meet the

stringent P-value cutoff, SNP-5.5143433 on Chr 5 appeared in

both conditions (Control P=5.94, HS P=5.83) and is located

171bp upstream of an expressed protein, LOC_Os05g09200.

Notably, LOC_Os05g09200 has been proposed to be a
B

C D

A

FIGURE 1

Relation between variation in the ratio of grain R and G pixel intensity (RG) values and grain chalkiness in response to heat stress (HS). (A) Light
box images of control and HS-treated rice (cv. Kitaake) grains showing the difference in grain chalkiness. (B) RG values of control and HS-
treated grains (C) Light-box images of 10 selected RDP1 accessions with a lower and higher percentage change for RG (HS/Control) (D) RG
values of grains shown in (C) C and HS indicate control and heat stress, respectively. ** indicates the significance of a t-test with P<0.05. Scale
bar=1cm.
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regulator of grain chalkiness based on a targeted-gene

association study (Misra et al., 2019).

Our analysis also identified SNPs that were either specific to

HS treatment or were more significant under HS. For instance, a

HS-specific SNP-4.23303276 (HS P=7.74) was found to be

associated with a brassinosteroid biosynthesis gene dwarf11

(LOC_Os04g39430) that regulates grain length (Tanabe et al.,

2005). A frame shift mutation of dwarf11 results in a notched

belly phenotype with higher grain chalkiness (Tong et al., 2018).

Given the detection of several genes with grains related

functions, we mined all genes associated with significant SNPs

under control and HS. Our selection criterion involved genes

within 20 kb (10 kb upstream and downstream) of the most

significant SNP for each peak, resulting in a list of 506 non-

redundant genes (Table S5). We further filtered these genes

based on their expression in developing grain using public

dataset (GSE6893) and identified 10 genes that are

preferentially expressed in grains. For the genes associated

with SNP detected under HS treatment, we examined their

expression in a comparable HS treatment in a public dataset

(Sandhu et al., 2021). We identified 18 genes to be differentially

expressed in response to HS (Table S5). As these genes are

expressed in developing grains, they have a higher likelihood of

impacting grain quality.

We detected a significant HS-specific peak on Chr 5, which

spanned coordinates 22.2 to 24.86 Mb (RGAP V7). Cumulative

phenotypic variance explained by the SNPs populating this

region under HS and control was 0.46 and 0.22, respectively.

Among these, SNP-5.23564097 is located upstream of a vacuolar

H+ ATPase (OsVHA-E2; LOC_Os05g40230) whose isoform

subunit OsVHA-E1 traffics grain storage proteins and grains

from the mutant plants have a floury appearance (Zhu et al.,
Frontiers in Plant Science 06
2021b). SNP-5.23599535 is located downstream of serotonin N-

acetyltransferase coding gene, OsSNAT1. Transgenic plants

overexpressing OsSNAT1 were shown to enhance grain yield

due to increased panicle number per plant (Lee and Back, 2017).

Endoplasmic reticulum (ER) stress induced by HS lead to floury

or shrunken grain phenotype (Qian et al., 2015). Notably, ER

compartment protein-coding gene LOC_Os05g41120 associated

with SNP-5.24040516 has been shown to have higher transcript

abundance in developing grain (7 DAF) under ER stress (Oono

et al., 2010). Our analysis of the expression profiles from

developing grains showed that, out of the 216 genes associated

with this prominent peak on Chr 5, only 13 (13/216) are HS

responsive (Table S5). From these 13 genes, three genes are

preferentially expressed in developing grains. Of them,

LOC_Os05g40790 is one of the five CCR4-NOT transcription

factors in rice and LOC_Os05g38530 is a member of the DnaK

gene family (LOC_Os05g38530). The third gene encodes for an

expressed protein (LOC_Os05g40850) with highest expression in

developing grains (Figure S2A). LOC_Os05g38530 is annotated

as a member of the heat shock protein (HSP) 70 family (Jung

et al., 2013). In contrast, LOC_Os05g40850 is a single copy rice

gene. Based on this cumulative analysis, we considered these

three genes to be high priority candidates for regulating variation

in grain chalkiness under HS at this locus.

Given the early grain-specific expression that coincides with

the HS treatment window and its HS response, we decided to

determine if LOC_Os05g40850 (named, OsCG5) regulates

variation in grain chalkiness under HS (Figure S2). OsCG5

carries a significant SNP-5.23896968 (Control P=5.25, HS

P=7.02) within its exonic region (Figure 3A) and is located 1.4

Mb downstream of lead SNP (SNP-5.22423360) on Chr 5 under

HS. Sequence homology search revealed no significant
FIGURE 2

Manhattan plots of genome-wide association studies for the ratio of grain R and G pixel intensity values under control and heat stress. The black
dotted horizontal line represents the genome- wide significance threshold (–log10(P) > 6.5). SNPs associated with significant genes are highlighted.
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FIGURE 3

Grain chalkiness in chalky grain 5 (OsCG5) allelic variants under heat stress (HS) is regulated by its transcript abundance (A) The structure of
the OsCG5 gene. The position of guide RNA (gR) and SNP-5.23896968 are labeled in red and black symbols, respectively. (B) Promoter-GUS
expression of OsCG5 in developing endosperm at 3 and 4 days after fertilization (DAF). Scale bar = 0.25cm (C) Distribution of the ratio of grain
R and G pixel intensity (RG) of major and minor allelic accessions (Ma and Mi, respectively) under control and HS (D) RT-PCR based transcript
estimation of OsCG5 in 2 DAF old grains of Ma and Mi under control and HS. Ma1-NSFTV 113; Ma2- NSFTV 333; Ma3- NSFTV 255; Mi1-NSFTV
19; Mi2- NSFTV 33; Mi3- NSFTV 345. Scale bar=1 cm. (E) Lightbox images of grains from Ma and Mi whose expression of OsCG5 transcript was
estimated in (D) C and HS indicate control and heat stress, respectively. Significance level for t-test, *P<0.05; **P<0.01; ***P<0.001; ns,
non-significant.
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orthologues for this gene of unknown function. To confirm

developing grain-specific expression of this gene, we analyzed

OsCG5 promoter-beta-glucuronidase (GUS) lines (pOSCG5::

GUS) and found that GUS signal was restricted to the lower

part of grains at 3 and 4 DAF (Figure 3B). Consistent with the

expression patterns observed from public datasets, GUS activity

was not detected in other developmental stages or tissues (Figure

S3). HS increases transcript abundance of OsCG5 in developing

grains at 2 DAF (Figure S2B).
Allelic variation in OsCG5 expression
correlates with grain chalkiness under
heat stress

We analyzed the distribution of SNP-5.23896968 among

RDP1 accessions and found that 90% of accessions contain the

“G” allele (referred to as the major allele) and 10% of accessions

have the “T” allele (referred to as the minor allele). Overall, the

major allelic group shows lower RG values than minor

accessions (Figure 3C). However, it should be noted that there

is variability in RG values for accessions of the minor allele and

some accessions for each allelic group have values that are

equivalent to the highest and lowest values in the contrasting

allele group (Figure 3C). This is expected given that grain

chalkiness is a multigenic trait and also exhibits variation

within the same panicle. We investigated if differential

transcript abundance of OsCG5 could be the basis of the

phenotypic difference between the allelic groups. For this, we

randomly selected three accessions from each allelic group and

measured the expression of OsCG5 in developing control and

HS-treated grains at 2 DAF (1 day after stress), with HS initiated

at 1 DAF (Figure 3D). We also evaluated grain chalkiness for

these accessions by placing the grains on a light box (Figure 3E).

We found that major allelic accessions (Ma) had relatively

higher expression of OsCG5 under both control and HS

treatment . Fur ther , Ma1 and Ma2 showed higher

accumulation of OsCG5 transcript in response to HS when

compared to corresponding controls. Induction level of OsCG5

transcript in Ma3 was lower compared to Ma1 and Ma2. Among

minor allelic accessions (Mi), transcript abundance of OsCG5

under HS was significantly reduced for Mi2 and increased for

Mi3. For Mi1, transcript abundance of OsCG5 did not change

under HS compared to control. The average transcript

abundance of OsCG5 in Mi under HS was not significantly

different than the corresponding average under control. In

contrast, average transcript abundance of OsCG5 in the three

Ma under HS were significantly higher than control (3.7-fold;

P<0.001). The Mi also exhibited higher levels of chalkiness than

the Ma under HS (Figure 3E). These data suggest that transcript
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abundance of OsCG5 could be positively associated with grain

quality under HS.
OsCG5 knockouts are more sensitive to
heat stress

To determine the role of OsCG5 in regulating the grain quality

under HS, we generated native (~ 2kb upstream) promoter-

overexpression (OE) and CRISPR-Cas9 (CR)-based knockout

(KO) mutants in cv Kitaake, which contains the “G” allele for

SNP-5.23896968 and hence belongs to the major allelic group. Ma

have higher transcript abundance ofOsCG5 and are less sensitive to

HS than Mi. Therefore, we hypothesized that knocking-out OsCG5

in a major allelic background will render it more sensitive to HS and

cause higher RG values and chalkier grains than WT. We obtained

two OE (OE1 and OE2) and two homozygous KOmutants (KO#5,

KO#6) (Figure 4). Transcript abundance of OsCG5 in the native

promoter-driven OE lines is 2-fold higher relative to WT at 3 DAF

grains (Figure 4A). The homozygous mutants KO#5 and KO#6,

have 1 bp and 109 bp deletions in their target region, respectively

(Figure 4B). KO mutants have reduced OsCG5 transcript

abundance relative to WT at 3 DAF grains (Figure S4). Under

control conditions, OE grains showed a lower RG than KO andWT

(Figure 4C). WT control grains had an RG similar to KO#5 and

KO#6. However, light box imaging did not show a clear difference

in appearance among the grains from three genetic backgrounds

grown under control conditions. Under HS, grain RG values

increased from their respective controls for all genotypes. KO#6

had higher RG values than OE and WT under HS. However, the

RG value for KO#5 was not significantly different from WT under

HS. This could be likely due to the 1 bp deletion in KO#5 compared

to a large deletion in KO#6. Consistent with higher grain RG values

observed under HS, KO#6 also showed higher chalkiness under HS

than OE andWT (Figure 4D). However, overexpressingOsCG5 did

not result in decreased chalkiness under HS. These observations

show that OsCG5 positively contributes to grain quality under HS.
Hyperspectral reflectance of grains from
different genotypes corroborates the
grain chalkiness quantified under HS

Grain chalkiness has recently been estimated using

hyperspectral scanning in rice (Barnaby et al., 2020). Therefore,

we OsCG5 extended the mutant characterization by analyzing the

hyperspectral reflectance of grains from WT, OE and KO lines to

understand the variation in spectral reflectance (lines) of grains with

different chalkiness levels (Figure 4E). Under control, spectral

reflectance of OE, KO and WT grains was indistinguishable.
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FIGURE 4

Characterization of the function of chalky grain 5 (OsCG5) in grain chalkiness using CRISPR-Cas9 knockout (KO) and Overexpression (OE) lines.
(A) RT-PCR assay showing higher transcript abundance of OsCG5 in OE lines relative to WT rice (cv. Kitaake). (B) Positions of Cas9 deletions in
KO#5 and KO#6 lines (1 bp and 109 bp, respectively). (C) Distribution of the ratio of grain R and G pixel intensity values in WT, KO and OE
genotypes under control and heat stress (HS). The significance was estimated using two-way ANOVA. N = 7-8 plants. Scale bar=1 cm. (D)
Phenotypic difference in grain chalkiness for WT, KO and OE under control and HS. Scale bar=1 cm. (E) Hyperspectral reflectance of grains from
WT, KO and OE genotypes at wavelength range 650-1650 nm under control and HS. C and HS indicate control and heat stress, respectively.
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Compared to control, HS-treated grains had higher spectral

reflectance in 850-1650 nm range for all the genotypes. Genotypic

difference under HS were primarily observed in the 1400-1650 nm

range, where WT spectral reflectance was lower than KO and

higher than OE. HS-treated KO grains showed highest spectral

reflectance and showed maximum deviation from corresponding

controls in this wavelength range, whichmay be indicative of higher

grain chalkiness observed in KO lines.
Grain size and weight are more heat-
sensitive in OsCG5 mutants

A difference in the chalkiness among the grains from three

genotypes prompted us to measure the grain size and weight

from WT, OE and KO lines as higher grain chalkiness may

lead to a reduction of grain size and weight due to the

airspaces created among the abnormal starch granules. We

found that HS caused a significant reduction in single grain

weight (sgw), grain width, and grain area for all lines, but grain

length showed minimum sensitivity to HS (Figure 5, Figure S5,

Table S6). Notably, HS resulted in most reduction in grain size

parameters for KO mutants. Grain length was not significantly

impacted by HS for OE and WT. However, KO mutant grains

also showed a reduction in grain length (17.39% and 10.9% for

KO#5 and KO#6, respectively) compared to corresponding

controls (Table S6). We also estimated the total yield for WT,

OE and KO and found that HS caused a severe yield reduction

in these genotypes. We did not observe a genotypic-specific

significant difference in the total yield reduction (Figure S5C).

However, KO#5 showed a maximum percentage reduction

(50%) in total yield (Table S6). Collectively, these results
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suggest that developing grains deficient in OsCG5 are more

sensitive to HS imposed during early grain development

regarding grain size and quality.
Co-expression analysis links OsCG5
function to endosperm transfer cell layer

We next sought to develop a probable regulatory pathway for

OsGC5 by performing an in-silico gene co-expression analysis at the

early grain filling stage. We used a public transcriptome dataset for

2 and 3 DAF with three temperature treatments (28°C, 35°C and

39°C) to identify genes co-regulating with OsCG5 (Chen et al.,

2016). We found 1,653 positively and negatively (PCC>0.8 or PCC<

-0.8 with P<0.05, respectively) co-regulating partners of OsCG5

(Table S7). A subset of the positively co-regulated genes belongs to

families such as maternally expressed genes (MEG), defensin,

glycosyl hydrolase, invertase, lipid transfer protein (LTP),

transferase, and Sugars Will Eventually be exported Transporters

(SWEET), which have previously been shown to function in basal

endosperm transfer layer (BETL) in maize (Lopato et al., 2014;

Sosso et al., 2015; Salminen et al., 2016). For instance, Maternally

expressed gene (MEG) 1 has specific expression in maize BETL cells

(Gutiérrez-Marcos et al., 2004). Our analysis revealed that 7/11 rice

MEG family genes (MEGL3, MEGL5, MEGL8, MEGL11, MEGL12,

MEGL13 and MEGL19) are positive co-regulated with OsCG5.

Similarly, LTP family genes OsPR602 and OsPR9a are highly

expressed in endosperm transfer cells (ETC) during early grain

filling stages in rice (Li et al., 2008). We found OsPR602 to be co-

regulated withOsCG5 at the grain filling stage. These results suggest

that OsCG5may interact with other genes expressed in ETC during

the grain filling stage.
BA

FIGURE 5

Morphometrics differences in single grain weight (SGW) and grain width from WT, KO and OE plants under control and heat stress. (A) SGW (B)
Grain width. The significance level was estimated using two-way ANOVA. N = 6-7 plants. C and HS indicate control and heat stress, respectively.
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Discussion
In this study, we show that rice grain RG values can be used as a

quantitative estimator for chalkiness. Using RG values, we estimated

the extent of natural variation in heat response of RDP1 accessions

for grain chalkiness. Evaluation of grain chalkiness from RG values

obtained from SeedExtractor is a low-cost, time-efficient, and non-

destructive method that can be easily scaled to screen large

germplasm. Our results show that grains with severe chalkiness

tend to have higher RG values than translucent grains, suggesting a

positive relationship between grain RG values and chalkiness levels

(Figure 1). Using RG value as a proxy trait for grain chalkiness or

quality, we performed GWA analysis and identified several novel

loci associated with grain RG under control and HS with a probable

role in grain chalkiness (Figure 2; Table S5). Grain chalkiness is not

only triggered by high temperature but also determined by factors

such as grain size and humidity level (Misra et al., 2021). For

instance, a higher grain width with low or no amylose content leads

to higher grain chalkiness. The RDP1 population used in the study

consist of accessions with diverse grain size properties. As a result,

we may see a difference in grain chalkiness of these accessions even

under control at a minimal level. Therefore, significant SNPs

detection under control and HS is expected depending on

whether the natural variation contributes to the chalkiness in the

respective environment. GWAS SNPs identified in this study co-

localized with loci such as pentatricopeptide repeat domain,

vacuolar ATP synthase subunit, and endoplasmic reticulum-Golgi

intermediate compartment protein (LOC_Os11g37330,

LOC_Os05g40230, and LOC_Os05g41120, respectively), which are

known to regulate grain chalkiness. ER stress response is one of the

early drivers of HS responses in grains. Mutants impaired in ER-

pathway produce chalky/opaque grains in rice (Yasuda et al., 2009;

Sandhu et al., 2021; Yang et al., 2022). We identified a prominent

HS-specific peak on Chr 5 and narrowed down to a candidate

(OsCG5) based on its tissue and temporal expression pattern.

OsCG5 transcripts are detected during the early grain

development window that coincides with our HS treatment.

Further, the transcript abundance of OsCG5 in developing grains

is sensitive to temperature increases. Along with HS response and

grain-specific expression, our rationale for characterizing the

OsCG5 is also driven by the fact that expressed protein-coding

genes are among the least explored class of genes in the rice genome

due to the lack of information on the protein domains. Despite

being given less attention, expressed proteins have been shown to

have important roles during development. For instance, a class of

expressed proteins such as microproteins have been shown to fine-

tune an array of events, including shoot apical meristem

maintenance and flowering time regulation (Bhati et al., 2020).

Based on allelic variation and transgenic studies, we present

evidence that OsCG5 regulates grain chalkiness under HS. The HS-

treated grains from major allele accessions (Ma) for OsCG5 SNP

carrying ‘G’ allele had lower RG values and chalkiness than minor
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allelic accessions with ‘T’ allele (Figure 3). Allelic frequency indicates

that the major allele for SNP-5.23896968 is predominant in RDP1.

This distribution shows that the major allele possibly has undergone

a positive selection during evolution, contributing to the grain

quality. We show that allelic difference in grain RG could be a

consequence of differential transcript abundance of OsCG5 as Ma

accessions generally had higher transcript abundance of OsCG5

under control and HS compared to Mi accession (Figures 3D, E). It

is also noteworthy that while the average transcript abundance of

OsCG5 was not significantly different under control and HS for Mi,

we detectedmore than 3-fold induction ofOsCG5 transcripts in two

major (Ma1 andMa2) accessions under HS with aminimal increase

in Ma3 (Figure 3D). Since, different rice accessions can have slightly

varying grain developmental progression, it is possible that lower

expression level on Ma3 could be due to such a difference. This is

relevant for OsCG5 as it is expressed for a short duration during

early grain development and developmental progression during this

stage is highly sensitive to HS. Overall, our analysis suggests that

higher transcript abundance of OsCG5 may contribute to lower

chalkiness and hence lower HS sensitivity in the major allelic

group (Ma).

This is supported by increased chalkiness of grains from KO

lines under HS but not under control temperatures. This

suggests that Kitaake OsCG5 does not contribute to the

chalkiness trait under normal temperatures. Overexpressing

OsCG5 in Kitaake did not decrease chalkiness under HS. This

could be because the basal (control) level of OsCG5 in the major

alleles examined here (Figure 3) may be sufficient to limit

chalkiness under HS. The observed marked increase under HS

for lines Ma1 and Ma2 may be inconsequential with regards to

chalkiness. These results corroborate the phenotypic difference

found in allelic variants of OsCG5 (Figures 3, 4). We

complemented the results obtained from transgenic studies

using hyperspectral reflectance analysis of grains from different

genetic backgrounds (Figure 4E). We found an increase in

spectral reflectance of transgenic grains with increase in

chalkiness. A clear separation of spectral lines identified for

WT, KO, and OE grains at 1400-1650 nm is comparable to the

various degrees of chalkiness observed in these genotypes. The

comparison of RG values with hyperspectral scan of grains

suggest that these two platforms are complementary and have

different sensitivity in distinguishing the mutants from WT.

We evaluated our GWAS results by comparing them with

novel QTLs or loci identified in previous association studies on

grain chalkiness. Comparative analysis showed that three genes

associated with significant SNPs identified in our study, RNA

polymerase sigma factor, a hypothetical protein, and

retrotransposon protein (LOC_Os11g26160, LOC_Os05g37090,

and LOC_Os05g37100, respectively) have also been detected as

candidate genes regulating chalkiness in the GWAS study of 583

accessions from indica and japonica panels and multi-parent

advanced generation intercross populations (Misra et al., 2021).

Similarly, detection of an expressed protein coding gene
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(LOC_Os05g09200) in the present study and a TGWAS study with

a different population structure indicates the high probability of

LOC_Os05g09200 functioning as a regulator of chalkiness (Misra

et al., 2019). We did not identify a significant overlap with other

association studies on grain chalkiness, which may be due to the

complexity in the genetic architecture of this polygenic trait. Since

our HS treatments were imposed precisely for 5d during early

grain development, which is normally not the set-up used by other

studies especially in the field. Our experimental treatment choice

may have increased the likelihood of identifying novel loci that

have higher developmental specificity.

Our co-expression analysis indicates that OsCG5 mediated

grain chalkiness functions in the ETC layer or by interacting with

other genes expressed in the ETC layer. We detected the promoter-

GUS activity at the base of the developing endosperm, which is

consistent with the expression of BETL genes in maize (Figure 3B).

The rice ETC layer, the equivalent of maize BETL, channels

nutrients from maternal tissues to developing endosperm and

protects the grains from infection (Li et al., 2008). Having a role

of ETC layer in pathogen defense, eight defensin family genes co-

regulated with OsCG5may have a role in the biotic stress tolerance

of developing grains. Twomaize BETL genes (BETL-1 and BETL-3)

show sequence homology with defensin-like proteins (Li et al.,

2008). Most of the MEGs are exclusively expressed in the BETL

region in maize (Xiong et al., 2014). Given the identification of 7

MEGs co-regulating withOsCG5, we speculate that somemay share

functional role with their maize orthologs.
Summary

This study identifies the grain RG trait as a potential means to

estimate HS induced grain chalkiness. Integrating RG values as a

phenotypic trait in GWAS yielded a novel candidate OsCG5.

Functional validation suggests that OsCG5 may regulate natural

variation for grain quality under HS. Transgenic studies further

suggested that the transcript abundance of OsCG5 positively

regulates grain quality under HS. Given the grain quality

reduction due to HS and frequent heat waves occurring more

frequently, natural variants of OsCG5 may serve as a potential

genetic resource to mitigate the grain quality reduction in breeding

programs. A similar functional characterization strategy might be

required to reveal the role of other candidate genes identified in this

study in regulating grain quality under HS.
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diversity panel 1 accessions.
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SUPPLEMENTARY FIGURE S2

Expression pattern of chalky grain 5 in (A) various anatomical samples (B)
developing grains (12 - 48 hours after fertilization) profiled from time-

series RNASeq dataset (Sandhu et al., 2021). C and HS indicate control and
heat stress, respectively.

SUPPLEMENTARY FIGURE S3

GUS-stained samples of (A) 1 week old seedling (B) germinating grain.

SUPPLEMENTARY FIGURE S4

RT-PCR assay showing the reduction in the expression of chalky grain 5 in

KO#5 and KO#6 transgenic lines compared to wild-type. Significance

level for t-test, *, P<0.05; **, P<0.01.

SUPPLEMENTARY FIGURE S5

Morphometrics differences in grain area, grain length and total yield from

WT KO and OE plants under control and heat stress. (A) Grain area (B)
Grain length (C) Total yield. The significance level was estimated using

two-way ANOVA. N = 6-7 plants. C and HS indicate control and heat

stress, respectively.

SUPPLEMENTARY TABLE S1

Details of rice diversity panel 1 accessions used in the study.
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List of all primers used in the study.

SUPPLEMENTARY TABLE S3

The number of grains used for each transgenic line for the

phenotypic evaluation.

SUPPLEMENTARY TABLE S4

Distribution of the ratio of red to green pixels (RG) under control and heat

stress (HS) along with their percentage change (HS/Control) among the

selected accessions from rice diversity panel 1.

SUPPLEMENTARY TABLE S5

Details of significant SNPs and their associated locus (10kb upstream and

downstream) under control and heat stress.

SUPPLEMENTARY TABLE S6

Percentage reduction (%) of various grain parameters in wild-type,
knockout and overexpression lines under heat stress.

SUPPLEMENTARY TABLE S7

Genes positively and negatively co-regulated with OsCG5 identified from
pairwise Pearson correlation analysis using the dataset from Chen et

al., 2016.
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