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Abiotic stresses cause extensive yield loss in various crops globally. Over the past

few decades, the application of silicon nanoparticles (nSi) has emerged as an

abiotic stress mitigator. The initial responses of plants are exemplified by the

biogenesis of reactive oxygen species (ROS) to sustain cellular/organellar

integrity, ensuring in vivo operation of metabolic functions by regulating

physiological and biochemical pathways during stress conditions. Plants have

evolved various antioxidative systems to balance/maintain the process of

homeostasis via enzymatic and non-enzymatic activities that repair any losses.

In an adverse environment, supplementation of Si mitigates the stress condition

and improves the growth and development of plants. Its ameliorative effects are

correlated with enhanced antioxidant enzymes activities, maintaining the

equilibrium between ROS generation and reduction. However, a limited

number of studies cover the role of nSi in abiotic stress conditions. This review

addresses the accumulation and/or uptake of nSi in several crops, as well as its

mode of action, which are linked with improved plant growth and tolerance

capabilities, contributing to sustainable agriculture.

KEYWORDS

leaf gas exchange, enzymatic and non-enzymatic activities, abiotic stress, nano-silica,
stress relief, environmental health
Introduction

Sustainable agriculture is a major economic sector associated with a wide range of food

crops. Finding sustainable solutions for crop adaptation strategies to adverse

environmental conditions and enhancing crop production are key to guaranteeing food

security and safety worldwide. Abiotic stresses damage plant productivity of food crops by
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approximately 51–82% annually. Farmers regularly use pesticides

and synthetic fertilizers to enhance crop production, which pose

threats to the agricultural ecosystem. However, this approach may

assist plant performance/fitness for crop improvement and

increased fruit and grain quality (Verma et al., 2022a; Wang

et al., 2022) during adverse environmental conditions. The

enhancement of crop production is an emerging interdisciplinary

area that can potentially promote plant growth and stress tolerance.

Nanoparticles (NPs) are 1–100 nm in size and have unique

physiological features such as a large surface area, enhanced

solubility, and translocation/uptake in an entire plant system.

Several NPs, for example, Fe3O4, MgO, SiO2, and CeO2 are

beneficial for plant development, playing an essential role in

enhancing the seed germination rate and plant tolerance,

reducing pesticide residues, and improving soil fertility

(Salajegheh et al., 2020; Verma et al., 2022b; Wang et al., 2022).

Silicon (Si) strongly bonds with oxygen in the earth, and its uptake

was found to be approximately 0.1–10% (dry weight basis) in

terrestrial plants (Epstein, 2009; Mathur and Roy, 2020). Si is

available as silicates, oxides, aluminum silicates, and silica (SiO2),

and these forms are easily accessible to plants since they are

naturally available in the rhizosphere. Silicon is not considered an

essential element for plant growth and development. It is classified

as a ‘multi-talented,’ quasi-essential element due to its important

role in physiological/metabolic pathways, cell structure, and plant

survival during adverse environmental conditions. Among the

various types of NPs, nSi has exhibited a significant ability to

enhance plant performance in stressful conditions (Liang et al.,

2015; Hussain et al., 2019; Verma et al., 2022d).

Soil fortification using nano-materials (NMs) is a trending

development. Scientific groups have demonstrated various novel

nano-stabilizers for soil improvement technologies. Among the

various well-established additives (Kannan and Sujatha, 2022),

nSi shows remarkable performance in Hordeum vulgare,

Phaseolus vulgaris, Cucumis sativus, and Saccharum officinarum

crops (Yassen et al., 2017; Elsheery et al., 2020; Ghorbanpour et al.,

2020; Koleva et al., 2022). Studies have also suggested that nSi, as a

sole-additive, boosts soil fertility. Furthermore, nSi helps in

reducing the hydraulic conductivity and compression index of the

soil (Kannan and Sujatha, 2022).

Recent investigations have indicated that the fertilization of soil

with nSi stimulates the photosynthetic CO2 assimilation rate as well

as biochemical and molecular responses in plants that resist

unfavorable environmental conditions (Verma et al., 2022a).

Abiotic stresses induce the generation of reactive oxygen species

(ROS), i.e., singlet oxygen, superoxide, hydrogen peroxide, and

hydroxyl radicals in cells (Das and Roychoudhury, 2014; Kim et al.,

2017). ROS can cause severe oxidative injury to the protein, DNA,

and lipids of the cell components. This review explores developments

in crop improvement based on the existing literature and the current

understanding of the action mechanisms of nSi in response to abiotic

stresses, which improve physiological fitness/performance associated

with sustainable agriculture.
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Advantages and disadvantages of
silicon nanoparticles

There is growing pressure on the agricultural sector to fulfill the

requirements of the increasing human population. Synthetic

fertilizers are indispensable in enhancing plant production and they

are extensively applied through different approaches (Feregrino-

Perez et al., 2018). However, plants utilize less than half of

fertilizers applied and the remaining minerals may leach down, so

that they become fixed in rhizospheric soil, contributing to water

pollution (Liu and Lal, 2015; Zulfiqar et al., 2019). The uneven use of

fertilization, without control of nutrient release, may affect crop

quality. Thus, it is important to design slow/controlled-release

fertilizers to sustain agricultural productivity (Rajput et al., 2021;

Verma et al., 2022a). Consequently, the unique properties of NPs

have attracted considerable attention in sustainable agriculture and

environmental protection. Differences in the physical and chemical

properties of nSi relative to their bulk counterparts occur due to their

small size, higher surface area/weight ratio, and structure (Mathur

and Roy, 2020). Recent findings showed better performance in plant

development and alleviating environmental stresses when using nSi

(Bhat et al., 2021; Verma et al., 2022b) (Figure 1 and Table 1).

NPs may also have toxic effects on sustainable crop production,

depending on various factors such as size, concentration, stability,

application, and synthesis method (Rajput et al., 2021). A higher

concentration of nSi reduced Triticum aestivum plant growth by

affecting enzymatic and non-enzymatic activities, i.e., reduced

photosynthetic pigments, lipid peroxidation (MDA), and

enhanced antioxidative enzymatic responses (Karimi and

Mohsenzadeh, 2016). Similar results were also noted in Bt-

transgenic cotton (Le et al., 2014). With increasing concentration

of nSi, the germination efficiency (%), root development,

chromosomal aberration, and decrease in the mitotic index in

Allium cepa were all affected (Silva and Monteiro, 2017). The

application of nSi improved the root length, root volume, and dry

mass of shoots and roots of O. sativa plants (Adhikari et al., 2013),

while no phytotoxic effects were found in potato tubers (Mushinskiy

et al., 2018). nSi was found to be toxic toward a number of bacterial

species, viz., Bacillus subtilis, Escherichia coli, and Pseudomonas

fluorescens (Jiang et al., 2009). Nanofertilizers can solve some

limitations of biofertilizers, but this technology still requires

further research and development.
Synthesis, characteristics, and
absorption of nanosilicon

Nanosilicons are one of the most advanced innovations of

nanoscience, and, in many regards, are more efficient than their

bulk silica counterparts (Jeelani et al., 2019). Naturally, nSi exists in

numerous crystalline forms, such as sand and quartz, while SiO4

units are arranged in a tetrahedral geometry, with various
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FIGURE 1

The potential mechanisms of nanosilicon (nSi) on plant physiological, biochemical, and molecular responses during unfavorable environmental
conditions.
TABLE 1 Summary of the effects of nanosilicon (nSi) for the management of unfavorable environmental conditions in a variety of crops.

Stress Plant Treatment
condition

Concentration
range

Impacts Source

Heavy
metal (Cd)

Common
bean
(Phaseolus
vulgaris)

Seed priming 20 ppm Upregulated growth, photosynthetic leaf gas exchange efficiency, and
downregulated MDA and EL levels. Enhanced K+ content, biosynthesis of
polyamines (PAs), antioxidative enzymatic activities, and higher
spermidine (Spd) and putrescine (Put) levels.

Koleva et al.,
2022

Heavy
metal (Cd)

Wheat
(Triticum
aestivum)

Soil
amendment
and foliar

300–1200 m kg−1 Plant biomass, photosynthetic pigments, and leaf gas exchange responses
upregulated significantly, whereas oxidative stress, accumulation, and
uptake of Cd considerably reduced.

Ali et al., 2019

Heavy
metal (Pb
and Cd)

Rice
(Oryza sativa)

Foliar 5–20 ppm Positively improved productivity and quality of rice grains by
downregulating Cd and Pb uptake.

Hussain et al.,
2020

Heavy
metal (Cd)

Coriander
(Coriandrum
sativum)

Foliar 1.5 mM Enhanced the rate of germination (%), photosynthetic efficiency, and
antioxidant defense system.

Fatemi et al.,
2020

Heavy
metal (Pb)

Bamboo
(Pleioblastus
pygmaeus)

Nodal
explants (pre-
treatment)

100–500 µM Enhanced the efficiency of SOD, CAT, GR, and PAL during stress. Can
protect the plasma membrane and preserve the integrity of cells against
stress by decreasing H2O2, SP, and PPO content. NPs increased plant
growth/biomass/productivity by enhancing the antioxidative enzymatic
activities during Pb stressed conditions.

Emamverdian
et al., 2019

Heavy
metal (As)

Maize
(Zea mays)

Applied in
nutrient
solution
(in vitro
condition)

10 µM Mitigated the As toxicity in maize plants, which could be associated with
reduced As accumulation and oxidative stress, and increased ascorbate-
glutathione cycle (AsA-GSH cycle).

Tripathi et al.,
2016

Heavy
metal (Hg)

Soybean
(Glycine max)

Hydroponic 30–50 nm Upregulated growth reduction and reduced the accumulation and
translocation of Hg in soybean roots (62–84%), stems (68–76%), and
leaves (45–71%). Increased chlorophyll content (15–50%) and enzymatic
activities (21–33%) in response to Hg stressed conditions.

Li et al., 2020

(Continued)
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architectural compositions. Common types of nSi may be

synthesized and separated in various forms such as monodisperse

spherical, hollow, porous, etched, and colloidal molecules (Jeelani

et al., 2019; Mathur and Roy, 2020). The synthesis of nSi from

agricultural waste is cost-effective and sustainable for NM

production. Mesoporous nSi (5–30 nm) with pore sizes of 3–9

nm has been synthesized by the precipitation of rice husk (Liou and

Yang, 2011; Gu et al., 2015). Bentonite clay was found to be a good

source of nSi (Zulfiqar et al., 2016), which may also be synthesized

from tetraethyl orthosilicate (Pham et al., 2017).
Frontiers in Plant Science 04
Nanoparticles can be absorbed by plant roots or leaves. The

uptake and accumulation of NPs may differ from plant to plant,

depending on their morphology, various uptake mechanisms,

transport, and allocation in certain plant organs which may

activate defense-responsive mechanisms against the NPs (Verma

et al., 2022c). Si can be applied as a foliar spray input on the plant

leaves, or directly to the root system as a basal dressing. Foliar spray

may enter into the leaves and be transported to different plant

organs through the cuticular or stomata (Figure 1). The transport of

solutes via the cuticle may occur through lipophilic pathways for
TABLE 1 Continued

Stress Plant Treatment
condition

Concentration
range

Impacts Source

Salinity Common
bean
(Phaseolus
vulgaris)

Petri dish 100–300 ppm Improved percentage of germination (~20%), vigor index (~81%),
germination efficiency (~23%), shoot length (11%), root length (23%),
SDM (~111%), and RDM (328%).

Alsaeedi et al.,
2017

Salinity Strawberry
(Fragaria ×
anansa cv.
Camarosa)

Soil
amendment

50–100 ppm Maintained epicuticular wax structure, photosynthetic pigments, and
carotenoid content and reduced proline content during stressed condition.
Enhanced irregular (smoother) crystal wax deposits in the epicuticular
layer.

Avestan et al.,
2019

Salinity Maize
(Zea mays)

Seed priming 55–75 nm nSi-primed seeds showed a higher germination capacity and seedling vigor
index and the antioxidative enzymatic activities were upregulated which in
turn suppressed the enhancement of ROS and reduced the MDA level.
Overall, primed seeds improved the metabolic processes during high
salinity.

Naguib and
Abdalla, 2019

Water-
deficit

Maize
(Zea mays)

Foliar 100–200 ppm Enhanced the nutrient absorption efficiency. No significant impact on P,
Ca, Na, and Cu elements in the seeds, or on Ca and Na in the shoots.

Aqaei et al.,
2020

Water-
deficit

Olive (Olea
Europaea cv.
Kalamata)

Foliar 150-200 ppm Improved productivity, fruit quality, and weight and also minimized the
fruit drop percentage. Downregulation of proline, soluble sugars, and ABA
levels, with less membrane injury expressed as MDA, H2O2, and EL.

Hassan et al.,
2022

Water-
deficit

Barley
(Hordeum
vulgare)

Soil
amendment

125–250 ppm The lower dose of nSi (125 ppm) was accompanied by a wider distribution
of nSi in cells, and formation of a regular porosity pattern in roots. Total
chlorophyll (up to 17.1%) and carotenoid (up to 24.1%) content
significantly enhanced. Soil amendment showed promising potential for
post-stress recovery of plants through changing morphological,
physiological, and enzymatic activities.

Ghorbanpour
et al., 2020

Ultraviolet-
B

Wheat
(Triticum
aestivum)

Applied in
nutrient
solution (in
vitro
condition)

10 µM Protected wheat seedlings during UV-B radiation by regulating oxidative
stress through increased antioxidative activities.

Tripathi et al.,
2017

Low Temp. Sugarcane
(Saccharum
officinarum)

Foliar 5–15 nm Maintained the maximum chlorophyll fluorescence efficiency of PSII (Fv/
Fm), maximum photo-oxidizable PSI (Pm), photosynthesis efficiency, and
enhanced NPQ and light harvesting pigments.

Elsheery et al.,
2020

High
Temp.

Wheat
(Triticum
aestivum)

Seed priming 1.66 mM Maintained photosynthetic efficiency as regulated by enhancements in the
photochemical efficiency of PSII and the performance index, as well as
chlorophyll contents. Reduced MDA content significantly correlated to the
membrane stability index.

Younis et al.,
2020

Mineral
nutrient

Safflower
(Carthamus
tinctorius)

Foliar 20 mM Enhanced leaf area-expansion, development, photosynthetic pigments, and
antioxidative enzymes.

Janmohammadi
et al., 2016
ABA, abscisic acid; MDA, malondialdehyde; H2O2, hydrogen peroxide; ROS, reactive oxygen species; SOD, superoxide dismutase; CAT, catalase; GR, glutathione reductase; PAL, phenylalanine
ammonia-lyase; SP, soluble protein; PPO, polyphenol oxidase; Fv/Fm, maximum chlorophyll fluorescence efficiency of PSII; NPQ, nonphotochemical quenching of PSII; EL, electrolyte leakage;
Spd, spermidine; Put, putrescine; PAs, polyamines; SDM, shoot dry mass; RDM, root dry mass.
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non-polar solutes via diffusion and penetration, and hydrophilic

pathways for polar solutes via water pores (Wang et al., 2022).
Application of nanosilicon for abiotic
stress tolerance

Environmental stresses are major factors for plant productivity,

have detrimental effects on plant development, and are a big

problem for food security and safety worldwide (Verma et al.,

2022a). This has urged botanists/agriculturists to enhance plant

production by ~70% in the next three decades to overcome the

present yield-limiting factors and to improve resource use

efficiency. Recently, various studies have indicated that the

application of nSi can positively reduce adverse responses to

abiotic stresses such as soil texture, structure, clay minerals, pH,

cation exchange capacity, soil organic matter, and soil microbial

community, which affect the dispersion, aggregation, stability,

solubility, bioavailability, and uptake or distribution of nSi

(Rajput et al., 2021; Verma et al., 2022b). The application of nSi

also mitigates the negative responses of abiotic stresses by

upgrading the plants’ photosynthetic, antioxidative, and cellular

processes. These comprehensive findings on the efficiency of nSi in

mitigating adverse environmental conditions are shown in Figure 1

and Table 1.
Salt stress

The supplementation of nSi improved the photosynthetic leaf

gas exchange, water-use efficiency (WUE), chlorophyll fluorescence

yield of PSII, and photosynthetic pigments during saline stress

conditions, thereby conferring increased stress resistance efficiency

(Rajput et al., 2021; Verma et al., 2022a). During saline stress, nSi

was shown to promote the germination (%) efficiency/rate, vigor

index, plant biomass, root development, plant length, and leaf area

expansion in cucumber plants (Alsaeedi et al., 2018). nSi enhanced

the root and plant length of Glycine max (Farhangi-Abriz and

Torabian, 2018), and the photosynthetic pigments also increased in

Cynodon dactylon with the increasing level of salinity (Sharifiasl

et al., 2019). In response to saline-sodic soils, foliar spray of nSi also

enhanced the photosynthetic pigments, productivity, and grain

quality in Oryza sativa plants (Kheir et al., 2019). It also

maintains the deposition of epicuticular wax on the plant leaf

surfaces and their stress tolerance capacity (Rajput et al., 2021).

The potential of nSi in seed priming subjected to saline

conditions was demonstrated by the promotion of the

germination rate and seedling vigor index, through upregulating

the antioxidant enzyme activities, which, in turn, suppress the ROS

increase and decrease the MDA content (Naguib and Abdalla,

2019). In natural conditions, plants produce ROS in cell

organelles during photosynthetic and respiration processes. Plants

may balance homeostasis via enzymatic and non-enzymatic

detoxification mechanisms. nSi enhanced leaf proline and free

amino acids to resist the penetration of NaCl in O. sativa and

Ocimum basilicum plants (Abdel-Haliem et al., 2017; Kalteh et al.,
Frontiers in Plant Science 05
2018). nSi reduced the influence of salt ions in plants by reducing

Na− absorption (Abdel-Haliem et al., 2017; Kalteh et al., 2018).

However, nSi activated defense-related enzymes in plants under

saline conditions to alleviate injury caused by ROS accumulation

(Naguib and Abdalla, 2019). The expression of stress-related genes

(RBOH1, MAPK2, APX2, ERF5, MAPK3, and DDF2) was found to

be reduced with increasing stress resistance capacity in Solanum

lycopersicum (Almutairi, 2016; Wang et al., 2022) (Figure 1

and Table 1).
Water-stress

Using nSi in soil amendment, soil irrigation, and foliar spray

effectively increased plant productivity and fruit/grain quality

during stress conditions and maintained root development and

photosynthetic CO2 assimilation (Rajput et al., 2021; Verma et al.,

2022a). Water stress in general causes a reduction in the uptake of

minerals such as nitrogen, sodium, calcium, iron, zinc, copper,

manganese, silicon, etc. However, nSi upregulates nitrogen,

potassium, and other nutrient uptake in T. aestivum plants

during water stress (Aqaei et al., 2020; Mathur and Roy, 2020),

with aggregation of nSi in plant leaves, which initiated stomatal

closure to prevent water loss in Hordeum vulgare (Ghorbanpour

et al., 2020). Water stress enhances ROS production, leading to the

overproduction of MDA and causing plants to suffer oxidative

damage. nSi enhanced antioxidative enzyme activities and reduced

MDA concentration during stress (Rajput et al., 2021; Verma et al.,

2022b) (Table 1).
Heavy metal stress

Excess uptake and accumulation of heavy metals (HMs) such as

Pb, Cu, Cd, Cr, Hg, etc., in plant tissues via plant roots severely

affect plant growth and development (Verma et al., 2022b). HMs

persist in the soil for a long duration due to their adherent qualities;

therefore, the soil is considered the major sink for HMs (Borah and

Deka, 2023). Once HMs enter into the soil, they may percolate deep

beneath the ground, leading to groundwater contamination.

Monitoring and assessment of HM-associated risk factors in

contaminated lands are essential for adopting a risk-based

remediation approach (Borah et al., 2021). HMs adversely affect

the soil’s biological properties and hinder ecosystem processes. Soil

enzyme activities are considered one of the most reliable indicators

of the biological state of soil and can also be used to measure the

collective metabolism of the terrestrial ecosystem (Chakravarty and

Deka, 2021; Kalita et al., 2022). However, soil enzyme activities such

as phosphatase, urease, cellulase, dehydrogenase, and others are

sensitive to the presence of HMs (Chakravarty and Deka, 2021;

Borah and Deka, 2023).

nSi minimizes Cd accumulation in rice grains (by up to 30–

60%), with enhanced translocation of potassium, magnesium, and

iron (Chen et al., 2018). The interactive impact of Cd, Pb, Cu, and

Zn in O. sativa cultivars with the use of nSi has revealed the

potential of nSi to reduce the uptake of toxic ions in the grains
frontiersin.org
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(Wang et al., 2016). Soil amendment and foliar spray employing nSi

were found to enhance agronomic characteristics and antioxidative

enzymatic activities. The upregulated activities of antioxidant

enzymes led to a reduction of H2O2, membrane MDA, and

electrolyte leakage of primed seeds with increasing concentrations

of nSi (Wang et al., 2022). The uptake of Cd in the roots and shoots

of O. sativa plants was reduced by the interactive application of nSi

and TiO2 NPs (Rizwan et al., 2019).

nSi increases the phytoremediation of Cd and Pb in Secale

montanum plants (Moameri and Khalaki, 2019). The addition of

nSi to the soils reduced the levels of extractable, exchangeable, and

carbonate-bound Cd in the soil, thereby decreasing the metal

toxicity (Mathur and Roy, 2020). The application of nSi increased

the aluminum resistance in Zea mays by enhancing the uptake of

nSi (de Sousa et al., 2019), significantly mitigated arsenic toxicity in

Zea mays (Tripathi et al., 2016), and downregulated the expression

of some HM transport genes, i.e., OsLCT1 and OsNramp5,

decreasing the uptake and translocation of toxic metals in O.

sativa (Cui et al., 2017).
Heat stress

Heat stress is the most crucial factor that affects plant growth

and yield globally. Applying nSi effectively restored the heat stress-

provoked ultracellular distortions in cellular organelles. nSi

increased the photosynthetic efficiency, as revealed by the

enhancement in the photochemical efficiency of PSII performance

with chlorophyll content. Downregulation of MDA accumulation

in nSi-applied plants was found to be correlated to their membrane

stability index (Sun et al., 2014; Younis et al., 2020). However, prior

treatment of T. aestivum with nSi reduced heat stress-induced

negative ultrastructural variations, as revealed by the improved

integrity of the nuclear envelope and the normal dispersion of

chromatin (Younis et al., 2020). A high reactivity characterized the

nSi binding affinity with PS II, which stabilized the photosynthetic

activity during stress (Noji et al., 2010) and regulated the integrity of

cell walls and membranes due to deposition of nSi at the interface of

the plasma membrane-cell wall and/or in intercellular spaces (Bauer

et al., 2011; Sun et al., 2014; Asgari et al., 2018) (Figure 1

and Table 1).
Cold stress

Cold stress causes significant loss to plant production in arid

and semi-arid areas (Selvarajan et al., 2018). During cold stress,

foliar application of nSi upregulated the chlorophyll fluorescence

yield of PSII (Fv/Fm) and the maximum photo oxidizable P700 (Pm)

activity. The improved Fv/Fm and Pm activity indicated the

beneficial effects of NPs in S. officinarum plants during cold

(Elsheery et al., 2020). nSi enhanced the photosynthetic pigments

in S. officinarum plant leaves, which reveals that the NPs protected

the plants from synthesizing different light-harvesting complexes,

allowing the capture of large amounts of light energy, leading to

enhanced photosynthetic responses (Ghafariyan et al., 2013; Verma
Frontiers in Plant Science 06
et al., 2022a) (Figure 1 and Table 1). nSi also enhanced the growth

and development of Solanum lycopersicum plants during short-

term cold stress (Elsheery et al., 2020).

Technological improvements can increase the production of

agro-industrially, physiologically, and agronomically essential NPs

that can in turn be utilized to produce fertilizers with decreased

nutritional losses and improved nutrient use efficiency (NUE),

employing smart delivery systems. NPs can be applied as

nanofertilizers on the plants or in the rhizospheric soil to boost

fertilizer uptake and utilization. They can also be used to upgrade

plant development through advanced nanobiotechnology,

supporting nutrient delivery systems with targeted approaches

and multifunctional features for improved sustainable agriculture

in years to come (Wang et al., 2022; Verma et al., 2022a). In

addition, many of the aforementioned results have been obtained

from field experiments, and thus, further exploration in

hydroponics/soilless cultures is required. The study of how to

adjust the levels and initial adaptive responses of physiological,

biochemical, and molecular levels using nSi can be an interesting

research field in the near future.
Conclusions and future perspectives

Recent advanced sustainable agriculture strategies may be

explored and applied to alleviate adverse environmental variables.

Nowadays, the main objective of agricultural approaches is to

promote plant production and quality. Hence, cost-effective

technologies may be helpful for agri-farmers. Owing to their easy

synthesis, maximum uptake, and large surface-to-volume ratio, nSi-

based biofertilizers will be an excellent alternative to conventional

synthetic fertilizers. Using nSi is an efficient approach for farmers to

promote growth and production by increasing plant stress tolerance

capacity. The drawback of using NPs on plants is DNA damage,

which can occur through direct or indirect pathways. DNA damage

occurs due to the degeneration of mitochondrial cristae, peroxisome

proliferation, NO generation, and vacuolization. DNA repair

processes are responsible for circumventing DNA damage; thus it

also appears to be very important to evaluate the effects of NP

exposure on these processes. The results presented above suggest

that changes in stoichiometry are a potential morpho-functional

adaptive response to NP exposure, caused by variations in the

bioenergetic redox balance, which reduces the photosynthesis or

cellular respiration rates.

Variations in nSi chemistry, size, shape, and electromagnetic

properties lead to different findings on the effects and mechanisms

of nSi in mitigating plant stresses. Earlier studies mainly discussed

increasing physical barriers, growth promotion, inducing plant

tolerance, and activating antioxidative enzymatic mechanisms, but

rarely elucidated the impact of nSi on plant metabolites and the soil

microbial community during stress conditions. Thus, the whole

system should be considered, and in-depth omics research is needed

on the nSi mechanisms that enhance a plant’s tolerance capacity to

adversity, from the standpoint of physio-biochemical,

transcriptomic, and proteomics levels. nSi-based fertilizers have

opened up a whole new area of research opportunities for agro-
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scientists to synthesize advanced products that could help enhance

agricultural productivity and reduce sustainable development

challenges, without affecting the environment. The responsible

application of nanotechnologies can hopefully play an important

role in reaching this goal.
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