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Introduction:Overgrazing and warming are thought to be responsible for the loss

of species diversity, declined ecosystem productivity and soil nutrient availability of

degraded grasslands on the Tibetan Plateau. Mineral elements in soils critically

regulate plant individual’s growth, performance, reproduction, and survival.

However, it is still unclear whether plant species diversity and biomass production

can be improved indirectly via the recovery ofmineral element availability at topsoils

of degraded grasslands, via grazing exclusion by fencing for years.

Methods: To answer this question, we measured plant species richness,

Shannow-Wiener index, aboveground biomass, and mineral element

contents of Ca, Cu, Fe, Mg, Mn, Zn, K and P at the top-layer (0 - 10 cm) soils

at 15 pairs of fenced vs grazed matched sites from alpine meadows (n = 5),

alpine steppes (n = 6), and desert-steppes (n = 4) across North Tibet.

Results:Our results showed that fencing only reduced the Shannon-Wiener index

of alpine meadows, and did not alter aboveground biomass, species richness, and

soil mineral contents within each grassland type, compared to adjacent open sites

grazed by domestic livestock. Aboveground biomass first decreased and then

increased along with the gradient of increasing Ca content but did not show any

clear relationship with other mineral elements across the three different alpine

grassland types. More than 45% of the variance in plant diversity indices and

aboveground biomass across North Tibet can be explained by the sum

precipitation during plant growing months. Structural equation modelling also

confirmed that climatic variables could regulate biomass production directly and

indirectly via soil mineral element (Ca) and plant diversity indices.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2022.1024954/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1024954/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1024954/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1024954/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1024954/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.1024954&domain=pdf&date_stamp=2022-12-08
mailto:wujianshuang@caas.cn
https://doi.org/10.3389/fpls.2022.1024954
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.1024954
https://www.frontiersin.org/journals/plant-science


Guo et al. 10.3389/fpls.2022.1024954

Frontiers in Plant Science
Discussion: Overall, the community structure and biomass production of

alpine grasslands across North Tibet was weakly affected by fencing,

compared to the robst climatic control. Therefore, medium-term livestock

exclusion by fencing might have limited contribution to the recovery of

ecosystem structure and functions of degraded alpine grasslands.
KEYWORDS

aboveground biomass, grazing exclusion, mineral elements, plant species diversity,
soil micronutrient, Northern Tibetan Plateau
Introduction

Grasslands cover approximately 40% of the land surface and

play a critical role in biodiversity conservation, food security, and

climate regulation worldwide (Wang et al., 2010; O'Mara, 2012).

Livestock grazing is the most widespread land use to ensure the

livelihood security of smallholder pastoralists (Hopping et al., 2018).

However, arid grasslands are predicted to increasingly degrade due

to global warming and overgrazing at local scales (Gang et al., 2014;

Zhang et al., 2018), with consequences of restricted plant growth,

declined moisture availability, and reduced soil nutrients (Conant

and Paustian, 2002; Wesche et al., 2016; Liu et al., 2019). Thus,

grazing exclusion via fencing is increasely recommended as a

nature-based measure to self-recove of degraded grasslands

(Noulekoun et al., 2021; Sun et al., 2021).

Alpine grasslands are vulnerable and sensitive to climate

change and land-use shifts. A programme entitled the ‘Returning

Grazing Land to Grassland’, jointly financed by local authorities

and the central government, was implemented in 2003 and has

lasted for two decades to recover degraded grasslands in

Mainland China. Approximately 57,600 km2 of degraded

alpine grasslands in North Tibet have been fenced and

excluded from livestock grazing under this programme (Yu

et al., 2016). Recently studies revealed that aboveground

biomass (Zhao et al., 2019; Liu et al., 2020a), plant species

diversity (Zhu et al., 2016; Li et al., 2018), and soil nutrient

availability of organic carbon, N, P, Fe, Mn, and Cu (Wu et al.,

2010; Li et al., 2011; Sun et al., 2020) can be improved due to

fencing on the Tibetan Plateau. However, others argued that

fencing has neutral or even negative effects on plant diversity

indices (Yao et al., 2019; Liu et al., 2020b), biomass production

(Wu et al., 2017b; Sun et al., 2020) and soil nutrient content of N,

P, Cu, Mn, and Zn) (Lu et al., 2015b; Jiao et al., 2016). Therefor,

it is still under debate whether and how fencing can recover

degdraded alpine grassland on the Tibetan Plateau.

In addition to N and P, grassland productivity can also be

co-limited by other mineral elements. For example, Fay et al.

(2015) and Radujkovic et al. (2021) have pointed out that less-

studied nutrients, such as Ca, Mg and K, and trace elements,
02
such as Fe, Cu, Mn and Zn, have considerable influences on

grassland plant’s performance and survival, as some of them can

enhance enzymatic reactions and are critical in protein

synthesis. For example, Ca at top soils can indirectly influence

alpine plant growth by regulating their tolerance to low

temperatures and their tissue palatability to avoid herbivores

uptaking (Fageria et al., 2002; Fu et al., 2006). The effects of trace

elements on crop plants have been well explored; however, it is

unexplored whether they can be affected due to shited land-use

from being grazed to fenced. Moreover, little is known about

whether the potential changesin soil mineral elements caused by

land-use shift can be cascade to regulate plant community

structure and prodution of degraded grasslands.

In this study, we conducted a multisite survey to compare

aboveground biomass, species richness Shannon-Wiener index, and

mineral element contents of Ca, Cu, Fe, Mg, Mn, Zn, K and P of the

topsoils at grazed vs fenced matched sites across alpine meadows

(AM), alpine steppes (AS) and desert-steppes (DS) in North Tibet.

Specifically, we aimed to answer the following questions: (1) has

medium-term grazing exclusion by fencing altered plant

community structure and mineral element contents? And (2) how

do soil mineral elements and climate factors, including precipitation

and temperature during plant growing months, regulate plant

diversity and productivity within and across the community

levels? Here, we hypothesize that (1) aboveground biomass and

plant diversity are joinly affected by soil mineral elements and local

climatic conditions while rarely by livestock exclusion by fencing;

and (2) the effects of fencing and soil mineral elements on plant

communities specifically differ among alpine grassland types.
Materials and methods

Study area

Locally known as Changtang, North Tibet is the most

traditional and vastest pastoral region within the Tibetan

Autonomous Region, China. It covers about 480,000 km2 of

alpine grasslands (Wu et al., 2013) and has the largest nature
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reserve in China for conserving Tibetan antelopes, wild yaks and

kiangs. Alpine grasslands in North Tibet have been overgrazed by

domestic yaks, sheep, and goats for decades. The total number of

livestock reached 23,490,000 heads in 2010, which was about 89.4%

higher than the theoretical capacity of all available alpine grasslands

in the developing Tibet (Yu et al., 2012).

Mean annual precipitation in North Tibet decreases westwards

from more than 450 mm to less than 250 mm, while mean annual

temperature increases from −2°C to 1.2°C from east to west (Wu

et al., 2017b). In the last century, the Tibetan Plateau experienced

fast warming at a rate of 0.3°C per decade, which is about twice the
Frontiers in Plant Science 03
global average (Qiu, 2008). Meanwhile, precipitation changed

unevenly across Tibet (Liu et al., 2008), indicating warming-

drying and warming-wetting co-exist on this plateau. Daily air

temperatures are always higher than 5°C since May (Figure 1A).

Meanwhile, approximately 65% to 85% of the yearly precipitation

falls between May and September (Figure 1B). So, the period from

May to September was defined as the plant growing season and

widely used in recent research on alpine vegetation (Ma et al., 2010;

Wang et al., 2013).

Most grassland plants in North Tibet are annuals or

biennials and they generally sprout in early May, reach their
A

B

FIGURE 1

Sampling sites across North Tibet and climate conditions of the entire Tibetan Autonomous Region of China. Panel (A) shows mean
temperature (GST) and (B) sum precipitation (GSP) during the plant gowing seasons from 1979 to 2008. Landscape pictures are also given for
desert-steppe (DS), alpine steppe (AS), and alpine meadow (AM) along climatic gradients.
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maximum height/coverage in mid-August, and then senescence

in late September. This is also why the period from May to

September has increasingly termed the plant growing season in

recent ecological studies on the Tibetan Plateau (Shen et al.,

2015a; Shen et al., 2015b). In North Tibet, zonal vegetation shifts

from alpine meadows dominated by Kobresia pygmaea to alpine

steppes dominated by Stipa purpurea and finally to desert-

steppes co-dominated by S. glareosa and S. subsessiliflora in

the west (Figure 1).Warming and overgrazing have resulted in

the degradation of 153,000 km2 of alpine grasslands in this

region (Yu et al., 2016). Between 2003 and 2012, fences were

built on approximately 57,600 km2 of severely degraded pastures

to exclude livestock grazing for self-recovery.
Field survey and measurement

To examine the effects of grazing exclusion on plant species

diversity, soil mineral nutrients, and aboveground biomass, 15 pairs

of grazed vs fenced matched sites were sampled in the summer of

2012, at intervals of 50 - 80 km, from three alpine grassland types -

alpine meadows (AM, n = 5), alpine steppes (AS, n = 6), and to

desert-steppes (DS, n = 4, Figure 1 and Table 1). Local authorities

and experienced herders proposed the site locations as they knew

well about the extent and degree of degradation before fencing.

In this study, the fenced plots have been excluded from

livestock grazing all year round since 2006. A grazed plot was

randomly selected 1-2 km from each fenced plot. The principal

livestock in grazed plots are yaks, sheep and goats (Table 1). The

actual average stocking rate at grazed sites ranges from 0.05

heads•ha-1 to 0.56 heads•ha-1(Table 1). Each pair of fenced and

grazed sites was chosen to match as similarly as possible
Frontiers in Plant Science 04
concerning terrain, soil, and climate conditions. Thus,

examining the effects of land-use shift on plant diversity, soil

nutrients, and biomass production make sense at local scales.

However, land-use change is likely to interact with climate and

edaphic conditions at the regional scale.

It is impossible for local herders who based nearby the sampling

sites to accurately recall the information of livestock activity (timing,

intensity and frequency) ten years ago. To infer the stocking rate at

the household level, we conducted face-to-face interviews with the

heads of herd household nearby our sampling sites in the winter of

2019. We investigated and collected their data of livestock

composition and available grasslands (not fenced) at the

household level. Meanwhile, we also collected the livestock

numbers at the year end from the the statistical yearbook of

2019. Robst linear relationships were found for stocking rates at

the county and household levels for each of the three alpine

grassland types (Figure S1). Using these linear models, we

estimated the stock rates of herder families based nearby our

sampling sites, for further analyses.

At each fenced or grazed plot, five quadrats of 0.5 m × 0.5 m

were laid at 20 m intervals along a random sampling line within a

flat area. All plant species were identified and recorded with their

names. Plant coverage by species was visually estimated. The

heights of all species occurring within each quadrat were

measured with a rule. We harvested all plant materials with

scissors at the soil surface and stored them in separate envelopes

during the field campaign. Plant materials by species were oven-

dried at 65 ℃ for 48h to a consistent weight to estimate

aboveground biomass and used for calculating diversity indices. A

soil block of 25 cm × 25 cm × 10 cm (length × width × depth) was

sampled in the center of each quadrat after biomass harvest for

further chemical analyses.
TABLE 1 Site locations, climate conditions, aboveground biomass (AGB), species richness, livestock composition, and average stocking rate of
herd households around sampling sites are summarized at the county level and within each of the three grassland types, alpine meadows (AM),
alpine steppes (AS), and desert-steppes (DS) across North Tibet.

Grasslands AM AS DS

County Nagqu Amdo Nyima Baingoin Gêrzê Gê’gyai

Sites 3 2 3 3 2 2

Longitude (°E) 91.48-91.97 91.83-91.91 86.91-89.75 90.31-90.80 84.20-85.08 81.91-86.82

Latitude (°N) 31.37-31.62 31.71-32.30 31.52-32.08 31.39-31.41 31.97-32.26 31.73-32.38

Altitude (m) 4528-4540 4620-4689 4531-4604 4590-4608 4477-4559 4437-4658

GSP (mm) 383-400 396-422 258-334 349-365 178-185 89-133

GST(°C) 7.7-8.3 7.3-7.9 7.4-8.4 7.7-7.9 10.1-10.6 11.1-11.6

AGB (g·m-2) 74.0 ± 9.2 94.3 ± 9.2 30.7 ± 2.2 34.8 ± 4.2 15.9 ± 1.2 11.5 ± 2.2

Species richness
(n·per 0.25 m-2)

7.3 ± 0.4 11.3 ± 0.7 4.8 ± 0.5 9.1 ± 0.4 4.6 ± 0.3 4.4 ± 0.6

Yak (%) 65 40.1 8.3 19 11.8 3.5

Sheep and goat (%) 34.2 59 91.2 80.5 88 96.3

Average stocking rate (heads·ha-1) 0.56 0.12 0.15 0.39 0.05 0.16
fron
Mean values ± standard error are given for AGB and species richness. GST and GSP are abbreviations for average temperature and sum precipitation, respectively, during the plant growing season.
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Data management and processing

In each quadrat, species richness (SR) was determined as all

the number of vascular plants. Species’ relative coverage (Cr),

height (Hr) and frequency (Fr) were measured to calculate the

Shannon-Wiener index (Eqns. (1) – (3) as did (Wu et al., 2012).

Thirty sampling circles of 0.1 m2 were randomly thrown at each

fenced and grazed plot, and the number of occurrences for each

species (Fi) was recorded to calculate Fr.

IV = Cr +Hr + Frð Þ=3 (1)

Pi = IVi=o
SR

i=1
IVi (2)

Shannon −Wiener index =   −o
SR

i=1
PilnPi (3)

where Cr is the cover fraction of a given species to sum cover

of all species in the quadrat; Fr is the frequency percentage of a

given species to sum occurrences of all species in the 30 sampling

circles; Hr is the height rato of a given species to the average

height of all species in the quadrat; IV and P, respectively, are the

importance value and relative dominance of a given sepcies.

Soil samples were air dried, sieved through a 2-mm sieve to

remove stones and roots, and digested by nitric acid,

hydrofluoric acid and perchloric acid (3:3:1) to analyze the

elements of Ca, Cu, Fe, Mg, Mn, Zn, K and P at the 0-10cm

soils using inductively coupled plasma atomic emission

spectrometry (ICP-AES) (Silva et al., 2021).

Daily precipitation and temperature of all stations in the

Tibetan Autonomous Region were downloaded from the China

Meteorological Data Service Center (CMDC, http://data.cma.

cn). Monthly raster surfaces of temperature and precipitation

were generated with ANUSPLIN 4.3 (Hutchinson, 2004) at a

spatial resolution of 1 km × 1 km, then used to calculate the sum

precipitation and mean temperature during the plant growing

season (noted as GSP and GST, respectively). Climate

information for each sampling site was extracted according to

its geographic coordinates in ArcGIS 10.2.
Statistical analysis

First, the differences aboveground biomass, Shannon-

Wiener index and species richness, and mineral element

contents inside and outside fences across North Tibet and

within each grassland type were first examined by t-tests. After

the Shapiro-Wilk’s test for data normality and(Bartlett-test for

homoscedasticity, we used two-way ANOVA with Tukey’s HSD

test to disentangle the effects of fencing, grassland types and their
Frontiers in Plant Science 05
interactions on plant diversity indices and minderal element

contents at top soils.

Then, bivariate regressions, including linear and quadratic

models, were performed to examine how plant community

characteristics vary along with the gradients of mineral

element contents at topsoils. Person’s correlation between

climate variables (GSP and GST), plant community, and soil

variables was performed to examine the collinearity problems

among all the responsible and explanatory variables.

Next, we decomposed the relative contribution of each

environmental variable (climate and soil) to changes in plant

community regimes with multiple linear models at two different

spatical scales first across the entire North Tibet and then within

each of the three grassland types. The best-fitted models were

picked out with the AICcmodavg package with a backward

simplification approach according to the corrected Akaike’s

information criterion (AICc) (Sugiura, 1978).We finally

calculated the proportion of the variance explained by each

significant variable in the best-fitted model as its effect size (Eta

squared, h2).
Last, structural equation models (SEMs) using the lavaan

package (Rosseel, 2012) were constructed to examine the direct

and indirect causal links between climate variables, plant

community indices, and soil mineral elements. The chi-square

(c2) p > 0.05 and standardized root mean square residual (SRMR)

≤ 0.05 were accepted as good fitness (Fan et al., 2016). All tests

were evaluated at P ≤ 0.05 to determine if there was a significant

difference. All the data analyses and visualization of this study

were conducted with R 4.1.2 (R CoreTeam., 2017).
Results

Plant community and contents of soil
mineral elements

Grazing exclusion by fencing did not alter plant diversity

and biomass of alpine grasslands in North Tibet (Table S1).

Aboveground biomass and species richness did not differ

between fenced and grazed plots within the three grassland

types (P > 0.05, Figure 2). In alpine meadows, the Shannon-

Wiener index in fenced plots was lower than in grazed plots (P <

0.05, Figure 2B). Aboveground biomass and species richness

varied among alpine grassland types (P < 0.01, Table 2). The

interaction of grazing exclusion and grassland types was not

significant either (P > 0.05, Table 2).

The contents of soil mineral elements were not significantly

different between fenced and grazed sites (Table S1 and

Figure 3). Significant differences were found in Ca, Fe and Mn

contents of topsoils between grassland types (P < 0.05, Table 2).

The interaction of fencing and community types only showed
frontiersin.org
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significant effects on variance in the K content at top soils

(P < 0.05, Table 2).
The relationships between plant
community properties and
environmental factors

Plant community properties were significantly correlated with

climate variables (Figure S2). Aboveground biomass and species

richness were closely related with GSP and GST, with absolute

coefficient values being higher than 0.5. Aboveground biomass and

species richness were also closely correlated with the Ca content

inside and outside fences (Figures S2, S3A, S5A) while closely linked

to Fe content in grazed plots (Figures S3C, S5C). Aboveground

biomass and Shannon-Wiener index were closely correlated with K

content only in grazed plots (Figures S3G, Figure S4G).
Frontiers in Plant Science 06
Effects of climate variables, soil mineral
elements and plant diversity on grassland
productivity

GSP alone explained 68.2% of the total variance of

aboveground biomass across North Tibet, followed by Ca,

which accounted for 5% of its variance. The content of Ca at

top soils alone explained 14.1% of the aboveground biomass of

alpine steppes. GST explained 5.8% of the total variance of the

Shannon-wiener index across different alpine grassland types in

North Tibet. GSP explained most of the total variance of species

richness across all the three alpine grassland types in North Tibet

(45.3%), and also in AM (31.2%), AS (60.1%) and DS (15.0%).

In the structural equation model (Figure 4), GSP and GST

significantly affected aboveground biomass through

standardized direct pathways of 0.75 and 0.31 in strength. GSP

also had indirect positive effects on aboveground biomnass via

species richness (0.35) and the Ca content (0.09). The influences
A B C

FIGURE 2

Mean ± standard error of vegetation variables (AGB, aboveground biomass, Shannon-Wiener index, and species richness) inside and outside
fences. * and ns indicates significant (P < 0.05) and non-significant differences (P > 0.05) between fenced and grazed plots, which is also
applicable to Figure 3. Abbreviations are the same as in Table 1.
TABLE 2 Summary of the two-way ANOVA, in which the effects of land-uses (fencing vs grazing), grassland types (alpine meadows, alpine
steppes, and desert-steppes), and their interactions (Land-use × Grassland types) on aboveground biomass, Shannon-Wiener index, species
richness, and mineral element contents of Ca, Cu, Fe, Mg, Mn, Zn, K and P at topsoils alpine grasslands in North Tibet.

Land uses Grassland types Land-uses × Grassland types

Df F P Df F P Df F P

Aboveground biomass 1 0.83 0.365 2 116.77 < 0.001 2 2.99 0.056

Shannon-Wiener index 1 3.18 0.078 2 1.44 0.242 2 0.50 0.609

Species richness 1 0.57 0.452 2 20.93 < 0.001 2 0.46 0.636

Ca 1 0.04 0.735 2 23.29 < 0.001 2 0.41 0.936

Cu 1 0.03 0.876 2 0.27 0.767 2 0.10 0.906

Fe 1 1.04 0.311 2 11.08 < 0.001 2 1.98 0.144

Mg 1 1.14 0.289 2 0.34 0.716 2 1.73 0.183

Mn 1 <0.01 0.950 2 5.28 0.007 2 0.98 0.378

Zn 1 0.03 0.860 2 2.84 0.064 2 0.73 0.484

K 1 0.09 0.771 2 2.13 0.125 2 3.35 0.040

P 1 0.17 0.682 2 1.55 0.217 2 0.86 0.426
fro
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from GSP, GST, Shannon index, species richness and soil Ca

explained about 82% of the total variance of aboveground

biomass in North Tibet (Figure 4). The standardized path

strength of GSP affecting plant biomass indirectly via soil Ca

content was 0.14, when the covariance between Shannon-

Wiener index and species richness was excluded (Figures S6, S7).
Discussion

Effects of fencing on plant community
regimes

In this study, we selected plant aboveground biomass and

diversity at the community level to assess the effect of land use

shifts from grazing by livestock to fencing for excluding

herbivory on degraded alpine grasslands in North Tibet. Our

results showed that six years of grazing exclusion by fencing had

a common effect on plant biomass and diversity in alpine

grasslands in North Tibet (Figure 2). Specifically, such a six-

year grazing exclusion by fencing negatively impacted

biodiversity in alpine meadows. This result is partially

consistent with previous studies on the Tibetan Plateau. For

example, medium-term fencing (< 8 years) did not alter either

species richness or Shannon-Wiener index (Yan and Lu, 2015;

Zhang et al., 2021) but significantly enhanced aboveground

biomass of alpine grasslands (Yan and Lu, 2015; Liu et al.,
Frontiers in Plant Science 07
2020a; Zhang et al., 2021). The inconsistent results may be due to

the differences in grazing intensity, enclosure duration, original

vegetation and soil conditions, and climate background.

First, the climate in Northern Tibet is relatively harsh, with

low temperatures at high elevations. Snow or hail often occurs

even during the plant-growing months. Low temperatures may

negatively affect plants’ uptake of water or nutrients from top

soils, and consequently limit the recovery of plant community

structure and functions, termed as plant diversity indices and

aboveground biomass (Wang et al., 2013). Additionally, the loss

of plant diversity in higher productive meadows may be due to

increased competition among plant individuals for canopy

resources (Wu et al., 2009). More competitive plant species

can become more dominant when less competitive plants are

restrained after removing the livestock grazing disturbance

(Xiong et al., 2016). These results imply that medium-term

fencing may have limited and negative influence on plant

biomass production and diversity of degraded alpine

grasslands at the community level across North Tibet.
Effects of fencing on soil mineral
elements

Mineral elements are crucial in regulating the synthesis of

macromolecules and maintaining physiological functions as

constituents of enzymes and chlorophyll for plants (Broadley
A B D

E F G H

C

FIGURE 3

Mean ± standard error of soil mineral elements (A–H) inside and outside fences.
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et al., 2012), although they are not required equally in amount as

P and N. However, the six-year fencing of this study did not

significantly alter the mineral element contents at top soils of

degraded alpine grasslands in North Tibet (Figure 3). This result

is partially similar to that in Li et al. (2011), who found 8-year

livestock exclusion did not change the contents of Ca, Mg and

Zn at topsoils of the temperate grasslands in Inner Mongolia.

Jiao et al. (2016) also found that 8-year fencing did not

significantly alter the contents of soil Cu, Mn and Zn, but

increased the content of soil Fe of desert-steppes and alpine

meadows in Gansu Province, China. Similarly, (Gebregergs

et al., 2019) found that 5-year grazing exclusion by fencing did

not significantly change the contents of Ca and Mg of semi-arid

grassland soils in North Ethiopia.

Several reasons may explain the stable contents of soil

mineral elements. First, mineral elements in top soils are

mainly derived from long-historical natural processes (such as

rock weathering and mineral formation) and influenced by

parent materials, pH and organic matter. Six years of fencing

may be too short to alter the mineral nutrient contents at top

soils (Lu et al., 2015b). Second, the soils of Tibetan alpine

grasslands are typically alkaline with relatively high pH values

(Lu et al., 2015a), indicating that mineral elements can be easily

fixed as insoluble or less-soluble compounds. In addition,

fencing may not significantly alter the activity of soil enzymes

associated with mineral element cycling (such as b-glucosidase,
urase and phosphatase) (Shi et al., 2013; Du et al., 2020) in

degraded alpine grasslands, which may limit organic matter

decomposition and mineralization. Therefore, fencing has
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limited influences on the soil mineral nutrients of degraded

alpine grasslands in North Tibet.
Effects of climate and soil mineral
nutrients on plant community

Results from multiple and structural equation models

demonstrated that precipitation during the plant growing season

plays the most prominent role in regulating biomass production of

alpine grasslands in North Tibet directly or indirectly through soil

Ca and plant diversity indices (Table 3 and Figure 4). These results

were consistent with previous studies on alpine grasslands the

Tibetan Plateau (Yang et al., 2010; Wu et al., 2014; Wu et al.,

2019) and temperate grasslands in other arid and semi-arid places

(Ippolito et al., 2010; Cregger et al., 2014). It is likely that

precipitation and micronutrients, particularly Zn and Fe, regulate

grassland biomass production worldwide (Radujkovic et al., 2021).

Variations in precipitation and temperature may alter the

distribution and dynamics of water availability (Davidson and

Janssens, 2006) and thus affect soil biochemical conditions and

vegetation growth (Nielsen and Ball, 2015). In this case, alpine

grasslands’ soil nutrients and plant biomass production were

primarily driven by the growing season precipitation rather than

grazing exclusion. Therefore, the potential shifts of climate

conditions in North Tibet and the specific responses of

different grassland types to climate change should be well-

considered when making policies for alpine grassland

conservation and restoration (Gao et al., 2014; Duan et al., 2021).
FIGURE 4

Structural equation models. Dark-green and orange arrows, respectively, indicate the negative and positive associations. All paths are significant
at the 0.05 level.
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The impact of mineral elements on aboveground biomass

might become more critical than climatic variables within

specific alpine grassland types (Table 3). Previous studies also

highlighted that the impacts of climate on vegetation and soils

varied among different habitats on the Tibetan Plateau (Wang

and Wesche, 2016; Wang et al., 2017). As climatic variables are

less variable within a given habitat, soil nutrient heterogeneity

might strongly influence the variance in plant community

structure and productivity at small scales. We found that the

Ca strongly influences plant biomass production and explained a

considerable fraction of biomass variance, particularly in alpine
Frontiers in Plant Science 09
steppes (Table 3 and Figure 4). Ca plays a crucial role in

maintaining cell structure and improving the tolerance of

alpine plants to low temperatures (Hepler, 2005; Fu et al.,

2006). Therefore, much closer attention should be paid to

those undervalued mineral elements (both in soil and plant

tissue) regulating plant species’ survival and performance in

harsh habitats.

In our study, climate variables also interact with plant

community diversity to control plant biomass (Figures 4, S5,

S6), although the way of climate via Shannon-Wiener index was

not significant enough to impact aboveground biomass. These
TABLE 3 Effects of climate regimes and soil mineral elements on aboveground biomass (AGB), Shannon-Wiener index, plant species richness of
alpine grasslands across North Tibet and at the grassland type level (AM, alpine meadow; AS, alpine steppe; DS, desert-steppe).

Explanatory
variable

Northern Tibet AM AS DS

Estimate F P h2 Estimate F P h2 Estimate F P h2 Estimate F P h2

AGB R2 = 80.44 R2 = 35.85 R2 = 30.7 R2 = 72.11

GSP 1.71 289.48 <0.01 68.24 -12.23 3.91 0.06 11.39

GST 2.94 7.28 0.01 1.72 21.44 0.64 0.43 1.87 11.66 0.24 0.62 0.59 2.2 33.53 <0.01 44.53

Richness 0.28 7.96 0.01 1.88 7.19 1.94 0.18 5.66 1.9 2.38 0.13 5.69 -4.02 14.99 <0.01 19.91

Ca -0.35 21.27 <0.01 5.01 -0.3 3.47 0.08 10.12 -0.19 5.88 0.02 14.05

Cu 0.35 2.50 0.13 3.32

Fe 1.59 0.73 0.39 0.17 -2.36 0.92 0.35 2.67 0.85 0.44 0.51 1.05 0.53 0.01 0.93 0.01

Mg -0.71 8.00 0.01 1.88 2.09 0.04 0.85 0.11 -3.54 3.90 0.06 9.33 -1.08 3.27 0.09 4.34

Mn

Zn 0.26 2.72 0.10 0.64

K -0.53 3.79 0.05 0.89

P 0.08 1.38 0.25 4.02

Shannon-Wiener index R2 = 0.16 R2 = 0.47 R2 = 0.78 R2 = 0.41

GSP 0.01 2.28 0.14 4.84 0.01 81.18 <0.01 62.77 0.02 2.52 0.13 7.09

GST -1.37 5.88 0.02 5.75 0.84 1.79 0.20 5.03

Ca 0.22 1.83 0.18 1.79 0.14 16.26 <0.01 34.46

Cu 0.01 2.50 0.12 1.93

Fe 0.03 0.12 0.73 0.25

Mg -0.06 3.52 0.07 7.46

Mn -0.56 0.74 0.39 0.72 0 0.91 0.35 0.70 -0.01 3.30 0.08 9.29

Zn -0.02 13.21 <0.01 10.22 -0.01 3.43 0.08 9.65

K 0.4 3.39 0.07 3.32 -0.31 2.54 0.12 1.96

P 0.39 4.39 0.04 4.30 -0.01 3.52 0.07 9.89

Species richness R2 = 0.48 R2 = 0.75 R2 = 0.77 R2 = 0.41

GSP 0.8 76.11 <0.01 45.29 0.23 27.10 <0.01 31.20 0.07 73.90 <0.01 60.11 -0.01 5.30 0.03 14.99

GST -3.5 2.29 0.14 2.63 1.52 0.36 0.55 0.29

Ca 0.57 12.19 <0.01 14.04 0.06 0.18 0.68 0.50

Cu 0.11 0.93 0.34 0.76

Fe 0.23 0.60 0.45 1.71

Mg -0.29 5.20 0.03 4.23

Mn -0.45 0.58 0.45 0.34 0.02 3.85 0.06 4.44 0.02 4.79 0.04 3.90 -0.01 2.63 0.12 7.43

Zn -0.11 8.41 0.01 9.69 -0.15 9.76 <0.01 7.94

K 0.47 7.04 0.01 8.10 0.5 3.28 0.09 9.27

P 0.35 3.36 0.07 2.00 -0.01 3.98 0.06 4.58 -0.01 3.39 0.08 9.58
fro
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findings also agree with (Klanderud, 2010) that the response of

natural grasslands to climate change and grazing disturbance does

not necessarily follow a simple linear or unimodal trajectory. More

explicit exploration of the relationships between abiotic and biotic

variables should be examined first, especially in less productivity

communities (Erfanzadeh et al., 2015; Lehnert et al., 2016; Calvo

et al., 2021).Therefore, a better comprehension of the response of

alpine grassland plants to climate change and human interference

is needed.

Our study indicates that grazing exclusion by fencing is

limited to restoring vegetation and soil mineral properties in

studied alpine grasslands, possibly due to the harsh environment

and relatively low stocking rate (Table 1). However, the

effectiveness of fencing depends on the historical grazing

intensities (Wu et al., 2017a). Our study only selected

sampling sites in the main counties of different grassland types

and failed to consider the actual stocking rate when designing

the field survey method. In addition, we did not examine other

soil properties (such as pH) that are highly correlated with the

content of mineral elements, which may limit better

interpretation of the variations in soil mineral elements.
Conclusion

Plant biomass and diversity of alpine grasslands in North

Tibet are weakly affected by grazing exclusion by fencing alone

and mainly regulated by growing season precipitation and soil

mineral elements at topsoils. However, the effects of medium-

term fencing and soil mineral elements on plant communities

were more pronounced at the grassland level. Grassland

management policies need to be explicitly improved for each

grassland type. It is also urgent to uncover the mechanisms of

how mineral nutrients regulate alpine grassland productivity

under changing climate and shifting management in

further studies.
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