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Invasive alien plants posed a significant threat to natural ecosystems,

biodiversity, agricultural production, as well as human and livestock health.

Lolium temulentum, an annual invasive alien weed with fibrous roots, can

reduce wheat production and cause economic losses. Moreover, the

consumption of grains or cereal products mixed with darnel can cause

dizziness, vomiting, and even death. Therefore, darnel is regarded as one of ″
the worst weeds around the world″. In the present study, we predicted the

potential global geographical distribution of L. temulentum using an optimal

MaxEnt model, based on occurrence records and related environmental

variables. The mean AUC, TSS, and KAPPA were 0.95, 0.778, and 0.75,

indicating the MaxEnt model accuracy was excellent. The significant

environmental variables, including the mean temperature of coldest quarter

(bio 11), precipitation of coldest quarter (bio 19), temperature annual range (bio

7), and annual precipitation (bio 12), produced a great impact on the potential

global geographical distribution of L. temulentum. Under the current climate, L.

temulentum was primarily distributed in south-eastern Asia, Europe, and

south-eastern North America. The widest total suitable habitat was

distributed in Asia, covering nearly 796 × 104 km2. By the 2050s, the

potential geographical distribution of L. temulentum was expected to

decrease in the Northern Hemisphere, and shrink gradually in southern

America, Africa, and Oceania. Moreover, the distribution center of L.

temulentum was expected to shift from Asia to Europe. Based on these

predictions, changes in the suitable habitats for L. temulentum between

Europe and Asia warrant close attention to prevent further spread.
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2022.1024635/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1024635/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1024635/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1024635/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.1024635&domain=pdf&date_stamp=2022-11-10
mailto:chenli1@hbu.edu.cn
mailto:liuwanxue@caas.cn
https://doi.org/10.3389/fpls.2022.1024635
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.1024635
https://www.frontiersin.org/journals/plant-science


Yang et al. 10.3389/fpls.2022.1024635
Introduction

Biological invasions, including those by invasive alien plants

(IAPs), animals, and microorganisms, have become an

increasingly severe issue worldwide, and these phenomena are

affected by climate warming (Pimentel et al., 2001; Cornelissen

et al., 2019). Furthermore, human activities, including logging,

mining, damming, and others, also have a great impact on the

distribution of IAPs (Seabloom et al., 2003; MacDougall and

Turkington, 2005; Didham et al., 2007). IAPs pose a threat to not

only biodiversity and natural ecosystems but also human and

livestock health (Vilà et al., 2011). Climate warming and human

activities can accelerate population growth and promote the

reproduction of IAPs, aggravating their impact on the ecological

environment, agricultural economy, and food security (Keller

and Shea, 2021). Reportedly, IAPs were responsible for

estimated annual economic losses of US$27.9, US$1.4, US$2.4,

US$1.5, US$37.8, and US$17 billion in the crop sector in the

United States, United Kingdom, Australia, South Africa, India,

and Brazil, respectively (Pimentel et al., 2001). Poaceous plants

are regarded as important IAPs and have been listed as

quarantine plants in many countries. For instance, according

to ″The U. S. Regulated Plant Pest List″, 40 Poaceous IAPs have
been regarded as quarantine targets. Additionally, 41 Poaceous

IAPs were listed in the ″Catalogue of Quarantine Pests for

Import Plants to The People’s Republic of China″. Lolium
temulentum is one of the critical Poaceous IAPs. At present, L.

temulentum has been included in the entry quarantine list of

China, Latvijas-Republika, and parts of the United States,

including Florida, Alabama, Arkansas, Mississippi, Georgia,

Louisiana, Oklahoma, South Carolina, Tennessee, and Texas.

Lolium temulentum, or darnel, is an invasive annual weed

worldwide, regarded as one of ″the worst weeds worldwide″ and
a competitive C3 grass weed that typically grows with wheat,

sunflowers, and other winter crops under temperate climates

(Lush, 1976; Holm et al., 1977; Angiras and Modgal, 1981; Sarno

et al., 1986; Helm et al., 1987). The germination and growth of L.

temulentum required low temperature and high soil moisture

conditions (Steiner and Ruckenbauer, 1995). Lolium

temulentum was also generally regarded as a competitive IAP.

For instance, L. temulentum bears a fibrous root system that

enables better nutrient absorption than other cereals (Angiras

and Modgal, 1981). Consequently, darnel seeds often intermix

with wheat during harvest, and the mixed seeds are difficult to

separate from cereal grains (Cousland, 2015). Therefore, darnel

can easily spread throughout the world via global wheat trade.

Lolium temulentum is native to the Mediterranean and

southwestern Asia and is widely distributed in Europe,

southern Africa, eastern Asia, and North America (Terreix,

1968; Holm et al., 1977). In early 1942, L. temulentum seeds

were reported to exert toxicity in humans and other non-human

animals when consumed in conjunction with wheat in North

America (Cousland, 2015). In Asia and Africa, grain stocks with
Frontiers in Plant Science 02
plentiful darnel were reported to cause dizziness, vomiting,

coma, and even death in humans and livestock (Rizk and

Hussiney, 1991; Musselman, 2000). In addition, field

experiments in North America demonstrated that high Persian

darnel (Lolium persicum) densities reduced spring wheat and

sunflower yield by up to 83% and 57%, respectively, causing

severe agricultural economic losses (Holman et al., 2004). In

addition, L. temulentum can serve as a host to the fungus, crop

pathogens, and parasitic nematodes, such as Puccinia striiformis

(Zhukova and Kupriyanova, 1981; Ibrahim et al., 1988). Previous

studies on L. temulentum were focused on plant biology, such as

molecular genetics, phylogeny, and plant pathology (Thomas

et al., 2011). However, the global distribution pattern of L.

temulentum remains unknown. Therefore, predicting the

potential geographical distribution of L. temulentum is

fundamental for its monitoring and control worldwide, and

can build a foundation for the management of other

critical IAPs.

Species distribution models (SDMs), including maximum

entropy (MaxEnt), CLIMEX, genetic algorithm for rule-set

prediction, and Biomod2, have been widely used to predict the

potential geographical distribution of species under climate

change (Phillips et al., 2004; Willis and Bhagwat, 2009; Thuiller

et al., 2014). Based on the maximum entropy theory, MaxEnt

model makes predictions with presence data via the machine

learning response (Phillips et al., 2006; Favretti, 2018). MaxEnt

model offers certain advantages over other SDMs, such as

support for small sample sizes, high complexity, and better

model performance (Xiong et al., 2004). More importantly, the

MaxEnt model is more robust for spatial errors to predict

species distribution with occurrence data and presence-only

datasets (Graham et al., 2008; Convertino et al., 2014).

Therefore, this model has been widely applied to predict the

potential geographical distribution of IAPs under the current

climate and future climate change, such as Paspalum distichum

in the Korean Peninsula and Sorghum almum worldwide

(Phillips et al., 2004; Lee et al., 2016; Wang and Wan, 2020).

However, there are also some weaknesses in the MaxEnt model

that requires further study, including the regularization of

avoiding overfitting and fewer methods in estimating

prediction of the amount of error (Phillips et al., 2004;

Phillips et al., 2006). In previous studies, ENMevals has been

commonly used to calibrate the MaxEnt model, which can be ″
tuned″ to generate optimal model complexity and avoid model

overfitting (Muscarella et al., 2014a; Radosavljevic and

Anderson, 2014; Roberts et al., 2017; Hallgren et al., 2019).

Based on the running environment of R package, ENMevals

across k-fold cross-validation can get partitioning data that

can be used to select the optimal MaxEnt model settings for

users’ different demands (Muscarella et al., 2014). Therefore, in

the present study, we used an optimal MaxEnt model to predict

the potent ia l g loba l geographica l d i s t r ibu t ion o f

L. temulentum.
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Owing to the biological characteristics of high adaptability,

potential reproduction, and toxicity, L. temulentum could

establish population quickly in new habitat mixed with wheat,

leading to cereal loss and food poisoning for human and livestock.

Therefore, predicting the potential global geographical

distribution of L. temulentum is significant for, agricultural

production and human health. In the present study, we aimed

to predict the potential global geographical distribution of L.

temulentum under the current and future climates using the

optimal MaxEnt model. First, significant environmental

variables affecting L. temulentum distribution were analyzed.

Next, the potential geographical distribution of L. temulentum

was predicted using the optimal MaxEnt model under the current

climate and future climate scenarios in the 2050s. Finally, changes

in the potential geographical distribution of L. temulentum and

distribution center shifts between the current climate and future

climate change were analyzed. To the best of our knowledge, the

present study is the first to predict the potential geographical

distribution of L. temulentum, which will facilitate the surveillance

and control of IAP in the future.
Material and methods

Species occurrence records

We obtained occurrence records of L. temulentum from

online and literature databases, including 5,059 records from the

Global Biodiversity Information Facility (GBIF: http://www.gbif.

org), 117 records from published articles in the China National

Knowledge Infrastructure (CNKI: https://www.cnki.net ), 20

records from the Chinese Virtual Herbarium (CVH: https://

www.cvh.ac.cn ), and 80 records from the Ministry of

Agriculture and Rural Affairs of the People’s Republic of

China (http://www.moa.gov.cn/ ). A total of 5,276 occurrence

records of L. temulentum collected from across the world were

obtained, longitude and latitude of occurrence records in each

continent were shown in supplementary excel. ArcGIS was used

to map the global occurrences of L. temulentum. We used

ENMTools to screen the occurrence records and ensure that

only a single occurrence record was retained within each 10 × 10

km2 raster (Warren et al., 2010). Finally, 3,899 occurrence

records were obtained worldwide (Figure 1).
Environmental variables

Nineteen environmental bioclimatic variables during 1979–

2013 at 5-arc minute resolution were downloaded from the

Paleoclim database (http://www.paleoclim.org// ) (Brown et al.,

2018). Future climate and elevation (altitude) data (5-arc minute

resolution) were downloaded from the WorldClim database

(https://www.worldclim.org/ ). Since the 2050s (2040-2060) is
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the closest period to the current (1979–2013), we aimed to

provide time-sensitive references for the prevention and control

of L. temulentum worldwide. Therefore, the future climate data

selected the four representative concentration pathways (RCP

2.6, RCP 4.5, RCP 6.0, and RCP 8.5) in the 2050s (2040–2060)

using the Community Climate System Model (CCSM) 4.0. Slope

and Aspect were extracted from a digital elevation model using

ArcGIS (Flessner et al., 2021). Soil variables were selected from

the Harmonized World Soil Database v1.2 of the United Nations

Food and Agriculture Organization (https://www.fao.org/soils-

portal/data-hub/soil-maps-and-databases/harmonized-world-

soil-database-v12/en/ ) (Chefaoui et al., 2016). The 27

environmental variables were listed in Table S1.

Linear correlations among the environmental variables lead

to overfitting of the MaxEnt model (Graham, 2003). Therefore,

we used EMNTools to eliminate the multivariate collinearity of

the 27 environmental variables (Warren et al., 2010) (Figure S1).

When two environmental variables were strongly correlated (|

r|≥0.8), the more meaningful variable was retained. Finally, 13

environmental variables were considered (Table 1).
Model calibration, settings,
and evaluation

Regularization multiplier (RM) and feature combinations

(FCs) were the key parameters of the MaxEnt model, which were

calibrated to increase prediction accuracy (Muscarella et al.,

2014). Based on the Pearson correlation coefficient, the ENMeval

package in R version 4.1.3 was used to calibrate RM and FCs,

and the output ‘excel’ files were used to select different parameter

settings (RM and FCs) for the optimal MaxEnt. RM was set from

0.5 to 4 with an interval of 0.5, based on the occurrence records

of L. temulentum and environmental variables. MaxEnt model

included five FCs (i.e., linear-L, quadratic-Q, hinge-H, product-

P, and threshold-T) and their six combinations (i.e., H, L, LQ,

LQH, LQHP, and LQHPT) (Phillips and Dudıḱ, 2008). For the

48 combinations, we selected the minimum values of delta

Akaike information criterion correction (DAICc) using the

ENMeval package in RStudio (Akaike, 1992). Based on the

lambdas file, when DAICc was 0, RM was set to 0.5, and FC

was set as LQHPT, which was the optimal combination for the

MaxEnt model in the present study (Warren and Seifert, 2011)

(Figure S2).

In the present study, 3,899 occurrence records and 13

bioclimatic variables were imported into MaxEnt 3.4.4. using the

″dismo″ package in R version 4.1.3. Of all the occurrence records,

75% were selected as the training data and 25% as the testing data.

The FC was set as LQHPT, with 0.5 RM and 10 replicates. The

maximum number of iterations was set to 500, with a maximum of

10000 background points. Random seeds were assessed to increase

model randomness. The replicated run type was set as ″Bootstrap″
and the other parameters were set as default. The receiver operating
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characteristic (ROC) curve and area under the ROC curve (AUC)

were used to evaluate model accuracy (Roca et al., 2004). Besides,

true skill statistics (TSS) and KAPPA statistics values were

considered as evaluated criteria. AUC was a metric based on the

rates of both true positive and true negative. The AUC value ranged

from 0 to 1, divided into four grades based on the evaluation

criterion of accuracy: poor (0.5<AUC<0.7), moderate

(0.7<AUC<0.9), and excellent (AUC>0.9) (Franklin and Miller,

2010). TSS was a dependent threshold depending on sensitivity and

specificity (Allouche et al., 2006). KAPPA evaluated the match of

model predictions and the truth, controlling the random accuracy

via the expected accuracy (Cohen, 1960). The higher the TSS and

KAPPA values, the higher the accuracy of the MaxEnt

model outputs

The modeling results generated distribution predictions in a

grid raster format with indices ranging from 0 to 1 (Ceylan and
Frontiers in Plant Science 04
Gül, 2022). The potential geographical distribution of L.

temulentum was classified into four categories under the

current climate and future climate change scenarios in the

2050s: unsuitable habitat (P<0.34), poorly suitable habitat

(0.34≤P<0.5), moderately suitable habitat (0.5≤P<0.7), and

highly suitable habitat (0.7≤P<1) based on the Maximum

training sensitivity plus specificity cloglog threshold of the

MaxEnt model (Cantor et al., 1999; Manel et al., 2001).
Suitable habitat index classification and
distribution center shift

ArcGIS was used to analyze the distribution center shifts of

L. temulentum during the current climate and future climate

change scenarios in the 2050s. The initial potential geographical
TABLE 1 Percent contribution and permutation importance of environmental variables to the potential geographical distribution of Lolium
temulentum.

Variable Description Unit Percent contribution Permutation importance

bio2 Mean diurnal temperature range °C 44.3 71.2

bio7 Temperature annual range °C 26.1 4.3

bio11 Mean temperature of coldest quarter °C 16.7 7.6

bio12 Annual precipitation mm 8.2 10.1

bio15 Precipitation seasonality (coefficient of variation × 1) – 1 2.1

bio17 Precipitation of driest quarter mm 0.8 0.5

bio19 Precipitation of coldest quarter mm 0.8 1.6

Altitude Altitude m 0.8 0.5

Slope Slope 0.6 0.7

ADD_PROP Other properties (gelic, vertic, petric) 0.5 0.4

T_OC Topsoil Organic Carbon % wt 0.3 0.9

T_PH_H2O Topsoil pH (H2O) -log(H+) 0.1 0.1

T_SAND Topsoil Sand Fraction % wt 0.1 0.1
FIGURE 1

Global distribution points for Lolium temulentum.
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distribution of L. temulentum was reclassified into two

categories: unsuitable (P<0.34) and suitable (0.34≤P<1)

habitat. Floating point data of the potential geographical

distribution were regarded as the weight to combine the

spatial location of the floating point for calculating the

centroid. The centroid trends were used to analyze the changes

in the potential geographical distribution of L. temulentum

between the current and future climates.
Multivariate environmental
similarity surface

Environment has been verified as the critical variable for

structuring species distr ibutions. However , spat ia l

autocorrelation should be considered a major aspect of the

interplay in both environmental variables and geographic

space (Elith and Leathwick, 2009). Multivariate environmental

similarity surface (MESS) was used to analyze the similarity (S)

between current and future climates. If S < 0, which is regarded

as climate anomaly, and S = 100, which indicates that the future

climate is identical to the current. The increasingly negative

values mean greater dissimilarity so that reduced model

transferability (Ranjitkar et al., 2016). It is likely to lead to

geographic species clumping because of the impact of the

environmental layer or geographic space. In the present study,

we calculated the similarity both the current and future layers

including RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 through

density. tool. novel in the MaxEnt model for predicting the

potential global geographical distribution of L. temulentum.
Results

Model evaluation and significant
environmental variables

The mean AUC, TSS, and Kappa values of the optimal

MaxEnt model were 0.95 (± 0.001), 0.78 (± 0.01), and 0.75 (±

0.01), indicating the model accuracy was reliable (Figure S3).

The importance of the environmental variables were evaluated

according to their percent contribution rates and the ″Jackknife
method″ (Figure S4, Table 1). Specifically, mean temperature of

coldest quarter (bio 11), precipitation of coldest quarter (bio 19),

temperature annual range (bio 7), and annual precipitation (bio

12) were significant environmental variables affecting the

potential geographical distribution of L. temulentum.

We selected a suitable range of environmental variables for

L. temulentum distribution using the threshold for highly

suitable habitats (>0.5). The suitable ranges of mean

temperature of coldest quarter (bio 11), temperature annual

range (bio 7), precipitation of coldest quarter (bio 19), and

annual precipitation (bio 12), were -8.5 to 13.8°C, -2.6 to 34, and
Frontiers in Plant Science 05
44 to 52.8°C, 60 to 888.3 mm, and 292 to 1,560 mm, respectively

(Figure S5). The highest values of bio11, bio7, bio19, and bio12

were 3°C, 52.8°C, 778 mm and 578 mm, respectively.
Potential geographical distribution under
the current climate

Under the current climate, the potential global geographical

distribution of L. temulentum was mainly concentrated in Asia,

Europe, North America, and South America (Figure 2). The

global total, highly, moderately, and poorly suitable habitat areas

of L. temulentummeasured 1811 × 104, 343 × 104, 577 × 104, and

891 × 104 km2 respectively (Figure 3). The largest total, highly,

moderately, and poorly suitable habitat area was located in

Europe (654 × 104, 230 × 104, 183 × 104, and 241 × 104 km2),

including the United Kingdom, Ireland, Jersey, France,

Dermark, Germany, Italy, Greece, Portugal, Spain, Andorra,

and western Poland; followed by in Asia (368 × 104, 33 ×

104,113 × 104, and 222 × 104 km2), including southwestern

and southeastern China, southeastern Japan, northern Iraq, and

Turkey; in North America (345 × 104, 23 × 104, 94 × 104, and

228 × 104 km2), including western and southeastern the United

States, in South America (190 × 104, 28 × 104, 80 × 104, and 82 ×

104 km2), including Chile, Uruguay, and southern Argentina; in

Africa (98 × 104, 13 × 104, 34 × 104, and 51 × 104 km2), including

northern Morocco, northern Algeria, Mozambique, and

Swaziland; in Oceania (156 × 104, 16 × 104, 73 × 104, and

67 × 104 km2), including New Zealand, southwestern and

southeastern Australia.
Future potential global geographical
distribution

The potential geographical distribution patterns of L.

temulentum in the 2050s under four different scenarios,

namely RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5, were

presented in Figure 4. Compared with those under the current

climate, the total suitable areas of L. temulentum in each

continent shrank except in Europe. Moreover, the highly,

moderately, and poorly suitable habitat areas of L. temulentum

reduced to different extents (Figure S6; Table S2). the potential

geographical distribution of L. temulentum was primarily

concentrated in almost all of Europe, southeastern Asia, and

southeastern North America.

The total, moderately, and poorly suitable areas of L.

temulentum in Asia increased under RCP 6.0 in the 2050s,

and other scenarios decreased. Under RCP 6.0, the total

suitable habitat area of L. temulentum would increase by 448

× 104 km2, reaching the maximum, and this area would be the

minimum under RCP 8.5. The total, moderately, and poorly

suitable areas of L. temulentum in Europe increased under RCP
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6.0 in the 2050s. Under RCP 2.6, the total suitable habitat area

of L. temulentum would increase by 796 × 104 km2, reaching

the maximum, and this area would be the minimum under

RCP 6.0. The highly suitable areas of L. temulentum in North

America increased under RCP 6.0 in the 2050s, and other

scenarios decreased. Under RCP 6.0, the total suitable habitat

area of L. temulentum achieved the minimum under RCP 8.5.

In South America, under RCP 8.5, the total suitable habitat

areas of L. temulentum would decrease by 94 × 104 km2,

dropping to the minimum, and this area would be the

maximum under RCP 6.0. In Africa, under RCP 8.5, the total

suitable habitat area of L. temulentum would decrease by 26 ×

104 km2, dropping to the minimum, and this area would be the

maximum under RCP 6.0. In Oceania, under RCP 8.5, the

suitable habitat area of L. temulentum would decrease by 85 ×

104 km2, dropping to the minimum, and this area would be the

maximum under RCP 6.0.
Frontiers in Plant Science 06
Changes in potential global geographical
distribution and distribution center shifts

Changes in the potential geographical distribution of L.

temulentum under the four scenarios in the 2050s were shown in

Figure 5. The global total suitable area of L. temulentum would

increase by 396 × 104, 410 × 104, 449 × 104, and 370 × 104 km2

under RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5, respectively, being

concentrated in northeastern and northwestern China, southeastern

Russia, and Turkey in Asia, Sweden, Finland in Europe,

southeastern the United States in North America. Meanwhile, the

global total suitable area of L. temulentum would decrease by 549 ×

104, 622 × 104, 526 × 104, and 782 × 104 km2 under RCP 2.6, RCP

4.5, RCP 6.0, and RCP 8.5, respectively, being concentrated in

southern China, Japan, Iran in Asia, western Russia, Ukraine, Spain

in Europe, southeastern the United States and Mexico in North

America, Bolivia, Argentina in South America, Morocco and South
FIGURE 3

Different types of suitable areas for Lolium temulentum across six continents under the current climate.
FIGURE 2

Current potential global geographical distribution of Lolium temulentum.
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Africa in Africa, southwestern and southeastern Australia

in Oceania.

Under the current climate, the distribution center of L.

temulentum was located in Turkey (37° 43′ 04″ E, 37° 58′ 40″ N)
(Figure 6). In the 2050s, under the RCP 2.6 (RCP 4.5), RCP 6.0, and

RCP 8.5, the distribution center of L. temulentum would transfer to

France (5° 24′ 50″ E, 46° 57′ 00″ N) or (5° 16′ 11″ E, 45° 1′ 33″ N),
and Monaco (6° 11′ 34″ E, 43° 53′ 42″ N), respectively. The

distribution center approximately overlapped between RCP 2.6

and RCP 4.5. These shifts differed among RCP 2.6, RCP 6.0, RCP

4.5, and RCP 8.5, indicating that different climate conditions affect

the potential geographical distribution of L. temulentum. The
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distribution center of L. temulentum transferred 2824.91, 2732.31,

and 2838.06 km from the current climate to RCP 2.6 (RCP 4.5), RCP

6.0, and RCP 8.5. Most notably, under the future four scenarios, the

spread trends of distribution centers were transferred to the high-

latitudes of the world compared to the current climate.
Analysis of the multivariate
environmental similarity surface

Based on the MESS analysis, the areas of climate anomaly

were mainly located in western Asia, western North America,
FIGURE 5

Spatial changes in Lolium temulentum distribution under future climate scenarios, including RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5.
FIGURE 4

Potential global geographical distribution of Lolium temulentum under four climate scenarios in the 2050s, namely RCP 2.6, RCP 4.5, RCP 6.0,
and RCP 8.5.
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southwestern South America, northern and southern Africa, and

southwestern Oceania (Figure 7). Under the future scenarios in

the 2050s, the mean S values of 3,899 occurrence records of L.

temulentum worldwide were 15.00 under RCP 2.6, 13.98 under

RCP 4.5, 14.48 under RCP 6.0, and 13.80 under RCP 8.5, which

indicated that the climate anomaly of RCP 8.5 was greater than

other scenarios.
Discussion

To our best knowledge, the present study is the first to

investigate the potential global geographical distribution of L.

temulentum under the current climate and four distinct future

climate scenarios in the 2050s. The default MaxEnt model has the

problem of overfitting due to sampling bias. To avoid this issue, we
Frontiers in Plant Science 08
used the ″ENMeval″ package to optimize theMaxEnt model, which

was a widely applied approach in previous studies on the potential

geographical distribution of IAPs, such as Panicum maximum,

Spartina alterniflora, Paspalum distichum, among others (Lee et al.,

2016; Liu et al., 2019; Wang andWan, 2020). Lolium temulentum, a

significant IAP, with high adaptability and toxicity, can reduce

wheat yield and cause food toxicosis (Wilson, 1873). Furthermore,

L. temulentum has been listed in the quarantine catalog of some

countries, because of its adverse effects on the agricultural economy

and human health. Therefore, the potential geographical

distribution of L. temulentum under the current and future

climate change conditions must be explored.

Lolium temulentum is an annual weed that primarily grows,

together with winter crops, and prefers low temperatures (Helm

et al., 1987). Our results indicated that mean temperature of coldest

quarter (bio11) and precipitation of coldest quarter (bio 19) were
FIGURE 7

MESS analysis in future four scenarios.
FIGURE 6

Distribution center shifts of Lolium temulentum under the current and future climate scenarios.
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the key factors affecting the potential global geographical

distribution of L. temulentum. Previous studies have shown that

L. temulentum seeds were dormant at chilling temperatures (2°C)

(Ougham, 1987). With rising temperatures, herbicide-mediated

Lolium spp. control became ineffective, and plant defense

mechanisms were promoted when Lolium species were growing

at 10 to 30 °C (Mucheri et al., 2020). For instance, alkaloids involved

in stress resistance were detected in L. perenne when temperatures

rise above 23°C (Huizing et al., 1991). The above findings all

indicated that temperature variables were the most significant

variables affecting the potential geographical distribution of L.

temulentum. Precipitation was found to be another significant

environmental variable affecting the growth of Lolium species.

Previous studies indicated that the suitable range of mean annual

rainfall was from 400 to 1200 mm (CABI, 2022). Our findings

showed that 578 mm was the optimal value of annual precipitation

for the growth of L. temulentum. Our findings are consistent with

the above findings. Seasonal precipitation increases with climate

warming, particularly in winter and summer, in the Southern and

Northern Hemispheres, indicating that the wet-season tends to be

wetter and dry seasons become slightly drier (Chou et al., 2007). Soil

moisture interacted with soil type and depth to affect the

development of L. rigidum seeds (Narwal et al., 2008). However,

this was not a significant variable for L. temulentum growth because

of its high adaptability.

Furthermore, our results showed that with climate warming,

the total suitable areas of Northern Hemisphere were decrease, and

those in the Southern Hemisphere gradually shrank. Previous

studies on IAPs, such as Salvinia molesta and Eichhornia

crassipes, have shown that the total suitable habitat areas tend to

decrease under the RCP 4.5 in the 2050s and 2070s (Kariyawasam

et al., 2021). Studies on Poaceous plants have shown that their

potential geographical distribution has different trends based on

different ecological characteristics. For instance, Sorghum halepense

is distributed in western Europe, southern North America, and

southern South America (Wang and Wan, 2020). Meanwhile,

Spartina alterniflora prefers areas along the coast of western

Europe, southwestern North America, and southwestern Asia

(Liu et al., 2019). Furthermore, Panicum maximum prefers areas

in the Southern Hemisphere, primarily southeastern South America

and eastern Africa (Wang and Wan, 2020). The Northern

Hemisphere is likely to be warmer than the Southern

Hemisphere because of northward cross-equatorial ocean heat

transport (Croll, 2012; Kang et al., 2015). The distribution center

of L. temulentum tended to transfer the high-latitudes in the future

scenarios compared with the current climate, mainly from Turkey

to France or Monaco. However, a previous study on Alternanthera

philoxeroides and Ageratina adenophora showed that their

distribution centers exhibit different trends, presenting shifts to

the middle latitudes of the Chinese mainland in the north and west

(Tu et al., 2021). Such different expanding tendencies of L.

temulentum suggest its high adaptability to new environments

and transfer to new directions under the four scenarios in the 2050s.
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The global dispersal of L. temulentum can be attributed to the

international wheat trade and human activities. It initially spread to

North America and subsequently to Asia. Our results indicated

Europe, Asia, and North America as the three major invasion areas

under the current and future scenarios in the 2050s. Northeastern

and northwestern China, southeastern Russia, and Turkey in Asia,

Sweden, Finland in Europe, and southeastern the United States in

North America were indicated as new areas of invasion in the

2050s with climate warming. Therefore, we put forward the

following prevention and control strategies to prevent the further

spread of the IAP, (1) implementation of stringent plant

quarantine measures, particularly for imported cereal, flax, and

soil associated with the introduced plants; (2) application of

agricultural control, such as long rotations, soil disturbance, and

high fertilizer applications (Ferrari et al., 1984); and (3) application

of chemical control, such as the use of triallate or metoxuron at

pre-sowing (Gad and El-Mahde, 1972; Stevens and Meyes, 1976).

Conclusions

MaxEnt model is widely used to predict the potential

geographical distribution with presence data via the machine

learning response. Compared with other SDMs, MaxEnt model

offers certain advantages, including support for small species

occurrence, high complexity, better model performance, and more

robust for spatial errors to predict species distribution with

occurrence data and presence-only datasets. In the present study,

we used an optimal MaxEnt model to predict the potential global

geographical distribution of L. temulentum under the current and

four future climate scenarios in the 2050s. Mean temperature of

coldest quarter, precipitation of coldest quarter, temperature annual

range, and annual precipitation were found to be important

environmental variables affecting the further spread of L.

temulentum. Under the current climate, L. temulentum is

primarily distributed in southeastern Asia, almost all of Europe,

and southeastern and southwestern North America along the coast,

although further spread in northwestern Asia, southeastern Europe,

and northwestern and southeastern North America were expected in

the 2050s. More attention should be paid to changes in the potential

geographical distribution of L. temulentum to prevent its further

spread in Russia, China, Finland, Sweden, and the United States.
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