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In the middle and late stages of maize, light is limited and non-maize obstacles

exist. When a plant protection robot uses the traditional visual navigation

method to obtain navigation information, some information will be missing.

Therefore, this paper proposed a method using LiDAR (laser imaging, detection

and ranging) point cloud data to supplement machine vision data for

recognizing inter-row information in the middle and late stages of maize.

Firstly, we improved the YOLOv5 (You Only Look Once, version 5) algorithm

based on the characteristics of the actual maize inter-row environment in the

middle and late stages by introducing MobileNetv2 and ECANet. Compared

with that of YOLOv5, the frame rate of the improved YOLOv5 (Im-YOLOv5)

increased by 17.91% and the weight size decreased by 55.56% when the

average accuracy was reduced by only 0.35%, improving the detection

performance and shortening the time of model reasoning. Secondly, we

identified obstacles (such as stones and clods) between the rows using the

LiDAR point cloud data to obtain auxiliary navigation information. Thirdly, the

auxiliary navigation information was used to supplement the visual information,

so that not only the recognition accuracy of the inter-row navigation

information in the middle and late stages of maize was improved but also the

basis of the stable and efficient operation of the inter-row plant protection

robot was provided for these stages. The experimental results from a data

acquisition robot equipped with a camera and a LiDAR sensor are presented to

show the efficacy and remarkable performance of the proposed method.

KEYWORDS

inter-row information recognition, point cloud, maize plant protection, lidar,
machine vision
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1 Introduction

Maize is one of the five most productive cereals in the world

(the other four being rice, wheat, soybean, and barley) (Patricio

and Rieder, 2018) that is an important source of food crops and

feed. In recent years, with the rapid increase in maize

consumption, an efficient and intelligent maize production

process has been required to increase productivity (Tang et al.,

2018; Yang et al., 2022a). Inter-row navigation is a key to

realizing the intelligence of maize planting. Pest control in the

middle and late stages of maize determines the crop yield and

quality. A small autonomous navigation plant protection robot

is a good solution for plant protection in the middle and late

stages of maize development (Li et al., 2019). However, in these

stages, the high plant height (Chen et al., 2018), insufficient light,

and several non-maize obstacles lead to a typical high-occlusion

environment (Hiremath et al., 2014; Yang et al., 2022b).

Commonly used navigation systems such as GPS (Global

Positioning System) and BDS (BeiDou Navigation Satellite

System) have shown poor signal quality in a high-occlusion

environment (Gai et al., 2021); therefore, accurately obtaining

navigation information between rows in the middle and late

stages of maize has become the key issue to realizing the

autonomous navigation of plant protection robots. At present,

machine vision is the mainstream navigation method used to

obtain inter-row navigation information in a high-occlusion

environment (Radcliffe et al., 2018); that is, the RGB (red,

green, and blue) camera acquires images of the maize stems,

identifies maize stems through a trained model, and obtains

position information so as to plan the navigation path. The

convolutional neural network was used to train the robot to

recognize the characteristics of maize stalks at the early growth

stage, which was implemented on an inter-row information

collection robot based on machine vision (Gu et al., 2020).

Tang et al. reported the application and research progress of

harvesting robots and vision technology in fruit picking (Tang

et al., 2020). The authorsMachine vision technology was applied

for the multi-target recognition of bananas and automatic

positioning for the inflorescence axis cutting point (Wu et al.,

2021); in addition, the improved YOLOv4 (You Only Look

Once, version 4) micromodel and binocular stereo vision

technology were applied for fruit detection and location

(Wang et al., 2022; Tang et al., 2023). Zhang et al. proposed

an inter-row information recognition algorithm for an

intelligent agricultural robot based on binocular vision, where

the effective inter-row navigation information was extracted by

fusing the edge contour and height information of crop rows in

the image (Zhang et al., 2020). By setting the region of interest,

Yang et al. used machine vision to accurately identify the crop

lines between rows in the early growth stage of maize and

extracted the navigation path of the plant protection robot in

real time (Yang et al., 2022a). However, the inter-row

environment in the middle and late stages of maize is a typical
Frontiers in Plant Science 02
high-occlusion environment, with higher plant height and dense

branches and leaves, seriously blocking light (Liu et al., 2016; Xie

et al., 2019). When the ambient light intensity is weak,

information loss will occur when using machine vision to

obtain inter-row navigation information (Chen et al., 2011).

However, considering the fact that machine vision usually takes

a certain feature of maize as the basis for the acquisition of

information, recognizing multiple features at the same time will

greatly reduce the recognition speed and also reduce the real-

time performance of agricultural robots, taking non-maize

obstacles into consideration (such as soil, bricks, and

branches) in the middle and late stages of maize; it is,

therefore, quite difficult to obtain all the inter-row information

by using only a single feature.

Since LiDAR (laser imaging, detection and ranging) can

obtain accurate point cloud data of objects according to the echo

detection principle (Reiser et al., 2018; Wang et al., 2018; Jafari

Malekabadi et al., 2019) and is less affected by light (Wang et al.,

2022a; Wang et al., 2022b), it can supplement the missing

information caused by the use of machine vision (Jeong et al.,

2018; Aguiar et al., 2021). In order to solve the issue of

information loss when a vision sensor was used to obtain

information, a method using LiDAR supplement vision was

proposed (Bae et al., 2021), which pooled the strength of each

sensor and made up for the shortcomings of using a single

sensor. Through the complementary process between vision and

LiDAR (Morales et al., 2021; Mutz et al., 2021), the performance

of adaptive cruise control was significantly improved; thus, a

complementary method combining vision and LiDAR was

developed in order to further improve the accuracy of

unmanned aerial vehicle (UAV) navigation (Yu et al., 2021).

Liu et al. proposed a new structure of LiDAR supplement vision

in an end-to-end semantic segmentation network, which can

effectively improve the performance of automatic driving (Liu

et al., 2020). The above methods had good application effects in

the field of autonomous driving (Chen et al., 2021; Yang et al.,

2021; Zhang et al., 2021). Based on the above research, we believe

that LiDAR supplement vision is an interesting and effective

method to obtaining inter-row information in the middle and

late stages of maize development.

Therefore, this paper proposed a method of using LiDAR

point cloud data to supplement machine vision data for obtaining

inter-row information in the middle and late stages of maize. We

took the location of maize plants as the main navigation

information and proposed an improved YOLOv5 (Im-YOLOv5)

algorithm (Jubayer et al., 2021, p. 5) to identify maize plants and

obtain the main navigation information. At the same time, we

took the locations of stones, clods, and other obstacles as auxiliary

navigation information, which were obtained through LiDAR. By

the supplementary function of vision and LiDAR, the accuracy of

the inter-row navigation information acquisition in the middle

and late stages of maize can be improved. The proposed method

provides a new and effective way to obtaining navigation
frontiersin.org
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information between rows in the middle and late stages of maize

under the condition of equal height occlusion.

The contributions of this article are summarized as follows:
Fron
1. A method of inter-row information recognition with a

LiDAR supplement camera is proposed.

2. An Im-YOLOv5 model with efficient channel attention

(ECA) and lightweight backbone network is established.

3. Auxiliary navigation information acquisition using

LiDAR can reduce the loss of information.

4. The proposed method was tested and analyzed using a

data acquisition robot.
2 Methods and materials

2.1 Composition of the test platform

The experimental platform and data acquisition system are

shown in Figure 1. A personal computer (PC) was used as the

upper computer to collect LiDAR and camera signals. The

LiDAR model is VLP-16, the scanning distance was 100 m,

the horizontal scanning angle was 270°, and the vertical scanning

angle was ±15°. The camera model is NPX-GS650, the resolving

power was 640*480, and the frame rate was 790.
2.2 Commercialization feasibility analysis

The data acquisition platform used in the test costs 490

RMB. The plant protection operation can be carried out by
tiers in Plant Science 03
installing a pesticide applicator in the later stage, with the cost of

the pesticide applicator about 100 RMB. The cost of the camera

sensor was about 100 RMB, and that of the LiDAR sensor was

about 5,000 RMB. Consequently, the cost of VLP-16 LiDAR

represented a key issue affecting the commercialization of this

recognition system. Therefore, our recognition system was

applied to small autonomous navigation plant protection

robots. The relatively low-cost of small plant protection

robots, even with the application of this relatively high-

precision recognition system, had a price advantage over UAVs.
3 Joint calibration of camera
and LiDAR

In this paper, a monocular camera and VLP-16 LiDAR were

used as the information fusion sensors. When the monocular

camera and the LiDAR detect the same target, despite the range

and angle information being the same, the detection results of

the two sensors belong to different coordinate systems (Chen

et al., 2021a). Therefore, in order to effectively realize the

information supplementation of LiDAR to the camera, the

coordinate system must be unified; that is, the detection

results of the two sensors should be input into the same

coordinate system and the relative pose between them should

be calibrated at the same time so as to realize the data matching

and correspondence between these two sensors.

It should be noted that the main task of the monocular

camera calibration was to solve its extrinsic parameter matrix

and intrinsic parameters. In this paper, the chessboard

calibration method was used (Xu et al., 2022), with the
FIGURE 1

Data acquisition robot. PC, personal computer.
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chessboard size being 400 mm × 550 mm and the grid size

being 50 mm × 50; mm. We randomly took 21 chessboard

pictures of different positions. The camera calibration error

was less than 0.35 pixels and the overall mean error was

0.19 pixels, which means, according to reference, that the

error met the calibration accuracy and that the calibration

result has practical value (Xu et al., 2021). The internal

parameters of the camera were as follows: focal length (f) =

25 mm, radial distortion parameter (k1) = 0.012 mm, radial

distortion parameter (k2) = 0.009 mm, tangential distortion

parameter (p1) = −0.0838 mm, tangential distortion parameter

(p2) = 0.1514 mm, image center (u0) = 972 mm, image center

(v0) = 1,296 mm, normalized focal length ( fx = f /

dx) = 1,350.3 mm, and normalized focal length (fy = f/

dy) = 2,700.8 mm. On the basis of camera calibration, we

carried out the joint calibration of the camera and LiDAR. The

calibration principle is shown in Figure 2A. By matching

the corner information of the chessboard picture taken by

the camera to the corner information of the chessboard point

cloud data obtained by LiDAR, a rigid transformation matrix

from the point cloud data to the image can be obtained. During

calibration, the camera and LiDAR were fixed on the data

acquisition robot platform developed by the research group.

After the joint calibration, the relative positions of the camera

and LiDAR were saved and fixed. The calibration error is

shown in Figure 2B. As indicated in Aguiar et al. (2021), the

calibration error met the calibration accuracy, and the

calibration result showed practical value. Through joint

calibration, the rigid transformation matrix of the point

cloud projection to the image is obtained from Equations (1)

and (2).

Rlidar =

0:9998

−0:0032

0:0179

0:0176

−0:0807

− 0:9966

0:0047

−0:9967

0:0806

2
64

3
75 (1)
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Tlidar =

0:0468

0:1139

−0:2667

2
664

3
775 (2)
4 Navigation information acquisition
based on LiDAR supplement vision

As mentioned in Section 1, machine vision usually takes a

single feature of the plant as the basis of recognition. In this

paper, the maize stem about 10 cm above the ground surface was

taken as the machine vision recognition feature. It should be

noted that taking the maize stem as the identification feature will

cause lack of information on the other non-maize obstacles

(such as stones and clods). In order to solve the issue of missing

information when using machine vision to acquire navigation

information, this paper proposed a method of inter-row

navigation information acquisition in the middle and late

stages of maize based on LiDAR supplement vision. The

detailed principle is shown in Figure 3. The machine vision

datasets were trained using the Im-YOLOv5 algorithm to

identify the stem of the maize and, subsequently, to obtain the

main navigation information. The point cloud data of the inter-

row environment in the middle and late stages of maize were

obtained using LiDAR to gather auxiliary navigation

information. It should be noted that the method proposed in

this paper obtained inter-line information through LiDAR-

assisted cameras; therefore, spatial data fusion was used. After

establishing the precise coordinate conversion relationship

among the radar coordinate systems—a three-dimensional

world coordinate system—a camera coordinate system, an

image coordinate system, and a pixel coordinate system—the

spatial position information of the obstacles in the point cloud

data can be matched to the visual image.
A B

FIGURE 2

Camera–LiDAR (laser imaging, detection and ranging) joint calibration process. (A) Principle of joint calibration. (B) Joint calibration error. By
matching the corner information of the chessboard picture taken by the camera to the corner information of the chessboard point cloud data
obtained by LiDAR, the rigid transformation matrix from the point cloud data to the image can be obtained.
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4.1 Main navigation information
acquisition with the improved YOLOv5

YOLOmodels have a real-time detection speed, but require a

powerful GPU (graphic processing unit) and a large amount of

memory when training, limiting their use on most computers.

The large size of the model after training can also increase the

hardware requirements on mobile devices. Ideally, a detection

model would meet the requirements of detection accuracy and

real-time detection speed of maize stems, without high hardware

requirements. The YOLOv5 model is a lightweight version of

YOLO, has fewer layers and faster detection speed, can be used

on portable devices, and requires fewer GPU resources for

training (Tang et al., 2023). Therefore, the goal of this work

was to build on the YOLOv5 model and apply the improved

model for the detection of maize stems. The main idea for

improving YOLOv5 was to lighten its backbone network

through MobileNetv2 and introduce the ECANet attention

mechanism to improve the recognition accuracy and

robustness of the model.

4.1.1 Lightweight Backbone network
This paper used MobileNetv2 (Zhou et al., 2020) to replace

the backbone network of YOLOv5 for the extraction of maize

stem images with effective characteristics. In order to enhance

the adaptability of the network to the task of recognizing maize

stem features and fully extract features, a progressive classifier

was designed in this paper to enhance the network’s recognition

ability of the corn rhizome. The original MobileNetV2 network
Frontiers in Plant Science 05
was primarily used to deal with more than 1,000 types of targets

on the ImageNet dataset, while this paper only targeted maize

stems. Therefore, in order to better extract the characteristics of

maize stems and improve the recognition ability of the network

on maize stems, we the classifier of the network was redesigned,

which included two convolution layers, one global pooling layer,

and one output layer (convolution layer).

The main task of the classifier was to efficiently convert the

extracted maize stem features into specific classification results.

As shown in Figure 4, two convolution kernels with different

scales were selected to replace a single convolution kernel in the

original classifier in order to perform the compression and

conversion operations of the feature map. The size of the first

convolution kernel was 1 × 1. It was mainly responsible for the

channel number compression of the feature map. In order to

avoid the loss of a large number of useful features caused by a

large compression ratio, the second convolution was used

mainly for the size compression of the feature map to avoid

fluctuations in the subsequent global pooling on a large feature

map. Comparison of the Im-YOLOv5 network based on

MobileNetv2 with the original YOLOv5 network showed that

the model parameters decreased from 64,040,001 to 39,062,013

and the parameters decreased by 39%.

At the same time, Im-YOLOv5 used CIOU_Loss [complete

intersection over union (IOU) loss] to replace GIOU_Loss

(generalized IOU loss) as the loss function of the bounding

box and used binary cross-entropy and logits loss function to

calculate the loss of class probability and target score, defined as

follows.
FIGURE 3

Principle of navigation information acquisition based on LiDAR (laser imaging, detection, and ranging) supplement camera. The machine vision
datasets were trained using the improved YOLOv5 (Im-YOLOv5) algorithm to identify the stem of the maize and then obtain the main navigation
information, while LiDAR was used to obtain auxiliary navigation information.
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GIOU = IOU −
C − (A ∪ B)

jCjj
���� (3)

IOU =
A ∩ Bj j
A ∪ Bj j (4)

CIOU = IOU −
r2(b, bgt)

c2
− an (5)

In Equations (3) and (4), A and B are the prediction box and

the real box, respectively; IOU is the intersection ratio of the

prediction box and the real box; and C is the minimum

circumscribed rectangle of the prediction box and the target

box. However, Equations (3) and (4), considering only the

overlap rate between the prediction box and the target box,

cannot describe well the regression problem of the target box.

When the prediction box is inside the target box and the size of

the prediction box is the same, GIOU will degenerate into IOU,

which cannot distinguish the corresponding positions of the

prediction box in each target box, resulting in error detection

and leak detection. Equation (5) is the calculation formula of

CIOU, where a = v/(1-IOU)v is an equilibrium parameter that

does not participate in gradient calculation; v = 4/p^2(arctan
(Wgt/Hgt) – arctan (W/H))2 is a parameter used to measure the

consistency of the length-width ratio; b is the forecast box; bgt is

the realistic box; r is the Euclidean distance; and c is the diagonal

length of the minimum bounding box. It can be seen from

Equation (5) that the CIOU comprehensively considers the

overlapping area, center point distance, aspect ratio, and other

factors of the target and prediction boxes and solves the

shortcoming of the GIOU loss function, making the regression

process of the target box more stable, with faster convergence

speed and higher convergence accuracy.
4.1.2 Introducing the attention mechanism
In order to improve the recognition accuracy and robustness

of the algorithm in the case of a large number of maize stems and
Frontiers in Plant Science 06
mutual occlusion between stems, efficient channel attention

(ECA) was introduced (Xue et al., 2022). It should be noted

that, although the introduction of ECANet into convolutional

neural networks has shown better performance improvements,

ECANet only considers the local dependence between the

current channel of the feature map and several adjacent

channels, which inevitably loses the global dependence

between the current channel and other long-distance channels.

On the basis of ECANet, we added a new branch (shown in the

dashed box in Figure 5) that has undergone channel-level global

average pooling and is disrupted. This branch randomly

rearranges the channel order of the feature map after

undergoing channel-level global average pooling, so the long-

distance channel before disruption may become its adjacent

channel. After obtaining the local dependencies between the

current channel of the new feature map and its new k adjacent

channels, weighting the two branches can obtain more

interaction information between channels.

In this paper, suppose that the feature vector of the input

feature after convolution is x ϵ RW×H×C, where W, H, and C

respectively represent the width, height, and channel size of the

feature vector. The global average pooling of the channel

dimension can be expressed as:

y = g(x) =
1

WH o
W,H

i=1,j=1
xij (6)

Then, in ECANet, the feature vector inputs by the two

branches can be expressed as:

ys = S(g(x)) = S
1

WH o
W ,H

i=1,j=1
xij

 !
(7)

yg = g(x) =
1

WH o
W ,H

i=1,j=1
xij (8)

where ys represents the vector obtained after global average

pooling and disrupting the sequential branching of channels; yg
FIGURE 4

MobileNetv2 network structure.
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represents the vector obtained after global average pooling and

branching; and S is a channel-disrupting operation. Given that

the feature vector without dimension reduction is y ϵ RC, the

inter-channel weight calculation using the channel attention

module can be expressed as:

w = s (Wky) (9)

where s(x) = 1/(1+e-x) is the sigmoid activation function and

Wk is the parameter matrix for calculating channel attention

using ECANet.

We took MobileNetv2 (Zhou et al., 2020) as the backbone

model, combined YOLOv5 with the SeNet and ECANet modules

(Hassanin et al., 2022), and carried out maize stem recognition

experiments. The test results are shown in Table 1. ECANet

showed better performance compared toSeNet, indicating that

ECANet can improve the performance of YOLOv5 with less

computational costs. At the same time, ECANet was more

competitive than SeNet, and the model complexity was

also lower.

In this work, the ECANet attention mechanism was first

placed on the enhanced feature extraction network and the

attention mechanism added on the three effective feature

layers extracted from the backbone network. Regarding the

problems of information attenuation, the aliasing effect of

cross-scale fusion and the inherent defects of channel

reduction in the feature pyramid network (FPN) in YOLOv5,

in this paper, we added the ECANet attention mechanism to the
Frontiers in Plant Science 07
sampling results on FPN in order to reduce information loss and

optimize the integration characteristics on each layer. By

introducing the ECANet attention mechanism, Im-YOLOv5

can better fit the relevant feature information between the

target channels, ignore and suppress useless information, and

make the model focus more on training the specific category of

maize stems, strengthening it and improving its detection

performance. The specific structure of the Im-YOLOv5

algorithm is shown in Figure 6.
4.2 Auxiliary navigation information
acquisition by LiDAR

Because of the obvious color and structural characteristics of

maize stems, we trained the Im-YOLOv5 model to only detect

maize stems when the main navigation information was

obtained through machine vision. However, the actual non-

maize obstacles were mainly soil blocks and stones, and the color

and shape characteristics of such obstacles are relatively close to

the ground color, which greatly increased the difficulty of Im-

YOLOv5 model training. At the same time, recognizing multiple

features simultaneously by machine vision will also reduce the

recognition speed to a certain extent. Under this condition, it is

necessary to obtain point cloud information using LiDAR to

supplement machine vision.
TABLE 1 Comparison of the recognition performance (in percent) of the YOLOv5 model integrating different attention modules.

Method P R (%) FPS (%) F1 (%) mAP (%)

MobileNetv2 89.5 94.1 34.2 93.7 91.37

MobileNetv2+SeNet 93.2 91.4 63.7 91.2 97.25

MobileNetv2+ECANet 96.7 82.3 79.6 86.3 96.98
fro
P, comparison of accuracy; R, recall; F1, harmonic average; FPS, frame rate; mAP, mean average precision.
FIGURE 5

ECANet channel attention.
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4.2.1 Determination of the effective point
cloud range

Since the camera and LiDAR were fixed on the data

acquisition robot platform, when the robot is walking

between lines during data acquisition, it is necessary to

determine the effective data range of the LiDAR point cloud

according to the shooting angle range of the camera, as shown

in Figure 7A.

Note that, in Figure 7A, qe is the camera shooting angle

range, qe is the scanning angle of LiDAR, and d is the width of

the robot. Therefore, the range of the effective point cloud data

collected by LiDAR is the sector area, where r is the radius of the

sector with the angle of qe and is defined as:
Frontiers in Plant Science 08
r =
d

cos p
2 −

qi
2 − qe

� � (10)
4.2.2 Coordinate conversion of the auxiliary
navigation information

Through the joint calibration of the camera and LiDAR in

the above section, the camera external parameter matrix (R, T),

the camera internal parameter, and the rigid conversion matrix

(Rlidar, Tlidar), of the camera and LiDAR sensor information

were obtained.

In order to supplement the main navigation information

with the auxiliary navigation information, it is essential to
FIGURE 7

Camera–LiDAR (laser imaging, detection, and ranging) joint calibration process. (A) Effective data range. qe is the camera shooting angle range,
qi is the scanning angle of LiDAR, and the overlapping area is the effective point cloud range. (B) Coordinate transformation. Ow - XwYwZwis the
LiDAR coordinate system, Oc – XcYcZcis the camera coordinate system, o - xyis the image coordinate system, and Ouv – uv is the pixel
coordinate system. (C) Distortion error. dr and dt are the radial distortion and the tangential distortion of the camera, respectively.
FIGURE 6

Improved YOLOv5 (Im-YOLOv5) architecture.
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establish a conversion model between sensors. Through the

established transformation model, the points in the world

coordinate system scanned by LiDAR were projected into the

pixel coordinate system of the camera to realize the

supplementation of the point cloud data to the visual

information according to the pinhole camera model, as shown

in Figure 7B. Note that, in Figure 7B, P is the point on the real

object, p is the imaging point of P in the image, (x, y) are the

coordinates of p in the image coordinate system, (u, v) are the

coordinates of p in the pixel coordinate system, and f is the focal

length of the camera, where f = || o – 0c|| (in millimeters). The

corresponding relationship between a point P(Xw, Yw, Zw) in the

real world obtained by LiDAR and the corresponding point p(u,

v) in the camera pixel coordinate system can be expressed as:

u

v

1

2
664
3
775 =

fx

0

0

0

fy

0

u0

v0

1

0

0

0

2
664

3
775 Rlidar

0T

Tlidar

1

" # Xw

Yw

Zw

1

2
66664

3
77775 (11)

According to the principle of LiDAR scanning, the point

cloud data obtained by LiDAR are in the form of polar

coordinates. Therefore, the distance and angle information of

the point cloud data under polar coordinates were converted

into the three-dimensional coordinate point information under

the LiDAR ontology coordinate system. The conversion formula

was as follows:

Xw = r · cosa · cosq

Zw = r · cosa · sinq

Yw = r · sina

8>><
>>: (12)

where r is the distance between the scanning point and the

LiDAR;a is the elevation angle of the scanning line at the

scanning point, namely, the angle in the vertical direction; and

q is the heading angle in the horizontal direction.

In order to eliminate the camera imaging distortion error

caused by the larger deflection of light away from the lens center

and the lens not being completely parallel to the image plane, as
Frontiers in Plant Science 09
shown in Figure 7C, we corrected the distortion of Equation (11)

with the correction formula, given as follows (Chen

et al., 2021b):

Radial distortion correction:

u 0 = u(1 + k1r
2 + k2r

4)

v 0 = v(1 + k1r
2 + k2r

4)

(
(13)

Tangential distortion correction:

u 0 0 = u 0 +(2p1v 0 +p2(r2 + 2u 02 )

v 0 0 = v 0 +(2p2u 0 +p1(r2 + 2v 02 )

(
(14)

Where k1 and k2 are the radial correction parameters; p1 and

p2 are the tangential correction parameters; u′′and v′ re the

radially corrected pixel coordinates; and u′′ and v′′ are the

tangentially corrected pixel coordinates.

The corresponding relationship between the point in the

world coordinate system obtained by LiDAR and the camera

pixel coordinate system is established through Equations (10)–

(14). According to the established coordinate transformation

model, the LiDAR point cloud data can be converted to the

image space for the purpose of supplementation between

machine vision and LiDAR.

4.2.3 Feature recognition of point cloud based
on PointNet

Because of the irregular format of the point cloud, it is

difficult to extract its feature, but with the proposal of the

PointNet model (Jing et al., 2021), this problem was solved. In

this paper, the features of the non-maize obstacles in the middle

and late stages of maize were extracted through PointNet, and

their location information taken as the output. Note that we also

performed the following work before using the PointNet model

for training. The principle is shown in Figure 8.
4.2.3.1 Ground segmentation

In order to obtain auxiliary navigation information from the

LiDAR point cloud data, the ground point cloud must be
FIGURE 8

The principle of auxiliary navigation.
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segmented first. In this work, the RANSAC (random sample

consensus) algorithm was adopted to segment the collected

point cloud data.

The unique plane can be determined by randomly selecting

three non-collinear sample points (xa, xb, xc) in the point cloud.

ni · x + di = 0 (15)

ni = (xb − xa)(xc − xa) (16)

di = −n · xa (17)

Where ni is the normal vector of the plane model and di is

the pitch of the plane model. Then, the distance from any

sample point xi in the point cloud to the plane model is

given by

ri = (ni · xi + di)
2 (18)

Let the distance threshold be T, when ri<T. The sample point

xi is the internal point; otherwise, it is the external point. LetN be

the number of internal points with

N = NUM(xi), ri < T (19)

sNote that Equations (15)–(19) show a calculation process,

but N is not necessarily the maximum value at this time; hence,

an iterative calculation is needed. Let the number of iterations be

kc. When N takes the maximum value, Nmax, in the iterative

process, the plane model corresponding to nbest and dbest is the

best-fitting ground.
4.2.3.2 Removing noise points caused by maize leaves

LiDAR was mainly used to identify obstacles other than

maize leaves. In order to reduce the difficulty of model training,

the point cloud data of maize leaves were deleted. This

technology depends on the analysis of the z-coordinate

distribution of each point cloud. In general, the height of

obstacles such as soil blocks and stones is less than 10 cm.

Therefore, when we trained the model sexually, we deleted the

point cloud with a z-coordinate greater than 10 cm in the

qe range.
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5 Experiments and discussions

The focus of this paper was navigation information

acquisition. Navigation information can be used for path

planning to guide the robot to drive autonomously and can

also be used as the basis for the adjustment of the driving state of

the robot, such as reducing the driving speed when detecting

rocks or large clods. We provided the results of the information

acquisition experiment.
5.1 Main navigation information
acquisition experiment

We verified the recognition performance of the Im-YOLOv5

for the main navigation information from two aspects: model

training and detection results. In order to facilitate comparisons,

we also provided the test results of YOLOv5 and Faster-RCNN

(faster region-based convolutional network). The datasets used

in the experiment were collected by the Anhui Intelligent

Agricultural Machinery Equipment Engineering Laboratory. It

should be noted that, in order for each model to perform best on

the datasets, we adjusted the parameters of each model

separately to select the appropriate hyperparameters. The

initial hyperparameter settings of each algorithm are shown in

Table 2. We divided the train set, test set, and verification set

according to an 8:1:1 ratio, and the dataset contained

3,000 images.

The model training and validation loss rate curves are shown

in Figure 9. From the figure, it can be seen that the loss rate tends

to stabilize with the increase of iterations, finally converging to

the fixed value; this indicates that the model has reached the

optimal effect. The debugged model showed good fitting and

generalization ability for the maize stem datasets. Note that, due

to the Im-YOLOv5 having an improved loss function, the initial

loss value of the model was about 0.38, which was the lowest

among the three models, and the convergence speed

was accelerated.

The P (comparison of accuracy), R (recall), F1 (harmonic

average), FPS (frame rate), and mAP (mean average precision)
TABLE 2 Target detection hyperparameter setting.

Parameter Im-YOLOv5 YOLOv5 Faster-RCNN

Backbone network MobileNetv2 Backbone Resnet50

Training size 640 × 640 640 × 640 640 × 640

Batch size 16 16 8

No. of categories 5 5 5

Initial learning rate 1e−2 1e−2 1e−4

No. of iterations 100 100 100
Im-YOLOv5, improved You Only Look Once, version 5; Faster-RCNN, faster region-based convolutional network.
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values for Im-YOLOv5, YOLOv5, and Faster-RCNN are shown

in Table 3. From the table, it can be seen that Im-YOLOv5 had

the highest accuracy rate, followed by YOLOv5; the accuracy rate

of Faster-RCNN was low. With the lightweight backbone

network, the FPS of Im-YOLOv5 was the highest, and the

weight was greatly reduced. While meeting the real-time

requirements, the detection speed of a single image was also

the fastest and the detection performance was the best.

Compared with that of YOLOv5, the FPS of Im-YOLOv5 was

increased by 17.91% and the model size reduced by 55.56% when

the mAP was reduced by only 0.35%, which improved the

detection performance and shortened the model reasoning

time. From the datasets, we selected a number of inter-row

images of maize in the middle and late stages for testing, as

shown in Figure 10. For the same image, Im-YOLOv5 was able

to identify most maize stems, even those that were partially

covered. At the same time, the detection confidence of Im-

YOLOv5 and YOLOv5 was high, but that of Faster-RCNN was

relatively low.
5.2 Auxiliary navigation information
supplements the main navigation
information experiment

In the experiments, the practical feasibility of the proposed

inter-row navigation information acquisition method was
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verified based on LiDAR point cloud data-supplemented

machine vision in the middle and late stages of maize.

Considering the current coronavirus outbreak, conducting

large-scale field experiments had been difficult. Therefore, an

artificial maize plant model was used to set up the simulation test

environment for verifying the feasibility of the designed method.

Figure 11A shows the test environment using the maize plant

model. Investigation of maize planting in Anhui Province

revealed that the row spacing for maize plants is about 50–

80 cm and that plant spacing is about 20–40 cm. Therefore, the

row spacing in the maize plant model was set to 65 cm and the

plant spacing to 25 cm. At the same time, a number of non-

maize obstacles were also set in the experiments. For the

purpose of data acquisition in this work, the data acquisition

robot was developed by Anhui Intelligent Agricultural

Machinery and Equipment Engineering Laboratory at Anhui

Agricultural University.

During the experiments, the required main navigation

information was the position information of maize plants,

while the required auxiliary navigation information was the

position information of the non-maize obstacles. We set up six

maize plant models and three non-maize obstacles and

randomly set the locations of the obstacles. Subsequently, we

conducted 10 information acquisition experiments at distances

of 1,000, 2,000, and 3,000 mm from the data acquisition robot to

the front row of the maize plant model. The test results are

shown in Figures 11B, C.
FIGURE 9

Model training and validation loss rate curves.
TABLE 3 Model evaluation.

Model P (%) R (%) F1 (%) FPS Model size (M) mAP (%)

Im-YOLOv5 97 81 88 78 12 96.12

YOLOv5 93 90 93 66 27 96.48

Faster-RCNN 76 92 82 20 108 90.52
fro
P, comparison of accuracy; R, recall; F1, harmonic average; FPS, frame rate; mAP, mean average precision.
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5.3 Discussions

Generally, visual navigation between rows in the middle and

late stages of maize extracts the maize characteristics and then

fits the navigation path. If the camera was only used to obtain
Frontiers in Plant Science 12
information based on the maize characteristics in the

recognition stage, information on the non-maize obstacles

between rows in the middle and late stages of maize is missed,

as shown in Figures 11B, C. With the introduction of the Im-

YOLOv5 stem recognition algorithm, sufficient training for
FIGURE 10

Results of stem detection. (A) Improved You Only Look Once, version 5 algorithm (Im-YOLOv5). (B) YOLOv5. (C) Faster region-based
convolutional network (Faster-RCNN).
A

B

C

FIGURE 11

(A) Test environment. (B) Only the improved You Only Look Once, version 5 algorithm (Im-YOLOv5). (C) Laser imaging, detection, and ranging
(LiDAR) supplement vision.
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maize stem recognition has become exceptionally accurate;

however, the non-maize obstacle recognition rate was almost

zero only for Im-YOLOv5, which is extremely fatal for the actual

operation safety of plant protection robots in the middle and late

stages of maize.

When using LiDAR to obtain auxiliary navigation

information in order to supplement the main navigation

information obtained by machine vision, the issue of missing

information can be properly solved, with the safety of the

planned navigation path under this condition being greatly

improved. However, due to the recognition accuracy of the 16-

line LiDAR and the error of the camera–LiDAR joint calibration,

the information recognition effect was not very satisfactory when

the obstacle is far away and is too small. With increasing distance

between the data acquisition robot and the maize plant, the

number of maize plant models can be stably maintained, which

means that the identification of the main navigation information

is also stable. However, recognition of the number of non-maize

obstacles showed a downward trend, indicating that the

recognition accuracy using the auxiliary navigation

information was reduced. In view of these issues, we will be

using the 32-line or the 64-line LiDAR, both with higher

accuracy, in future experiments.
6 Conclusion

In order to solve the problem of missing information when

using machine vision for inter-row navigation in the middle and

late stages of maize, this paper has proposed a method using

LiDAR point cloud data to supplement machine vision in order

to obtain more accurate inter-row information in the middle and

late stages of maize. Through training of the machine vision

datasets with the Im-YOLOv5 model, the main navigation

information was obtained by identifying maize plants between

the rows of maize in the middle and late stages. As a supplement

to the main navigation information acquired by machine vision,

LiDAR has been used to provide additional information to

identify information on other non-crop obstacles as auxiliary

navigation information. Not only was the accuracy of

information recognition improved, but technical support for

planning a safe navigation path can also be provided.

Experimental results from the data acquisition robot equipped

with a camera and a LiDAR sensor have demonstrated the

validity and the good inter-row navigation recognition

performance of the proposed method for the middle and late

stages of maize. However, with the improvement in the accuracy

of LiDAR, cost is the key problem restricting the

commercialization of this recognition system. Therefore, we

hope that our recognition system can be applied in small
Frontiers in Plant Science 13
autonomous navigation plant protection robots, as the

relatively low cost of small plant protection robots, even with

the application of this relatively high-precision recognition

system, has a price advantage over UAVs. The navigation

information can be used for path planning to guide robots to

drive autonomously and can also be used as the basis for the

adjustment of the driving state of robots, such as in reducing the

driving speed when detecting rocks or large clods. Therefore, in

subsequent research, we will focus on path planning between

maize rows and the control of the driving state of robots.
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