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Identification of plant leaf
diseases by deep learning
based on channel attention
and channel pruning
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Plant diseases cause significant economic losses and food security in

agriculture each year, with the critical path to reducing losses being accurate

identification and timely diagnosis of plant diseases. Currently, deep neural

networks have been extensively applied in plant disease identification, but such

approaches still suffer from low identification accuracy and numerous

parameters. Hence, this paper proposes a model combining channel

attention and channel pruning called CACPNET, suitable for disease

identification of common species. The channel attention mechanism adopts

a local cross-channel strategy without dimensionality reduction, which is

inserted into a ResNet-18-based model that combines global average

pooling with global max pooling to effectively improve the features’

extracting ability of plant leaf diseases. Based on the model’s optimum

feature extraction condition, unimportant channels are removed to reduce

the model’s parameters and complexity via the L1-norm channel weight and

local compression ratio. The accuracy of CACPNET on the public dataset

PlantVillage reaches 99.7% and achieves 97.7% on the local peanut leaf disease

dataset. Compared with the base ResNet-18 model, the floating point

operations (FLOPs) decreased by 30.35%, the parameters by 57.97%, the

model size by 57.85%, and the GPU RAM requirements by 8.3%. Additionally,

CACPNET outperforms current models considering inference time and

throughput, reaching 22.8 ms/frame and 75.5 frames/s, respectively. The

results outline that CACPNET is appealing for deployment on edge devices

to improve the efficiency of precision agriculture in plant disease detection.

KEYWORDS

CACPNET, deep learning, plant leaf disease, convolutional neural network, channel
attention, channel pruning
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Introduction

Each year about 30 percent of global crop yields are lost due

to plant diseases, resulting in direct economic losses exceeding

40 billion dollars (Dong et al., 2021). More than 821 million

people have suffered from food insecurity in the past five years

(Krishnamurthy et al., 2020). There are many diseases

responsible for a series of losses, among which leaf spot is a

common disease that often occurs in crops such as rice (Harish

et al., 2008), maize (Barupal et al., 2020), and peanuts (Qi et al.,

2021). Therefore, accurate identification and timely diagnosis of

plant diseases are significant for plant protection (Singh and

Misra, 2017). In practice, disease identification depends on

professionals imposing high labor costs, lack of real-time

monitoring, and unprofessional misidentification, which

further increase the difficulty of identifying diseases in

agriculture and lead to unstable and sharp declines in yields

and food security problems (Ferentinos, 2018). Thus, intelligent

and accurate identification of plant diseases without relying on

manpower remains challenging for the precision agriculture field

(Donatelli et al., 2017).

Recent advances in computer technology afford image

classification, object detection, and natural language processing

using deep learning (Li et al., 2018; Sharma and Mir, 2020; Otter

et al., 2021). Currently, several deep neural network (DNN)

models have been developed based on CNN features for image

feature extraction, e.g., AlexNet, VGG, ResNet, and DenseNet

(Krizhevsky et al., 2012; Simonyan and Zisserman, 2014; He

et al., 2016; Huang et al., 2017).

Due to the powerful feature extraction capability of deep

learning, researchers have already applied the above models to

plant disease identification (Dhaka et al., 2021). For instance, an

improved AlexNet model was used on rice diseases achieving a

recognition accuracy of 95.4% (Lu et al., 2017). VGG was used

on cucumber diseases after improving the fully connected layer

(Zhang et al., 2019). Furthermore, ResNet-50 identified the

grapevine yellows symptoms (Cruz et al., 2019), GoogLeNet

was applied for disease identification in maize, tomato, and

eggplant (Li et al., 2020; PAN et al., 2022), while DenseNet was

used to classify nutrient deficiencies in rice crop (Sathyavani

et al., 2021). The studies above demonstrate that deep neural

networks improve plant disease recognition accuracy but still

impose an extremely high computational cost because the

models have many parameters. Specifically, the VGG-16

model has 138 million parameters and requires 15.484 Giga

Floating Point Operations (GFLOPs) to conduct image

recognition (Simonyan and Zisserman, 2014). The above

models containing a large number of parameters are not

efficient to run on plant protection equipment with limited

computing power such as unmanned aerial vehicle and robots.

Furthermore, due to the complexity of the field environment and

the similarity of plant diseases, identification errors may lead to

the spread of plant diseases. Accordingly, the recognition
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accuracy of the above study cannot meet the requirements of

precision agriculture. Based on these results, directly applying

DNN models to plant disease identification may not be effective.

Therefore, enhancing the neural network’s feature extraction

capability and compressing the DNN models have become two

significant challenges for precision agriculture to apply deep

learning in the plant disease identification field.

Recently, to improve the model’s recognition accuracy in

large-scale classification tasks, the attention module has achieved

remarkable results (Woo et al., 2018; Hu et al., 2019). In

agriculture, the CBAM attention module based on DenseNet

was utilized for wheat stripe rust recognition, which improved

the accuracy rate by 5.47% compared with a native model (Mi

et al., 2020). The ResNet-50 with SENet attention module has

also been used to identify vegetable diseases with 97.24%

accuracy after employing transfer learning (Zhao et al., 2022).

The above results reveal that the attention module can effectively

improve recognition accuracy but increases the computational

time to process a single image. Therefore, the attention module is

inefficient and suffers from a computationally intensive and

complex structure. To balance the relationship between

performance and complexity, an efficient channel attention

mechanism module called ECA was proposed (Wang et al.,

2020). The ECA module significantly improves the model’s

recognition accuracy by adding only a few parameters. Indeed,

the crop disease model based on the ECA module was validated

on the AI Challenger 2018 dataset, PlantVillage dataset, and self-

collected cucumber disease dataset, attaining recognition

accuracies of 86.35%, 99.74%, and 98.54%, respectively (Gao

et al., 2021). Although the attention module improved the

recognition accuracy of crop diseases, it did not reduce the

model’s parameter redundancy in the feature extraction process.

Nevertheless, models with complex structures and excessive

parameters impose significant hardware resource consumption

and reduce recognition efficiency. Therefore, developing a model

that achieves high accuracy while being sufficiently lightweight is

still a challenge in plant disease recognition.

With advances in the Internet of Things and machine vision,

mobile platforms such as unmanned aerial vehicle and robots

make precision agriculture develop quickly (Tang et al., 2020;

Bouguettaya et al., 2022). Due to the conflict between the high

computational power requirements of the models and the

limited computational power of plant protection equipment, it

is a challenging task to deploy plant disease detection models on

mobile platforms (Neupane and Baysal-Gurel, 2021). Currently,

mobile devices are mostly used as a means of image acquisition,

with disease images being transferred to more capable devices

for identification (Xenakis et al., 2020). Nevertheless, recent

research highlights that image recognition can be achieved

using shallow networks as well (Kundu et al., 2021; Wieczorek

et al., 2022), with model pruning being an effective model

compression method whose core strategy is reducing the

DNN ’ s complex i ty v ia discard ing redundant and
frontiersin.org
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uninformative weights (Han et al., 2015). After pruning, the

model achieves an apparent acceleration while being lightweight.

Adding sparse constraints in the training stage can reduce the

model’s number of neurons and thus reduce the parameters and

memory occupation (Zhou et al., 2016). However, the

recognition accuracy can be significantly reduced due to

discarding important parameters (Guo et al., 2020). Hence, it

should be noted that a valid channel pruning metric must reduce

the impact on model accuracy and consider the channel’s

importance in different layers.

In the precision agriculture field, deep learning is widely

used in plant disease detection, but it still faces the problems of

inefficient accuracy and excessive computational cost. In

addition, the recognition rate is also an issue worthy of

attention while applying the model to real-time detection of

plant diseases in the field. The attention mechanism can

effectively improve the identification accuracy of the model,

while DNN complexity increases when adding an attention

module. The ECA module uses a local cross-channel

interaction strategy without dimensionality reduction, which

improves accuracy without bringing in a massive quantity of

parameters. However, the local feature extraction ability of the

ECA module is limited and thus unable to extract the features of

plant diseases well. In real time detection of plant diseases, the

low recognition rate of models is one of the main factors limiting

their detection effectiveness. Interestingly, pruning methods can

be applied to model compression to achieve model acceleration.

However, model pruning may decrease model accuracy. In

addition, there is a lack of highly accurate and lightweight

models that can be deployed to terminal inspection equipment

in plant protection. Therefore, we propose the CACPNET

model, which combines channel attention and pruning to

solve the above-mentioned problems. The main contributions

are summarized as follows:
Fron
1. The ECA module is modified to improve the model’s

ability to identify diseases for plant leaf diseases.

2. Without a significant loss of the model’s accuracy, the

model is channel pruned based on the channel weight

importance and the local compression ratio. This

strategy affords a highly accurate and lightweight model.

3. Model validation is performed using the public dataset

PlantVillage and our peanut leaf disease dataset. The

model’s performance is analyzed based on accuracy, F1

score, FLOPs, parameters cardinality, model size, and

GPU RAM.

4. The model’s operation is simulated on the plant

protection detection equipment, and the model’s

recognition rate is analyzed based on inference time

and throughput metrics.

5. This study fills the research gap in real-time detection of

leaf diseases, including peanuts, potatoes, apples, and

other 15 crops and 43 diseases. Meanwhile CACPNET
tiers in Plant Science 03
can be used for training and identification of other plant

diseases.
Materials and methods

Dataset acquisition

This paper utilizes two datasets for experiments, namely the

PlantVillage and the peanut leaf disease dataset we collected.
PlantVillage dataset

This dataset comprises 54634 leaf images divided into 38

disease classes from 14 species: apple, blueberry, cherry, corn,

grape, orange, peach, pepper, potato, raspberry, soybean, squash,

strawberry, and tomato. The details on the PlantVillage dataset

are presented in Table 1. The dataset is randomly divided into a

training and test set according to a 4:1 ratio with a uniform

image resolution of 224×224 pixels.
Peanut leaf disease dataset

This is our own collected disease dataset from peanut leaves,

collected from the Agronomic experimental base of South China

Agricultural University. This dataset has 6033 disease images

from five categories, namely healthy leaves (HL), rust disease on

a single leaf (RD), leaf‐spot disease on a single leaf (LSD), scorch

disease on a single leaf (SD), and both rust disease and scorch

disease on a single leaf (SD+RD) (Figure 1). The above diseases

are common types of diseases in peanuts, which are significant

factors causing peanut yield decline.

The images are cropped, sorted, and labeled to select 300

leaves per category and divided into a training and test set

according to a 4:1 ratio. We amplified the images to 7500 using

the imgAug library, which applied data augmentation by

rotating the images by 90, 180, and 270 degrees and

employing horizontal and vertical flips (Table 2). Table 2

reports the details of the peanut disease leaves dataset. All

images from this dataset are uniformly resized to 224×224

pixels before being input to the model.
Operating environment and parameter
setup

All trials are implemented on a Dell Precision 3640 PC (CPU

I9-10900, 32GB RAM), utilizing an Nvidia GeForce RTX 2080

Super 8GB graphics card. Considering the software, we relied on

Windows 10, Python 3.8.5, and Torch 1.9.0+cu102.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1023515
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chen et al. 10.3389/fpls.2022.1023515
The subsequent trials utilize the VGG-16, ResNet-18,

ResNet-50, and DenseNet-121 models, and the SENet,

CBAM, ECA, and the improved ECA attention modules are

added to ResNet-18. For a fair comparison of the models’

performance, we employ the same training parameters: the

optimizer is the stochastic gradient descent (SGD), batch size

of 32, 0.001 weight decay, 5e-4 learning rate, and the loss

function is the CrossEntropyLoss. For the PlantVillage dataset,

we consider 200 epochs, and for the peanut leaf disease dataset,

400 epochs.
Frontiers in Plant Science 04
Workflow of the proposed method

Overview of the CACPNET approach
Figure 2A illustrates the process of the channel attention

module inserted into the model. Specifically, we traverse all

model layers and insert the channel attention module after each

convolutional layer. Then the new model is trained to achieve a

better performance effect. Accordingly, Figure 2B depicts

removing unimportant channels using channel pruning on the

model. We obtain the weight relation in the channel from the
TABLE 1 Basic information of the PlantVillage.

Crop Class Train set Test set

Apple Apple_scab 504 126

Black_rot 497 124

Cedar_apple_rust 220 55

Healthy 1316 329

Blueberry Healthy 1202 300

Cherry Healthy 684 170

Powdery_mildew 842 210

Corn Cercospora_leaf_spot Gray_leaf_spot 411 102

Common_rust 954 238

Healthy 930 232

Northern_Leaf_Blight 788 197

Grape Black_rot 944 236

Esca_(Black_Measles) 1107 276

Healthy 339 84

Leaf_blight_(Isariopsis_Leaf_Spot) 861 215

Orange Haunglongbing_(Citrus_greening) 4406 1101

Peach Bacterial_spot 1838 459

Healthy 288 72

Pepper Bacterial_spot 798 199

Healthy 1183 295

Potato Early_blight 800 200

Healthy 122 30

Late_blight 800 200

Raspberry Healthy 297 74

Soybean Healthy 4072 1018

Squash Powdery_mildew 1468 367

Strawberry Healthy 365 91

Leaf_scorch 888 221

Tomato Bacterial_spot 1702 425

Early_blight 800 200

Healthy 1273 318

Late_blight 1528 381

Leaf_mold 762 190

Septoria_leaf_spot 1417 354

Spider_mites Two-spotted_spider_mite 1341 664

Target_Spot 1124 280

Tomato_mosaic_virus 299 74

Tomato_Yellow_Leaf_Curl_Virus 4286 1071
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well-trained model. Then the L1-normalization of the channel

weights is calculated and ranked. The unimportant and

associated channels per layer are removed based on a

predetermined local compression ratio. Finally, the new model

is updated with the remaining channels and retrained to achieve

better performance.

Figure 2C illustrates the implementation process of

CACPNET. In summary, this paper aims to develop a

lightweight model with better performance and lower

parameters, with the following sections introducing the details

on implementing CACPNET.
Improved ECA module

This paper’s channel attention module is based on an improved

ECA module that uses a local cross-channel interaction strategy

without dimensionality reduction. This strategy ensures that the

information from the adjacent channels is correlated without losing

image information, solving the correlation problem of the

information contained in the plant leaf disease images. In

summary, channel attention can be learned by:
Frontiers in Plant Science 05
w = s Wyð Þ (1)

which affords to gain the weight matrix (w) if the output

channels in the attention module. W is the parameter matrix (C

× C) y is the channel attention operation, and s is a sigmoid

activation function of the channel attention module. The

parameter s is defined as follows:

s xð Þ = 1
1 + e−x

(2)

After the DNN’s convolution operation, the output is the

channel-independent parameter matrix (C × C) represented as:

W =

W1 =

w1,1 ⋯ 0

⋮ ⋱ ⋮

0 … wc,c

2
664

3
775

⋮

Wi =

w1,1 ⋯ w1,c

⋮ ⋱ ⋮

wc,1 … wc,c

2
664

3
775

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

(3)
FIGURE 1

The image of peanut leaf disease. The figures show images from five categories, namely HL (healthy leaves, the first column), SD (scorch disease
on a single leaf, the second column), RD (rust disease on a single leaf, the third column), SD+RD (both rust disease and scorch disease on a
single leaf, the fourth column), and LSD. (leaf-spot disease on a single leaf, the fifth column).
TABLE 2 Basic information on peanut leaf disease.

Class Train set Test set

Healthy leaves (HL) 1200 300

Scorch disease (SD) 1200 300

Rust disease (RD) 1200 300

Both scorch and rust disease (SD+RD) 1200 300

Leaf-spot disease (LSD) 1200 300
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The convolution operations are performed on mutually

independent channels, while the feature map information

between the channels cannot interact. In order to achieve

cross-channel interaction without dimensionality reduction,

we use a band matrix Wk f size k × c. Thus Wk can be

expressed as:

Wk =

w1,1 ⋯ w1,k ⋯ 0 ⋯ ⋯ w1,c

0 w2,2 ⋯ w2,k+1 ⋮ ⋯ ⋯ 0

⋮ ⋮ ⋮ ⋱ 0 ⋮ ⋮ ⋮

wc,1 0 0 ⋯ ⋯ wc,c−k+1 ⋯ wc,c

2
666664

3
777775

(4)

From expressions (3) and (4), we find thatW contains one or

more Wk.. However, Wk avoids the problem of non-interacting

channels between different groups in W. The range of cross-

channel interactions depends on k. Nevertheless, the

convolution of matrix Wk requires frequent multiplication

operations, increasing the model’s parameters and slowing

down the running speed. Additionally, the attention

mechanism operating on matrix Wk is inefficient and will slow

down the model. To preserve the model’s processing efficiency

and to effectively obtain channel-wise feature information, we

employ the ECA module, which uses a global averaging pooling
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(Gavg) operation to retain the global information of each

channel. However, global average pooling may discard the

disease features since plant leaf diseases occur at small

locations. Instead, the global max pooling (Gmax) can achieve

translation invariance in the feature mapping and extract small

location disease features (You et al., 2021). Therefore, we

combine global average pooling and global max pooling

affording the disease features to be effectively extracted while

retaining the image’s global information. The global pooling

expression is as follows:

G xð Þ = Gavg xð Þ + Gmax xð Þ

=
1

H �W o
HW

i=1,j=1
F xð Þ + max

1≤i≤H,1≤j≤W
F xð Þ (5)
where F(x) is the aggregation feature of the input channels, and

HW ( e the input channel shape (Figure 2A). After global pooling,

the original multidimensional input C ×H ×W is transformed into

a one-dimensional parameter matrix C×1×1 output. Therefore, a

one-dimensional convolution kernel (Conv1D) can be used for

efficient cross-channel information fusion operations, denoted as:
B

C

A

FIGURE 2

Workflow of the CACPNET. (A) Insert channel attention modules into the original model. The blue sections are the channel attention modules. S
is the sigmoid activation function. (B) Use channel pruning to compress the DNN model. The green and yellow sections are the removed
channels. (C) Overall structure of CACPNET.
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w = s Conv1Dk G xð Þð Þð Þ (6)

where k is an adjustable parameter of the one-dimensional

convolution kernel that determines the scope of the cross-

channel interaction. Thus, there exists a mapping relationship

a between the convolution kernel size k and channel C that can

be expressed as:

C = a kð Þ (7)
Channel pruning

This paper proposes a pruning method to remove

unimportant channels from a well-trained model to reduce the

model’s parameters and complexity. In the DNN model, the

channels’ input and output between the layers are correlated.

When the output channel of the upper layer is removed, the

corresponding input channel of the lower layer also has to be

removed. Therefore, the network structure of the model

hierarchy must be appropriately built so that the input and

output dimensions are consistent between the layers. The

convolutional layer weight matrix of the DNN model consists

of the input channels Cin the output channels Cout and the

convolutional kernel size H×W. In this paper, the weight of the

output channels is calculated and sorted to judge the channels’

importance, i.e., a pruning strategy for the L1-norm weights. It

can be expressed as follows:

Cout =oCin
i=1oH

i=1oW
i=1

ffiffiffiffiffiffi
w2

p
= ‘ − 1norm wj j (8)

where w is the weight matrix of the output channels, ℓ–1norm|

w| s is a squared summation of the weight matrix w to open the

roots. i.e., converting the multidimensional weight matrix

Cin×H×W into a one-dimensional weight matrix Cout. The

channels’ importance is obtained by sorting the weight matrix

Cout. Since each model layer has a different effect on the extracted

image information, the shallow channels are more sensitive to

model pruning than the deeper channels. Furthermore, over-

pruning the shallow channels will seriously affect the model’s

accuracy (Li et al., 2016). To reduce the influence of channel

pruning on model accuracy, we introduce a local compression

ratio R to prune different layers of the model. For different models

and layers, the local compression ratio is an adjustable parameter,

following the principle that the compression ratio of a shallow layer

is smaller than a deeper layer. By introducing a local compression

ratio, the model retains the crucial channels without significantly

losing model accuracy and reduces the parameters and complexity.

The removed channels are determined by applying L1-

normalization on the weights and the local compression ratios.

The number of removed channels is calculated as follows:

P = R� len Coutð Þ,R ∈ 0, 1½ Þ, (9)
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where P is the number of channels removed in the current

layer, R is the local compression ratio, and len(Cout) is the

number of the output channels . Although a larger

compression ratio can reduce the model parameters and

complexity, it significantly reduces the model’s accuracy.

Considered together, the compression ratio of each layer for

CACPNETD is set as R=[0, 0, 0.1, 0.1, 0.2, 0.2, 0.3, 0.3]. After

removing P channels from this layer, the network structure in

the DNN model is updated simultaneously, and the

corresponding input channels of the next layer are removed.

It is worth noting that ResNet is a residual block with a

shortcut connection. The expression for the residual block

output y is:

y = F x, Wif gð Þ +Wsx (10)

In the ResNet model, the basic block, whose output

comprises the convolutional layers’ output and the residual

block’s output, contains two convolutional layers and a

residual block. For the summation operation, the output

dimension of the residual block must be the same as the

convolutional layer. Therefore, the input Wsx just fit the

dimension of the residual learning function F(x,{Wi}). He

et al., 2016). However, several previous studies have not

pruned for the residual block. To ensure the consistency

between the residual block channels and convolutional layer

output channels after pruning, we adopt a pruning parameter

sharing strategy to solve the problem of pruning the residual

block. The pruning equation of the residual block can be

expressed as:

Pr = Or − Oconv2, (11)

where Pr is the channel number removed by the residual

block, Or is the output channel of the original residual block, and

Oconv is the output channel after pruning the previous

convolutional layer. Finally, the weights after channel pruning

are updated in the model.
Combination of channel attention and
channel pruning

We select ResNet-18 as the base model and traverse all its

layers except the residual block layer. Moreover, we insert the

improved ECA attention module after each convolutional layer.

Training the model containing attention modules improves

recognition accuracy and establishes the channel relationship.

Additionally, the trained model employs the channel pruning

operation mentioned above, and finally, the weights in the model

are updated after channel pruning. The pruned model is

retrained to achieve better performance, with the specific

CACPNET implementation presented in Algorithm 1.
frontiersin.org
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Fron
Input:

D the dataset

M the original DNN model

A the ECA module

R the local compression ratios for each

layer

Output:

M the ECA model after pruning

Procedure:

for each batch Dt ϵDo
end for

for each layer lϵLo
end for
Retraining model
ALGORITHM 1. CACPNET ALGORITHM
Evaluate metrics

We evaluate the model’s performance on the accuracy, F1

score, FLOPs, parameters, model size, and GPU RAM metrics.

The accuracy and F1 score directly reflect the model’s

recognition performance, while the F1 score is the summed

average of precision and recall. In addition, the FLOPs,

parameters, model size, and GPU RAM represent the model’s

complexity and performance requirements of the running

device. The model accuracy is expressed as:

Accuracy =
TP + TN

TP + FP + TN + FN
(12)

where TP is the prediction of positive classes as positive classes,

TN is the prediction of negative classes as negative classes, FP is the

prediction of negative classes as positive classes, and FN is the

prediction of positive as negative classes.

The F1 score, precision, and recall are defined as:

F1 =
2� Precision� Reacall

Precision + Recall
(13)

Precision =
TP

TP + FP
(14)
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Recall =
TP

TP + FN
(15)

FLOPs stand for floating point operations, which are used to

measure the model’s complexity, defined as:

FLOPs = 2� k2 � Cin � hout � wout � Cout (16)

where k is the convolution kernel size, Cin the number of

input channels, hout and wout are the height and width of the

output channel, respectively, and Cout the number of

output channels.

The parameters of the model are related to the size of the

convolution kernel and the number of feature Maps, calculated

as follows:

Parameters = Cout � (Cin � k2 + 1) (17)
Results

Ablation study on the improved
attention module

The following experiments are on PlantVillage and peanut

leaf disease datasets, while the model’s training parameters are

described in detail in the materials and methods section. To

compare the effects of global average pooling and global max

pooling, the ECA module of different pooling methods is

inserted into ResNet-18 (Figure 2A). The results highlight that

using both global average pooling and global max pooling

methods simultaneously achieves better accuracy (Table 3).

The features learned by the model can be visualized using

Grad-CAM (Selvaraju et al., 2020). The corresponding heat

map reveals that using a pooling combination enables the

model to focus on the disease features (Figure 3). Interestingly,

the pooling method does not increase the model’s complexity,

with the ablation results confirming that the proposed approach

using the improved ECA module section is highly appealing.

Therefore, global average and max pooling effectively extract the

disease features (Figure 3 and Table 3). Thus, the ECA module

using global average pooling and global max pooling is used in

the following experiments.
TABLE 3 Comparison of different pooling methods in channel attention.

Description Accuracy of PlantVillage Accuracy of peanut GFLOPs Parameter

ResNet-18 98.2% 95.1% 1.819 11.180M

ECA (GlobalAvgPool) & ResNet-18 99.6% 97.5% 1.819 11.180M

ECA (GlobalMaxPool) & ResNet-18 99.5% 97.4% 1.819 11.180M

ECA (GlobalAvgPool & GlobalMaxPool) & ResNet-18 99.7% 98.0% 1.819 11.180M
fr
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Model training and validation on the
PlantVillage

This experiment challenges eight models, including the VGG-

16, ResNet-18, ResNet-50, and DenseNet-121, and the remaining

four are based on ResNet-18 assembled by adding SENet, CBAM,

ECA, and the improved ECA attention module. All models are

trained and validated using the PlantVillage dataset containing 14

species covering 38 classes of diseases (Table 1). The accuracy of all

models increased along with iteration and converged at 200 epochs
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under the same training parameters (Figure 4A). The detailed data

of each model are reported in Table 4. The accuracy of VGG-16

(97.5%) is the lowest among all models, and the parameter

cardinality and FLOPs are the largest, demonstrating that a large

parameter cardinality may increase the model’s computational

effort without effectively improving accuracy. It is worth noting

that the accuracy and F1 of ResNet-50 are higher than that of

ResNet-18, indicating that increasing the depth of the model

improves its accuracy. However, ResNet-50 has an increased

value considering Flops, parameters, model size, and GPU RAM
BA

FIGURE 4

Model training and validation on the PlantVillage. (A) The accuracy curve of models in the PlantVillage test set; (B) The loss curve of models in
the PlantVillage test set. Colors denote corresponding models.
FIGURE 3

Visualized results of different pooling methods in recognizing peanut leaf disease. The dark color of the heat map represents the model’s focus.
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requirements (Table 4). In addition, DenseNet-121 attains an

appealing accuracy but requires more GPU RAM (Table 4).

Regarding the attention mechanism module, the ECA module

has the fastest accuracy and loss curve convergence compared to

SENet and CBAM (Figure 4). The model using the ECA module

convergences well on the 50th epoch. Moreover, the proposed

model’s accuracy reaches 99.7%, which is the best among all

competitor models. Compared with the original ECA model,

CACPNET presents an increased accuracy based on the

improved ECA attention module with channel pruning.

Moreover, CACPNET has less accuracy and loss fluctuations

during the training process, suggesting that it is more robust in

various plants.
Model training and validation on the
peanut leaf disease dataset

When applying CACPNET on the PlantVillge dataset, it obtains

better accuracy and F1 score after channel pruning and using the

ECA module on 14 species (Figure 4 and Table 4). To verify the

robustness of CACPNET further, the subsequent trials utilize the

peanut dataset collected from an actual environment. A detailed

description of the dataset acquisition is presented in the Materials

and Methods section. All models converge after 400 training epochs

(Figures 5A, B). However, the accuracy and F1 score of all models on

the peanut test set is slightly lower than the PlantVillage (Table 4),

potentially due to image interference factors originating from the

actual environment. Nevertheless, the CACPNET’s identification

accuracy still reaches 97.7%, outperforming all competitor models.

Furthermore, the accuracy and loss curves of the competitor models

fluctuate more than CACPNET (Figures 4, 5A, B and Table 4),

reconfirming our method’s robustness.

However, rust and scorch diseases may often appear on the

same leaf, easily leading to misidentification or incomplete

identification. Thus, accurately identifying the two diseases when

in a mixture is difficult in actual agricultural situations. However,

CACPNET maintains a good identification performance, with the

confusion matrix indicating a high prediction accuracy and a low

error (Figure 5C). Regarding image classification identification, the
Frontiers in Plant Science 10
ROC curves per identification class are considered a binary

classification problem. The closer the curve to the upper left

corner, the better the learning performance (Figure 5D).

CACPNET achieves an area under the ROC curve of at least 0.98

for all five peanut leaf disease identifications (Figure 5D). In

summary, CACPNET is more robust and performs better for

specific class identification than the competitor methods.
Analysis of the model performance index

The previous results indicated that CACPNET performed great

in both datasets considering accuracy and F1 score (Table 4).

Additionally, the FLOPs, parameters, model size, and GPU RAM

are essential metrics to evaluate the model’s performance. FLOPs

stand for floating point operations and are used to measure the

complexity of a model, while the model’s parameters directly

determine the model’s size and memory requirements.

Additionally, the model’s size and GPU RAM are the model’s

direct reflection of the required physical memory. By comparing the

FLOPs and parameters among all models, we find that the FLOPs of

ResNet-18 are smaller than ResNet-50, VGG-19, and DenseNet-

121, while the parameters of ResNet-18 are higher than DenseNet-

121 (Table 4 and Figure 6A). When adding the SENet and CBAM

attention modules to ResNet-18, the FLOPs and parameter

cardinality slightly increase, while FLOPs and parameters are the

same when adding the ECA module (Table 4 and Figure 6A).

Although the ECA module effectively improves the model’s

identification accuracy without increasing its parameters and

complexity (Figures 4, 5, 6A and Table 4), the parameters and

complexity still limit the model from being deployed in edge

devices with limited computational capabilities. Therefore, to

decrease the parameters and complexity, we apply channel

pruning to the model based on the improved ECA module. The

FLOPs and parameters of CACPNET are significantly lower than

ResNet-18 after channel pruning (Table 4 and Figure 6A).

Interestingly, we maintain a high identification accuracy despite

reducing the model’s parameters and FLOPs through channel

pruning. The model size and GPU RAM requirements of all

models are presented in Figure 6B. Among all models,
frontiersin.org
TABLE 4 Indicators of model performance.

Model Accuracy of PlantVillage F1 score of PlantVillage Accuracy of peanut F1 score of peanut GFLOPs Parameter Model size GPURAM

ResNet-18 98.2% 97.4% 95.1% 95.1% 1.819 11.180M 42.7M 2.4G

ResNet-50 98.6% 97.9% 95.3% 95.3% 4.109 23.518M 90.0M 4.4G

VGG-16 97.5% 96.8% 92.4% 92.4% 15.480 134.281M 512M 7.5G

DenseNet-121 98.7% 98.1% 95.9% 95.9% 2.865 6.959M 27.1M 6.0G

SENet & ResNet-18 98.5% 97.8% 95.6% 95.6% 1.820 11.266M 43.0M 2.4G

CBAM & ResNet-18 98.7% 98.2% 95.9% 95.9% 1.821 11.267M 43.1M 2.6G

ECA & ResNet-18 99.6% 99.4% 97.5% 97.5% 1.819 11.180M 42.7M 2.4G

CACPNET 99.7% 99.5% 97.7% 97.7% 1.267 4.699M 18.0M 2.2G
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CACPNET has the minimum requirements on both model size

and GPU RAM. Compared to ResNet-18, the FLOPs, parameters,

model size, and GPU RAM of CACPNET decreased by 30.35%,

57.97%, 57.85%, and 8.3%, respectively (Table 4). In brief, without
Frontiers in Plant Science 11
any reduction in accuracy and the F1 score, CACPNET achieves a

significant reduction in FLOPs, parameters, model size, and GPU

RAM. Therefore, CACPNET is more appealing according to the

performance metrics.
BA

FIGURE 6

Analysis of model performance index. (A) Histogram of FLOPs and parameters for eight models; (B) Bubble chart of model size and GPU RAM
for eight models.
B

C D

A

FIGURE 5

Model training and validation on the peanut leaf disease dataset. (A) The accuracy curve of models in the peanut test set. (B) the loss curve of
models in the peanut test set. Colors denote corresponding models. (C) The confusion matrix of CACPNET in the peanut test set. The values in
the corresponding column present the number of being predicted. The darker color indicates the larger quantity. (D) The ROC curve of
CACPNET in the peanut test set. Each curve represents the identification effect of the corresponding class in the model. The closer to the upper
left corner of the curve means better recognition for the corresponding class.
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Identification rate evaluation of
the model

In the plant disease detection scenarios, the computational

performance of the plant protection devices is limited, generally

relying on the CPU for the computations. To validate the

model’s identification rate, we deployed all models for disease

identification on the CPU. The metrics employed are the

inference time and throughput, two important performance

recognition metrics representing the time required to

recognize each image and the number of images that can be

processed per unit time, respectively. The experimental results

highlight that the inference time and throughput of CACPNET

outperform the competitor models, i.e., 22.8 ms/frame and 75.5

frames/s, respectively (Figure 7). Compared with the baseline

model ResNet-18, adding the ECA, SENet, and CBAM attention

modules reduces the model’s recognition rate (Figure 7).

However, the proposed CACPNET improves recognition

accuracy and increases recognition rate (Figure 7 and Table 4).

The above experimental data prove that CACPNET can operate

efficiently in plant protection equipment.
Discussion

This study proposes a plant leaf disease identification model

(CACPNET) that combines a channel attention mechanism and
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channel pruning. The PlantVillage and peanut leaf disease

dataset results reveal that CACPNET’s recognition accuracy

and F1 score are the highest among all models (Table 4;

Figures 4, 5A, B). Moreover, CACPNET has the most

appealing (lowest) performance factors, such as FLOPs,

parameters, model size, and GPU RAM (Table 4; Figure 6),

proving that CACPNET is a lightweight model with high

recognition accuracy.

Although using attention mechanisms in deep learning has

made significant progress in image identification (Woo et al.,

2018; Hu et al., 2019; Wang et al., 2020), its modules have not

been designed for plant diseases in specific. Identification errors

cannot satisfy the disease control requirements of precision

agriculture. Therefore, this paper improves the ECA attention

module to combine global maximum pooling with global

average pooling, effectively improving the model’s disease

feature extraction ability.

The attention mechanism can improve the mode’s

recognition accuracy. However, models containing many

parameters are unsuitable for planting equipment deployment

with limited computing power. In particular, using the attention

mechanism reduces the model’s recognition and fails to meet the

requirements of real-time detection regarding inference time

and throughput metrics. Although the model can be simplified

by channel pruning, the identification accuracy will significantly

decrease due to losing important parameters (Guo et al., 2020).

Based on the existing problems presented above, we remove

the unimportant channels by introducing a local compression
FIGURE 7

The inference time and throughput of the model. An i9-10900 was used as the CPU throughout the experiments.
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ratio and an L1-norm channel weight to reduce the model’s

complexity and parameters. However, compared with other

models, the channel-pruned CACPNET still attains the highest

accuracy (Table 4; Figures 3–5). It is worth noting that the local

compression ratio is a critical parameter that impacts the

model ’s pruning effect. Although an excessive local

compression ratio can significantly reduce the model’s

parameters and complexity, it also reduces accuracy.

Therefore, it is necessary to set a reasonable local compression

ratio for model pruning that depends on the model. The

proposed method can maintain the model with high accuracy

and lightweight at the same time, which has excellent generality

to be applied to other models. In this paper, the purpose of using

ResNet-18 as the base model is to obtain a more lightweight and

higher accuracy model on a shallow network.

Currently, studies exist on wheat (Mi et al., 2020), apples (Yong

and Ming, 2020), and grapes (Xie et al., 2020) but are constrained

to a particular plant lacking universality. Unlike current methods,

CACPNET is challenged on the PlantVillage database that

contains 14 crops and 38 diseases, affording an identification

accuracy after training of 99.7%, indicating that CACPNET can

accurately identify different species and the disease characteristics

of each species (Tables 1, 3, 4; Figure 4). To further verify the

disease feature extraction ability of CACPNET, the leaves of peanut

diseases collected in actual fields are used for training, including

leaves with complex diseases such as leaves with both scorch and

rust (Figure 1). Surprisingly, the identification accuracy of

CACPNET reaches 97.7%, demonstrating its excellent disease

feature extraction (Tables 3, 4; Figure 5).

In the precision agriculture field, real-time disease detection

is an effective way to detect and control diseases in a timely

manner. Inference time and throughput are important metrics to

measure the real-time recognition rate of the model. Since

CACPNET has a significant lead in FLOPs and parameter

metrics (Figure 6 and Table 4), CACPNET is also ahead of

other models in terms of inference time and throughput on

CPU-based devices, with 22.8 ms/frame and 75.5 frames/s,

respectively (Figure 7). The above results demonstrate that the

recognition rate of CACPNET can satisfy the requirement of

real-time disease detection.

Some advances in leaf disease identification have been

made utilizing hyperspectral imaging (Ban et al., 2019;

Nagasubramanian et al., 2019). However, the high weather or light

requirements, professional operation, and extra-expensive

equipment limit its overall development. Opposing, the proposed

model has low image resolution requirements (224×224 or higher

resolution) derived from mobile phones and pads.
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Conclusion

This study proposes a lightweight model named CACPNET

that is based on channel attention and channel pruning.

Compared with other models, CACPNET has prominent

advantages. First, CACPNET has the highest accuracy and F1

score among all competitor methods. Second, CACPNET’s

ability to extract plant leaf disease features can be effectively

improved by combining global average pooling and global

maximum pooling. In addition, CACPNET outperforms other

models considering the parameters, FLOPs, Model size, and

GPU RAM performance metrics. For devices relying on the CPU

as the computing core, the inference time and throughput of

CACPNET are superior to other models and still meet the real-

time identification requirement. To sum up, CACPNET is a

lightweight and highly accurate model for plant leaf disease

recognition that is appropriate for lightweight model

deployment in the plant protection field and promotes the

development of artificial intelligence in precision agriculture.

Meanwhile, this study fills the research gap in real-time

detection of leaf diseases, including peanuts, potatoes, apples,

and other 15 crops and 43 diseases, providing the basis for

decision-making in precision agriculture.

In future work, we plan to deploy CACPNET to field robots

and unmanned aerial vehicle to establish an automated disease

detection platform with low inference cost. In addition, to

extend CACPNET’s applicability on disease identification of

other plants, we will consider expanding its disease

identification types through transfer learning.
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