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Quantitative proteomics analysis
of tomato root cell wall proteins
in response to salt stress

Shuisen Chen, Fei Shi, Cong Li, Quan Sun* and Yanye Ruan*

College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
Cell wall proteins perform diverse cellular functions in response to abiotic and

biotic stresses. To elucidate the possible mechanisms of salt-stress tolerance in

tomato. The 30 d seedlings of two tomato genotypes with contrasting salt

tolerances were transplanted to salt stress (200 mM NaCl) for three days, and

then, the cell wall proteins of seedling roots were analyzed by isobaric tags for

relative and absolute quantification (iTRAQ). There were 82 and 81 cell wall

proteins that changed significantly in the salt-tolerant tomato IL8-3 and the

salt-sensitive tomato M82, respectively. The proteins associated with signal

transduction and alterations to cell wall polysaccharides were increased in both

IL8-3 and M82 cells wall in response to salt stress. In addition, many different or

even opposite metabolic changes occurred between IL8-3 and M82 in

response to salt stress. The salt-tolerant tomato IL8-3 experienced not only

significantly decreased in Na+ accumulation but also an obviously enhanced in

regulating redox balance and cell wall lignification in response to salt stress.

Taken together, these results provide novel insight for further understanding

the molecular mechanism of salt tolerance in tomato.
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1 Introduction

Salinity is one of the most important environmental stresses affecting a wide variety

of physiological and biochemical changes in crops. Salinity inhibits the growth and

development of crops and disrupts metabolism, such as reducing photosynthesis,

respiration and protein synthesis (Liang et al., 2018; Zörb et al., 2019). Plant roots are

the primary site of salinity perception and injury, and roots sense and pass the salinity

signal to the shoot for appropriate changes (Munns and Tester, 2008). The root system

also plays a vital role in improving crop salt tolerance through its potential for improving

access to water and limiting salt acquisition (Jung and McCouch, 2013). Therefore, the

stress sensitivity of a plant’s roots limits the productivity of the entire plants. Fortunately,
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plants enact some mechanisms to mitigate salt stress, such as

exclusion of Na+ from plant cells and compartmentalization of

Na+ into vacuoles (Deinlein et al., 2014), alterations to the

ultrastructure of the cell wall and subcellular organelles, and

alterations to de novo protein biosynthesis and enzymatic

activity (Ma et al., 2006).

Tomato (Solanum lycopersicum) is a vital vegetable with

economic significance worldwide, and it has become a model

species in plant research (Quinet et al., 2019). Nevertheless, most

cultivated tomato species are sensitive to salt stress throughout

growth and development, which restricts the production area,

the quality and yield of tomato (Zaki and Yokoi, 2016; Pailles

et al., 2020). The response of tomato to salt stress varies

depending on the cultivar. The majority of tomato cultivars

have the genetic potential of tolerance to moderate salt stress

(Singh et al., 2012). To enhance the salt tolerance of tomato, the

physiological responses of tomato under salt stress conditions

have been extensively studied (Rivero et al., 2014; Bai et al.,

2018). Transcriptomic and proteomics analyses have been

performed to illuminate the responses of tomato to salt stress

over the past decade (Nveawiah-Yoho et al., 2013; Gong et al.,

2014; Albaladejo et al., 2018), and many genes that participate in

salt tolerance have been well studied (Kou et al., 2019). However,

the explicit molecular mechanisms of tomato tolerance to salt

stress are still not clear.

Plant cell walls are complex and dynamic structures that are

essential for the modulation of some stress signals (Komatsu and

Yanagawa, 2013; Houston et al., 2016). Although cell wall

proteins account for only 5~10% of the extracellular matrix

mass, they perform diverse cellular functions in response to

abiotic and biotic stresses (Le Gall et al., 2015; Rui and Dinneny,

2020). Among the three types of cell wall proteins, soluble

proteins, weakly bound cell wall proteins and strongly bound

cell wall proteins, the isolation of the strongly bound cell wall

proteins was hampered by a number of technical difficulties

(Jamet et al., 2006). Although the characterization of plant cell

wall proteins remains challenging and requires a combination of

various analytical approaches, there have been rapid advances in

cell wall protein research combined with proteomics approaches

(Komatsu and Yanagawa, 2013; Adelaide et al., 2018). To gain

information about protein changes in cell walls, many types of

stress-associated cell wall proteins have been identified in crops,

and these researches have shown that cell wall proteins play an

important role in stress signal transduction, cell defense and

rescue, cell wall modification, etc (Wolf, 2017; Du et al., 2022;

Wolf, 2022). The top leaflets showed less stress signs by salinity

have an increased expression of cell wall-related genes in tomato

(Hoffmann et al., 2021). Therefore, comparative proteomic

analyses of the tomato cell wall could provide novel

information on the underlying mechanisms of tomato

responses to environmental stresses.
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2 Materials and methods

2.1 Plants growth

IL8-3 (tolerant to salt stress) and M82 (sensitive to salt

stress), were used in the present study. Seeds of both tomato

genotypes were sterilized by a 0.2% (v/v) sodium hypochlorite

solution for 10 min. Then, the seeds were rinsed extensively with

deionized water. The surface sterilized seeds were germinated on

moistened filter paper in the dark at 28°C for three days. The

germinated seedlings were transferred onto the moistened gauze

in a plastic basin (17 cm × 25 cm) for five days. The plastic basin

was placed in an illuminated culture room (300 - 320 mmol m-2

s-1, 24°C day/22°C night, 16 h photoperiod). Following

germination, the seedlings were grown hydroponically in a

plastic container filled with Hoagland nutrient solution.

Considering the nutrient requirements of tomato seedlings, the

initial solution was 1/4 of the full-strength for the first 5 days,

and then, the nutrient solution was replaced with 1/2 of the full-

strength for another 5 days. Next, the full strength nutrient

solution was used and refreshed every 5 days. When the

seedlings had grown for 30 days, half of the seedlings were

shifted to a nutrient solution containing 200 mM NaCl. The

remaining half of the seedlings under the NaCl-free nutrient

solution were used as controls. The roots and leaves were

harvested on the 3rd day after NaCl was added. For the cell

wall proteomic analysis, the roots from each treatment were

washed with distilled water and then immediately chilled in

liquid nitrogen. The sample was stored at -80°C for further use.

Each treatment was replicated four times.
2.2 Measurements of biomass, Na+ and
K+ concentrations

Roots and shoots were harvested separately on the 3rd day

after NaCl was added. The seedlings were baked at 105°C for

15 min and then dried at 70°C to constant weight. The dry

weight was weighted, and then, the seedlings (ca. 0.1000 g) were

digested in concentrated HNO3-HClO4 (5:1 v/v) using a

digestion block system. The Na+ and K+ concentrations were

assayed using a flame photometer (FP640, Precision and

Scientific Instrument, Shanghai, China).
2.3 Reactive oxygen species metabolism
assay

The content of hydrogen peroxide (H2O2) and superoxide

anion (O−
2 ), and the activity of superoxide dismutase (SOD) and

peroxidase (POD) that from cell wall protein extraction were
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determined by each specific assay kit according to the the

corresponding kit specification (Comin Botechnology,

Suzhou, China).
2.4 Cell wall protein extraction

Cell wall proteins isolation was performed as previously

described with modifications (Feiz et al., 2006; Francin-Allami

et al., 2015). Briefly, 0.5 g (fresh weight) of roots and 0.1 g of

PVPP were ground into powder using a mortar and pestle under

liquid nitrogen, the powder was transferred into a 2-mL tube and

filled with extracted buffer (0.6 M sucrose, 2.0 mM EDTA, 1.0

mM PMSF and 5.0 mM acetate buffer, pH 4.6). After shaking at

4°C for 30 min, the solution was centrifuged at 12,000 g for

30 min (4°C). The pellet was washed with 5 mM acetate buffer

(pH 4.6). Then, the pellet was incubated with successive salt

solutions as follows: twice in a 0.2 M CaCl2 solution (5 mM

acetate buffer, 0.2 M CaCl2 and 10 mL protease inhibitor cocktail

(Sigma-Aldrich, St. Louis, MO, USA)) for 2 h, followed by two

washes in a 2 M LiCl solution (5 mM acetate buffer, 2 M LiCl and

10 mL protease inhibitor cocktail (Sigma-Aldrich, St. Louis, MO,

USA)) for 2 h. Finally, CaCl2 and LiCl fractions were combined

as cell wall fractions for further proteins precipitation. Four

biological replicates were performed.
2.5 iTRAQ analysis

Cell wall proteins (ca. 100 mg) were reduced with 10 mM

DTT for 2 h at 56°C. Then, the proteins were alkylated with 55

mM iodoacetamide at 24°C in the dark for 45 min. Then, the

proteins were digested with trypsin at a 20:1 mass ratio for 12 h

at 37°C. The peptide mixtures were labeled using the iTRAQ

reagents 8-plex kit according to the manufacturer’s instructions

(AB Sciex Inc., MA, USA). Four independent biological

replicates were performed. The mixed labeled peptides were

fractionated using a 4.6 × 250 mm Kindtex-C18 column

(Phenomenex, Torrance, CA, USA) in a RIGOL L-3120

infinity high-performance liquid chromatography (HPLC)

system (Beijing RIGOL Technology Co., Ltd., Beijing, China).

LC-MS/MS analysis and mass spectrometry analysis were

carried out at the National Center for Protein Science in

Beijing using a TripleTOF® 6600 system. ProteinPilot™ 5.0

(AB Sciex, MA, USA) software was used to analyze the raw mass

spectrum data. Tandem mass spectra were extracted and

searched using MS/MS data interpretation algorithms within

ProteinPilot™ software 5.0 (Paragon Algorithm). The NCBI

nonredundant protein database for Solanum lycopersicum

(39020 sequences, 2020) was used for the database searching,

and the mass tolerance was set to 0.05 Da. A unused confidence

score of > 1.3 was used. The identified proteins with at least two
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matched peptides, confidence higher than 95%, and an FDR

(false discovery rate)< 1% were used to perform protein

quantification. Subsequently, proteins with a 2.0-fold change

(p< 0.05) with good reproducibility that were detected in at least

three replicates of the four biological replicates were termed

differentially abundant proteins (DAPs).
2.6 Bioinformatics analysis

STRING (version 11.0) (https://string-db.org/) was

employed to perform a protein-protein interaction analysis

and statistical enrichment tests were executed for KEGG

pathway annotations (Szklarczyk et al., 2015). The signal

peptide sequence was predicted by SignalP (version 5.0)

(Nielsen, 2017), and nonclassical secretory proteins were

predicted by SecretomeP server 2.0 with an NN score above

0.6 (Bendtsen et al., 2004). The presence of functional domains

and functional classification of DAPs using the ProtAnnDB

(http://www.polebio.lrsv.ups-tlse.fr/WallProtDB/) in-house tool

(San and Jamet, 2015)
2.7 Statistical analysis

Experimental data are presented as the means and standard

deviations (SD). Each physiological parameter was examined

with four biological replicates. SAS 9.2 (SAS Institute, Cary, NC,

USA) with the SAS PROC ANOVA LSD model was used to

perform the analysis of variance for the physiological data. A

value of p<0.05 was considered to be statistically significant.
3 Results

3.1 Comparison of different salt-tolerant
tomatoes in response to salt stress

The physiological responses of tomato to salt stress were

investigated in the present study. Compared with the NaCl-free

condition, the obvious signs of dehydration in leaves were

exhibited in both tomato genotypes under short-term salt

stress (200 mM NaCl for 3 days), especially the salt-sensitive

M82 (Figure 1A). Short-term salt stress did not affect the root

and shoot dry weights of either tomato (Figures 1B, C).

However, the shoot dry weight of IL8-3 (tolerant to salt stress)

was significantly higher than that of M82 (sensitive to salt stress)

(Figure 1C). Moreover, salt stress noticeably increased the Na+

content in the roots and shoots of both tomato genotypes

(Figures 1D, E). The Na+ content of the shoots in M82 was

significantly higher than that in IL8-3 under salt stress

(Figure 1E). In addition, the salt-sensitive tomato M82 trended
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to accumulate more Na+ in shoots under salt stress, with up to 40

mg·g-1 Na+ in shoots and 27 mg·g-1 Na+ in roots. Both the Na+

contents in the roots and shoots of IL8-3 were 29 mg·g-1 Na+

under salt stress (Figures 1D, E). These results demonstrated that

the two tomato genotypes with different salt tolerances had the

different absorption and distribution of Na+ in response to

short-term salt stress.
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Salt stress significantly increased O−
2 content and H2O2

content in roots of both tomato genotypes, but there was no

significant difference between IL8-3 and M82 (Figures 2A, B).

Antioxidant enzyme activities were significantly increased in

roots of both tomato genotypes, and the salt-tolerant tomato,

IL8-3, showed a higher SOD and POD activities under salt stress

(Figures 2C, D).
B

C D

A

FIGURE 2

Effect of salt stress on reactive oxygen species (ROS) accumulation and antioxidant enzyme activities. O−
2content (A), H2O2 content (B), SOD

activity (C), POD activity (D), under NaCl-free condition (-Na) and 200 mM NaCl stress (+Na). Values represent the mean ± SD of four
independent replicates, bars with different letters show significant differences (ANOVA, LSD, P<0.05).
FIGURE 1

Tomato growth and physiological indices (A), the alterations of root dry weight (B), shoot dry weight (C), root Na+ content (D), shoot Na+

content (E) under NaCl-free condition (-Na) and 200 mM NaCl stress (+Na). The seedlings of two tomato genotypes, IL8-3 (tolerant to salt
stress) and M82 (sensitive to salt stress), were grown under nutrient solution without NaCl for 30 days, then the seedlings shift to nutrient
solution with or without 200 mM NaCl for 3 days. Values represent the mean ± SD of four independent replicates, bars with different letters
show significant differences (ANOVA, LSD, P<0.05).
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3.2 Identified differential proteins of root
cell wall in response to salt stress

To reveal the salt-tolerant mechanisms of tomato at the protein

level, a comparative proteomics analysis combining isobaric tags for

relative and absolute quantification (iTRAQ) and mass

spectrometry was carried out on the root cell wall of the salt-

tolerant tomato IL8-3 and salt-sensitive tomato M82. Finally, 82

DAPs (in the area with the white line) and 81 DAPs (in the area

with the white line) in IL8-3 (Figure S1A) and M82 (Figure S1B)

were selected for further analysis. There were 38 DAPs increased in

protein abundance and 44 DAPs decreased in protein abundance in

IL8-3 in response to salt stress. Moreover, 43 of the 82 DAPs were

predicted to have signal peptides and 11 of the 82 DAPs were

nonclassical secretory proteins (Table S1). There were 33 DAPs

increased in protein abundance and 8 DAPs decreased in protein
Frontiers in Plant Science 05
abundance of IL8-3 have the functional categories in WallProDB

(Figure 3). InM82, 28 DAPs increased in protein abundance and 53

DAPs decreased in protein abundance under salt stress. Forty-five

of the 81 DAPs were predicted to have signal peptides and 8 of the

81 DAPs were nonclassical secretory proteins (Table S2). There

were 11 DAPs increased in protein abundance and 28 DAPs

decreased in protein abundance of M82 have the functional

categories in WallProDB (Figrue 3). More cell wall proteins were

classified into proteins acting on carbohydrates, oxido-reductases,

and proteases both in IL8-3 or M82. Cell wall proteins with

interaction domains of M82 was more than that of IL8-3 (Figrue

3). In addition, 25 DAPs were identified in both IL8-3 and M82 in

response to salt stress (Table 1). Sixteen DAPs (6 increased and 10

decreased) showed same trend in both tomato genotypes in

response to salt stress (Table 1). Interestingly, 5 DAPs increased

in IL8-3 and decreased in M82. In contrast, 4 DAPs decreased in
FIGURE 3

Overview showing the distribution in functional classes of the cell wall protein (http://www.polebio.lrsv.ups-tlse.fr/WallProtDB/). Cultivars with
up arrow and with down arrow represent the increased and decreased in protein abundance in response to salt stress, respectively. PAC stands
for proteins acting on carbohydrates, OR for oxido-reductases, P for proteases, LM for proteins related to lipid metabolism, ID for proteins with
interaction domains, S for signaling, SP for structural proteins, M for miscellaneous and UF for unknown function.
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IL8-3 and increased in M82 (Figure S2 and Table 1). Based on the

proteins identified, it is clear that 80% of the DAPs varied widely

between IL8-3 andM82. These results indicated that IL8-3 andM82

might have different adaptive strategies in response to salt stress, at

least at protein level.

The DAPs showed opposite trend between salt-tolerant IL8-

3 and salt-sensitive M82 were used to compare the difference of

salt tolerance between the two tomato genotypes. There proteins

only identified in IL8-3 or M82, respectively. There were 18

proteins related to cell metabolism, which 11 proteins increased

in protein abundance in IL8-3 and 7 proteins decreased in

protein abundance in M82 in response to salt stress (Table 2).

For the 13 peroxidases proteins, 8 proteins increased in protein

abundance in IL8-3 and 5 proteins decreased in protein

abundance in M82 in response to salt stress (Table 3). These

results indicated that the cell wall metabolism and peroxidases

endowed IL8-3 with higher salt tolerance.
Frontiers in Plant Science 06
3.3 Enriched pathways in which the
differentially abundant proteins
participated

STRING software was used to enrich the Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathways. In the present study, 5

pathways and 18 pathways were enriched based on the 38 DAPs

that increased and 44 DAPs that decreased in IL 8-3, respectively.

Fourteen pathways and 5 pathways were enriched based on the 28

DAPs that increased and 53 DAPs that decreased in M82,

respectively (Table S3). Ten KEGG pathways were enriched in

both tomato genotypes. The most significant KEGG pathways for

the identified proteins were metabolic pathways (65 DAPs) and

biosynthesis of secondary metabolites (43 DAPs) (Table 4). In

addition, some of the pathways had contradictory alterations

between IL8-3 and M82. The DAPs involved in the

phenylpropanoid biosynthesis pathway were increased in IL8-3
TABLE 1 DAPs (differential abundant proteins) showed the same or opposite trend between salt-tolerant IL8-3 and salt-sensitive M82 under salt stress.

※No. Accession # Protein name Fold SP orNSP

IL8-3 M82

DAPs with the same trend under salt stress

CW1 NP_001234249.1 xyloglucan-specific fungal endoglucanase inhibitor protein precursor 9.58 ± 0.02↑ 4.35 ± 0.10↑ SP

CW2 NP_001299819.1 glucan endo-1,3-beta-glucosidase B precursor 8.05 ± 0.02↑ 3.13 ± 0.11↑ SP

CW3 NP_001307321.1 miraculin precursor 6.37 ± 0.02↑ 11.73 ± 0.03↑ SP

CW4 XP_004235260.1 PLAT domain-containing protein 3 3.59 ± 0.02↑ 2.84 ± 0.08↑ SP

5 NP_001234099.1 alcohol dehydrogenase 2 3.54 ± 0.07↑ 5.41 ± 0.03↑ -

6 NP_001234615.1 ethylene-responsive proteinase inhibitor 1 precursor 5.42 ± 0.06↑ 4.13 ± 0.02↑ SP

CW7 XP_004245302.1 peroxidase 45-like 3.06 ± 0.96↓ 16.13 ± 0.79↓ SP

CW8 XP_004240143.1 peroxidase 27-like 3.57 ± 0.68↓ 13.72 ± 0.66↓ SP

CW9 XP_004247590.1 leucine-rich repeat extensin-like protein 6 3.75 ± 0.94↓ 12.32 ± 1.77↓ SP

10 XP_004228473.1 60S ribosomal protein L30 3.97 ± 0.72↓ 3.71 ± 0.23↓ -

11 XP_010312055.1 40S ribosomal protein S28 4.63 ± 0.84↓ 20.40 ± 1.39↓ -

12 XP_010323242.1 dihydrolipoyllysine-residue acetyltransferase component 2 of pyruvate dehydrogenase complex, mitochondrial-like isoform X2 7.19 ± 0.68↓ 5.30 ± 0.67↓ -

13 NP_001352840.1 peptidyl-prolyl cis-trans isomerase FKBP15-2 precursor 3.01 ± 1.43↓ 6.35 ± 2.64↓ SP

14 XP_004244016.1 enhancer of mRNA-decapping protein 4-like 8.10 ± 0.96↓ 3.66 ± 0.39↓ -

15 XP_004251613.1 peroxisomal fatty acid beta-oxidation multifunctional protein AIM1 3.90 ± 1.13↓ 4.20 ± 1.13↓ -

16 XP_004239837.1 uncharacterized protein LOC101252396 2.86 ± 0.67↓ 3.59 ± 0.38↓ SP

DAPs with the opposite trend under salt stress

CW17 XP_004232441.1 peroxidase 72 4.26 ± 0.11↑ 7.33 ± 0.48↓ SP

CW18 NP_001333832.1 multicopper oxidase-like protein precursor 3.27 ± 0.09↑ 3.18 ± 0.33↓ SP

CW19 XP_004234931.1 monocopper oxidase-like protein SKS1 2.94 ± 0.06↑ 3.28 ± 1.37↓ SP

CW20 XP_004230031.1 aspartyl protease AED3 2.68 ± 0.03↑ 7.84 ± 1.24↓ SP

21 XP_004247036.1 auxin-induced in root cultures protein 12 3.97 ± 0.09↑ 2.88 ± 0.73↓ SP

22 XP_004244803.1 proteasome subunit alpha type-5 2.69 ± 0.41↓ 8.34 ± 0.03↑ -

23 XP_010327686.1 glutamate dehydrogenase isoform X1 3.40 ± 0.39↓ 11.22 ± 0.02↑ -

24 XP_010312196.1 5-methyltetrahydropteroyltriglutamate–homocysteine methyltransferase isoform X1 2.77 ± 0.72↓ 6.46 ± 0.05↑ -

25 XP_019067358.1 12S seed storage protein CRD 3.76 ± 0.83↓ 3.00 ± 0.13↑ NSP
frontie
※ Cell wall related protein labeled CW before the No. Fold changes with up arrow ("↑") behind and with down arrow ("↓") behind represent the increased and decreased in protein
abundance in response to salt stress, respectively. SP refers to the presence of a signal peptide sequence predicted by SignalP (version 4.0). NSP indicates nonclassical secretory proteins
predicted by SecretomeP server 2.0 with an NN score > 0.600.
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but decreased in M82. While the DAPs involved in carbon

metabolism, pyruvate metabolism, glycolysis/gluconeogenesis,

biosynthesis of amino acids, alanine, aspartate and glutamate

metabolism pathways were decreased in IL8-3, they increased in

M82 (Table 4). These results indicated that the salt-tolerant

tomato IL8-3 and salt-sensitive tomato M82 might acclimatize

to salt stress through different metabolism alterations.
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3.4 Protein-protein interactions

To determine how tomato roots cells transmit salt signals,

further analysis of the 25 DAPs identified in both tomato

genotypes was performed using the STRING software with a

confidence score higher than 0.5. Two groups of proteins

interacting with each other were identified in the two tomato
TABLE 2 Differentially abundant proteins (DAPs) related to cell wall metabolism that identified from IL8-3 and M82 under salt stress.

No. Protscore %Cov
(95)

Peptide
(95%)

Accession No. Name Fold change

IL8-3 M82

1 42.89 35.0 52 XP_004232833.3 polyphenol oxidase, chloroplastic-like 6.72 ± 0.03↑ -

2 28.45 62.1 50 XP_004250402.1 lignin-forming anionic peroxidase 5.69 ± 0.07↑ - SP

3 146.07 53.5 565 XP_004232737.1 pectinesterase 4.01 ± 0.10↑ - NSP

4 63.43 44.1 63 NP_001234303.1 beta-galactosidase precursor 3.52 ± 0.06↑ - SP

5 39.35 31.3 48 XP_010324292.1 glycerophosphodiester phosphodiesterase GDPDL4 2.89 ± 0.09↑ - SP

6 21.59 26.0 25 XP_004247400.1 pectinesterase-like 2.86 ± 0.10↑ - NSP

7 17.84 30.6 21 NP_001234798.1 glucan endo-1,3-beta-glucosidase A precursor 2.79 ± 0.06↑ - SP

8 46.30 42.2 39 NP_001234842.2 beta-galactosidase 4 precursor 2.46 ± 0.08↑ - SP

9 37.39 32.3 31 XP_004245738.1 monocopper oxidase-like protein SKU5 2.70 ± 0.09↑ - SP

10 78.72 54.5 137 XP_019070934.1 subtilisin-like protease SBT1.7 5.12 ± 0.03↑ - SP

11 74.53 54.0 198 NP_001234774.1 subtilisin-like protease precursor 3.39 ± 0.07↑ - SP

12 37.38 56.5 35 XP_010322133.1 alpha-galactosidase 3 - 2.86 ± 0.28↓ SP

13 20.91 27.0 18 NP_001234416.1 beta-glucosidase 08 precursor - 4.23 ± 1.89↓ SP

14 61.04 45.0 143 NP_001233857.1 pectinesterase/pectinesterase inhibitor U1 precursor - 7.35 ± 1.35↓

15 14.45 56.0 19 XP_004248663.1 dirigent protein 22 - 15.19 ± 1.50↓ SP

16 35.69 31.3 26 NP_001300811.1 beta-galactosidase 5 - 3.49 ± 1.40↓ SP

17 78.39 60.4 220 XP_004232982.1 subtilisin-like protease SBT5.6 - 2.82 ± 0.76↓ SP

18 35.47 29.1 28 XP_004231026.1 subtilisin-like protease SBT1.6 - 4.15 ± 0.22↓ SP
frontiersin
Fold changes with up arrow (“↑”) andwith down arrow (“↓”) represent the increased and decreased in protein abundance in response to salt stress, respectively. ‘-’ represent not identified. SP refers to the
presence of a signal peptide sequence predicted by SignalP (version 4.0). NSP indicates nonclassical secretory proteins predicted by SecretomeP server 2.0 with an NN score > 0.600.
TABLE 3 Differentially abundant proteins (DAPs) belong to peroxidase family that identified from IL8-3 and M82 under salt stress.

No. Protscore %Cov(95) Peptide(95%) Accession No. Name Fold change

IL8-3 M82

1 67.72 60.8 174 NP_001334412.1 peroxidase 12 precursor 15.26 ± 0.01↑ - SP

2 93.10 82.7 464 NP_001334411.1 peroxidase 12 precursor 12.62 ± 0.00↑ - SP

3 35.95 50.5 62 XP_004234138.1 suberization-associated anionic peroxidase 2-like 7.22 ± 0.04↑ - SP

4 25.99 55.2 35 XP_004247506.1 peroxidase 44-like 5.38 ± 0.09↑ - SP

5 24.78 41.1 24 NP_001296734.1 peroxidase 51 precursor 3.98 ± 0.03↑ - SP

6 77.97 81.7 226 XP_004253400.1 peroxidase 70 3.85 ± 0.01↑ - SP

7 34.48 50.2 46 XP_004231908.1 peroxidase 51 2.79 ± 0.06↑ - SP

8 25.84 52.4 26 XP_004240883.1 peroxidase P7 2.79 ± 0.13↑ - SP

9 67.98 66.0 203 NP_001334930.1 peroxidase superfamily protein precursor - 3.55 ± 1.07↓ SP

10 49.69 74.4 110 XP_004245974.1 peroxidase 27-like - 5.41 ± 0.62↓ SP

11 53.89 71.1 83 XP_004249055.1 cationic peroxidase 1 - 5.71 ± 1.03↓ SP

12 39.18 62.7 67 XP_004233538.1 peroxidase 72-like - 12.94 ± 7.43↓ SP

13 44.14 74.1 96 XP_004251512.1 peroxidase 27 - 42.50 ± 2.41↓ SP
.o
Fold changes with up arrow (“↑”) andwith down arrow (“↓”) represent the increased and decreased in protein abundance in response to salt stress, respectively. ‘-’ represent not identified. SP refers to the
presence of a signal peptide sequence predicted by SignalP (version 4.0). NSP indicates nonclassical secretory proteins predicted by SecretomeP server 2.0 with an NN score > 0.600.
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genotypes (Figure 4). The first group included: auxin-induced in

root cultures protein 12 (AIR12), 40S ribosomal protein S28

(RPS28) and 60S ribosomal protein L30 (RPL30). AIR12 was

associated with signaling, and RPS28 and RPL30 were associated

with secondary metabolite biosynthesis. The second group

included multicopper oxidase-like protein precursor (MCOP)
Frontiers in Plant Science 08
and xyloglucan-specific fungal endoglucanase inhibitor protein

precursor (XEGIP). MCOP was characterized as a defense-

related protein, and XEGIP was characterized as a cell wall

modification. In the protein interaction groups, only the AIR12

and MCOP showed the opposite changes in IL8-3 and M82 in

response to salt stress.
TABLE 4 KEGG pathway enriched based on the differentially abundant proteins (DAPs) both in IL8-3 and M82.

No. Pathway ID Term Description Number of DAPs

IL8-3↑ IL8-3↓ M82↑ M82↓ Total

1 sly01100 Metabolic pathways 15 18 11 21 65

2 sly01110 Biosynthesis of secondary metabolites 12 10 6 15 43

3 sly00940 Phenylpropanoid biosynthesis 10 0 0 11 21

4 sly01200 Carbon metabolism 0 7 3 0 10

5 sly00620 Pyruvate metabolism 0 3 2 0 5

6 sly00010 Glycolysis/Gluconeogenesis 0 3 2 0 5

7 sly01230 Biosynthesis of amino acids 0 3 2 0 5

8 sly00250 Alanine, aspartate and glutamate metabolism 0 2 2 0 4

9 sly00190 Oxidative phosphorylation 0 3 0 3 6

10 sly00350 Tyrosine metabolism 2 0 3 0 5
frontier
The up and down arrow behind the cultivars represent increased and decreased protein abundance under salt stress, respectively.
FIGURE 4

A protein interaction network of differentially abundant proteins (DAPs) under salt stress both of IL8-3 and M82. The network was built using a
STRING software (https://string-db.org/) with medium confidence. The nodes represent the DAP, and the line color indicates the type of
interaction evidence. The up and down arrow behind the cultivars represent increased and decreased in protein abundance under salt stress,
respectively. AIR12, auxin-induced in root cultures protein 12; RPS28, 40S ribosomal protein S28; RPL30, 60S ribosomal protein L30, MCOP,
multicopper oxidase-like protein precursor; XEGIP, xyloglucan-specific fungal endoglucanase inhibitor protein precursor.
sin.org
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4 Discussion

4.1 Common changes to the metabolic
mechanism of IL8-3 and M82 under
salt stress

Sixteen DAPs (approximately 20% of the identified DAPs)

showed the same change trends under salt stress across both

tomato genotypes (Table 1), which reflected the commonality of

metabolic alterations in resistance to salt stress. Among these

DAPs, ten were predicted to contain a signal peptide (Table 1).

The DAPs that participate in cell wall modification, such as

glucan endo-1,3-beta-glucosidase B precursor, which belongs to

the glycoside hydrolases (GHs) family, increased in both tomato

genotypes under salt stress. GHs play a key role in the

degradation and reorganization of cell wall polysaccharides

(Minic and Jouanin, 2006), and the alteration of cell wall

polysaccharides may increase tolerance to salt stress in

Artemisia annua (Corrêa-Ferreira et al., 2019). Xyloglucan-

specific fungal endoglucanase inhibitor protein precursor

(XEGIP) is involved in cell wall growth and play a vital role in

plant defense. In addition, XEGIP-related proteins play a general

role in protecting plants against biotic and abiotic stresses (Qin,

2003; Jones and Perez, 2014). The ethylene-responsive

proteinase inhibitor 1 precursor and PLAT domain-containing

protein (PLAT) 3, which are involved in signaling, also increased

in both tomato genotypes under salt stress (Table 1). PLAT is a

positive regulator of abiotic stress tolerance involved in the

regulation of plant growth, and it might be a downstream

target of the abscisic acid (ABA) signaling pathway (Hyun

et al., 2014). In addition, the peptidyl-prolyl isomerases

FKBP15-2, which negatively modulates lateral root

development in Arabidopsis (Wang et al., 2020), also decreased

in both tomato genotypes under salt stress in the present study.

Taken together, these results indicated that both tomato

genotypes have some common metabolic changes to resist

salt stress.
4.2 Contrasting changes to the
metabolic mechanisms of IL8-3 and M82
under salt stress

Nine DAPs (10% of the identified DAPs) showed contrasting

changes between IL8-3 and M82 under salt stress. Interestingly,

all 5 DAPs that predicted to have signal peptides increased in the

salt-tolerant IL8-3 but decreased in the salt-sensitive M82 in

response to salt stress (Table 1).

Cell wall localized peroxidase 72 plays an important role in

lignification in Arabidopsis (Herrero et al., 2013). Salt stress

induced the biosynthesis and deposition of lignin in the cell wall

has been well reviewed (Oliveira et al., 2020). The aspartyl
Frontiers in Plant Science 09
protease AED1 was induced locally and systemically during

systemic acquired resistance signaling (Breitenbach et al.,

2014). We speculated that the increase in peroxidase 72 and

aspartyl protease AED3 might enhance the salt resistance of

IL8-3.

Auxin-induced in root cultures protein 12 (AIR12) was

interacted with RPS28 and RPL30 in the present study

(Figure 4). AIR12 was predicted to function outside the cell,

and the isolated AIRs from Arabidopsis were related to cell wall

modification functions (Neuteboom et al., 1999). In addition,

AIR12 is potentially involved in redox signaling and interacts

directly with multicopper oxidase on the apoplastic side of the

membrane for the directional growth of Arabidopsis roots

(Sedbrook et al., 2002). These results indicated that in

comparison to M82, the salt-tolerant tomato IL8-3 has a more

positive metabolic resistance response to salt stress.
4.3 Differences in the mechanisms of
responses to salt stress between the two
tomato genotypes

Approximately 70% of the DAPs were only detected in IL8-3

or M82 respectively in response to salt stress. These results

reflected that the two tomato genotypes adapt to the salt stress by
different metabolic changes.

4.3.1 Cell wall modification positively regulates
salt tolerance in tomato

Since the alteration of cell wall components and structures is

an important adaption to saline environments, the DAPs that

participate in the cell wall metabolism were compared in the two

tomato genotypes with contrasting salt tolerant. Most of the

proteins related to cell wall metabolism were increased in the

salt-tolerant tomato IL8-3 but decreased in the salt-sensitive

tomato M82, in response to salt stress (Table 2). These proteins

resulted in alterations to cell wall polysaccharides and

lignification. Pectins play a vital role in determining cell wall

properties. Pectin methylesterase was positively modulates the

salt tolerance of Arabidopsis (Yan et al., 2018). In the present

study, pectinesterases was increased in IL8-3 but decreased in

M82 in response to salt stress (Table 2). Under salt stress, the

primary and secondary cell walls expanded (Le Gall et al., 2015),

and the cell walls of salt-tolerant plants usually became more

rigid under salt stress (Muszyńska et al., 2014). Salt stress affects

the secondary cell wall formation by altering lignin biosynthesis,

which increases root lignification (Oliveira et al., 2020; Kong

et al., 2021). The proteins related to lignification, such as lignin-

forming anionic peroxidase and monocopper oxidase-like

protein SKU5 were increased in IL8-3, while the dirigent

protein 22 decreased in M82 (Table 2). These results indicated

that the higher salt tolerance of IL8-3 than that of M82 was

positively related to cell wall modification.
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4.3.2 Peroxidases enhance the salt tolerance of
tomato

Peroxidase is involved in ROS signaling and redox reactions.

Plasma membrane NDPH-oxidase is activated when the plants

are subjected to stress, and then, superoxide is released into the

cell wall and spontaneously converted to H2O2. Peroxidase can

remove H2O2 and result in the cross-linking of cell wall

components (Wolf et al., 2012). In the present study, 8

peroxidases increased in IL8-3 and 5 peroxidases decreased in

M82 in response to salt stress (Table 3). The peroxidase (POD)

activity of IL8-3 was significantly higher than that of M82 in

response to salt stress (Figure 2D). Overexpression of peroxidase

also enhances the salt tolerance of soybean (Jin et al., 2019).

Therefore, in comparison to M82, the salt-tolerant tomato IL8-3

has a better capacity for ROS scavenging than M82 in response

to salt stress.

The peroxidase superfamily has three distantly related

structural classes. Class III peroxidases containing N-terminal

signal peptides secreted to the cell wall or surrounding medium

and vacuoles are found in terrestrial plants (Duroux and

Welinder, 2003). This class III peroxidase is mainly considered

as cell wall-localized protein that plays a vital role in

physiological functions and developmental processes, including

cell wall hardening, pathogen penetration resistance, wounding

and other abiotic stresses (Cosio and Dunand, 2009). Cell wall

stiffening by peroxidases occurs mostly through lignin

polymerization in cell walls (Francoz et al., 2015). Salt stress

induces the gene expression of peroxidase, which has a putative

role in cell wall lignification in Ginkgo biloba (Novo-Uzal et al.,

2014). In the present study, all of the 13 peroxidases were

predicted to have N-terminal signal peptides (Table 3).

Therefore, these proteins might be different members of the

class III peroxidases family, which could participate in the cell

wall lignification. These results reflected that the peroxidase may

facilitate tomato tolerance to salt stress and that the salt-tolerant
Frontiers in Plant Science 10
tomato IL8-3 could better maintain the stability of the cell wall

by increasing root cell wall lignification in response to salt stress.
4.4 Proposed molecular model of
tomato salt stress

Based on the comparative analysis of cell wall proteomics

and physiological differences between two tomato genotypes

with contrasting tolerance to salt stress, a salt tolerance model of

tomato was proposed (Figure 5). The two tomato genotypes with

contrasting salt tolerances showed some common mechanisms

under salt stress: the proteins involved in signaling and the cell

wall polysaccharides increased in response to salt stress. In

addition, the salt-tolerant tomato IL8-3 can efficiently

modulate the metabolic pathways to resist salt stress. Cell wall

lignification increased in IL8-3 because the proteins related to

lignin metabolism increased under salt stress. Peroxidases with a

signal peptide not only participates in regulating redox balance

but also are involved in cell wall modification. These proteins

increased under salt stress and caused IL8-3 to better regulate

metabolic changes to resist salt stress.
5 Conclusions

Overall, a quantitative proteomic approach was performed

to comprehensively study differential proteins in the cell walls of

two tomato genotypes with contrasting salt tolerances.

Enrichment of 82 and 81 proteins changed significantly in

IL8-3 and M82, respectively. Fifty proteins were predicted to

have signal peptides or nonclassical secretory proteins in both

IL8-3 and M82. However, most of the proteins (70%) were only

identified in IL8-3 or M82. Some common mechanisms that

enable salt stress resistance, such as increasing signal
Cell wall lignification
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FIGURE 5

A proposed model of salt tolerance in tomato based on the cell wall proteomics of seedling roots. Arrows denote positive effects.
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transduction and altering cell wall polysaccharides, were

observed in the two tomato genotypes. However, the salt-

tolerant tomato IL8-3, significantly decreased Na+

accumulation and enhanced the regulation of the redox

balance and cell wall metabolism in response to salt stress.

Interestingly, these metabolic changes in the salt-sensitive M82

showed different or even opposite changes under salt stress.

Compared to M82, IL8-3 better maintained plant growth, signal

transduction, peroxidases activities and cell wall lignification in

response to salt stress. The present study may provide novel

insights for further understanding the molecular mechanisms of

salt tolerance in tomato.
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