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Vessels in a Rhododendron
ferrugineum (L.) population do
not trace temperature anymore
at the alpine shrubline
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Markus Stoffel2,4,5, Lenka Slamova2 and Nicoletta Cannone1,6

1Department Science and High Technology, Insubria University, Como, Italy, 2Climate Change
Impacts and Risks in the Anthropocene (C-CIA), Institute for Environmental Sciences, University of
Geneva, Geneva, Switzerland, 3Geolab, Université Clermont Auvergne, Centre National de la
Recherche Scientifique (CNRS), Clermont-Ferrand, France, 4Dendrolab.ch, Department of Earth
Sciences, University of Geneva, Geneva, Switzerland, 5Department of Forel for Environmental and
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Introduction: Mean xylem vessel or tracheid area have been demonstrated to

represent powerful proxies to better understand the response of woody plants

to changing climatic conditions. Yet, to date, this approach has rarely been

applied to shrubs.

Methods: Here, we developed a multidecadal, annually-resolved chronology

of vessel sizes for Rhododendron ferrugineum shrubs sampled at the upper

shrubline (2,550m asl) on a north-facing, inactive rock glacier in the Italian Alps.

Results and Discussion: Over the 1960-1989 period, the vessel size

chronology shares 64% of common variability with summer temperatures,

thus confirming the potential of wood anatomical analyses on shrubs to track

past climate variability in alpine environments above treeline. The strong winter

precipitation signal recorded in the chronology also confirms the negative

effect of long-lasting snow cover on shrub growth. By contrast, the loss of a

climate-growth relation signal since the 1990s for both temperature and

precipitation, significantly stronger than the one found in radial growth,

contrasts with findings in other QWA studies according to which stable

correlations between series of anatomical features and climatic parameters

have been reported. In a context of global warming, we hypothesize that this

signal loss might be induced by winter droughts, late frost, or complex relations

between increasing air temperatures, permafrost degradation, and its impacts

on shrub growth. We recommend future studies to validate these hypotheses

on monitored rock glaciers.

KEYWORDS

alpine shrub, dendroecology, wood anatomy, climate-growth relations, climatic
signal loss
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1 Introduction

In the European Alps, changes in land surface phenology

(Asam et al., 2018; Xie et al., 2020), species richness (Cannone

et al., 2007; Rixen et al., 2014; Lamprecht et al., 2018; Steinbauer

et al., 2018; Malfasi and Cannone, 2020) or ecosystem

productivity (Choler, 2015; Carlson et al., 2017; Filippa et al.,

2019; Choler et al., 2021) have been described in studies relying

on remote sensing time series or on resurveyed marked plots. As

climate warming in the alpine region outpaces the global

warming rate by 0.2 ± 0.1°C per decade (IPCC, 2014), these

changes are widely perceived as the consequence of climate

change. Yet, past land use and changes thereof have long-lasting

legacy effects on ecosystems and their development (Tappeiner

et al., 2021) as well, rendering an attribution of causes and effects

sometimes difficult. In addition, vegetation dynamics at treeline

have also been influenced by the constant decline of pastoralism

and related human activities due to land abandonment since the

Industrial Revolution (1850), making it challenging to

disentangle the climate influence from direct human impacts

or the absence thereof (Motta and Nola, 2001; Xie et al., 2018;

Filippa et al., 2019; Lenoir et al., 2020). Directional cover

changes, such as e.g. shrub expansion above the treeline, may

thus erroneously be attributed to climate change when studying

patterns of elevational range shifts for a large set of species

(Forero-Medina et al., 2011; Guo et al., 2018). Besides, fine-scale

species movements such as elevational range shifts could be

largely constrained or confounded by local habitat availability

(Guo et al., 2018). Consequently, identifying mechanisms

behind vegetation and ecosystem changes – crucial to

disentangle the respective impacts of climate, environmental,

and anthropogenic factors on the observed dynamics – requires

long-term, high-quality and continuous field-based monitoring

time series, which are still extremely scarce, particularly in the

alpine tundra biome (Le Moullec et al., 2019).

To date, shrub growth rings are the only proxy with annual

resolution and exact dating control and thus have the potential

to fill the above knowledge gaps retrospectively, thereby

enhancing the understanding of dynamic ecosystem processes

that occur naturally or are driven by anthropogenic activities

(e.g., Seidl et al., 2017) in this remote biome. Site-specific

relationships between climate variables and shrub radial

growth have thus been assessed with dendroecological

techniques (Myers-Smith et al., 2015b) and were proven

particularly valuable to improve our understanding of the

impacts of global warming on plant productivity over

multidecadal timescales. In the Alps, above the treeline, several

dendroecological studies thus demonstrated a positive effect of

longer growing seasons and increased summer temperatures on

shrub ring widths (Carrer et al., 2019; Francon et al., 2021).

Although ring width (RW) is an easy-to-measure parameter

and widely used in dendrochronological research (e.g., Grissino-
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Mayer and Fritts, 1997), it integrates considerable inherent non-

climatic information, such as age and size trends (Cook and

Kairiukstis, 1990; Weiner and Thomas, 2001; Garcıá-González

et al., 2016), biological memory effects (Fritts, 1976; Esper et al.,

2015), external disturbances (Rydval et al., 2018) or simply

unexplained variability (Cook, 1985). Moreover, RW shows an

integrated response to climate conditions in the previous and the

current year (Fritts, 2001), rendering an interpretation of

climate-growth relationships challenging (Kagawa et al., 2006).

Finally, since the mid- to late-20th century, temperature-

sensitive trees (D’Arrigo et al., 2004; Wilmking, 2005; Büntgen

et al., 2008; D’Arrigo et al., 2008; Oberhuber et al., 2008; Leonelli

et al., 2009) and shrubs (Buchwal et al., 2020; Francon et al.,

2021) from the Arctic and Alpine regions were shown to exhibit

complex and non-linear radial growth responses to warming

climate. This phenomenon is known as the “divergence

problem” and implies that radial growth becomes increasingly

decorrelated from temperature in a warmer world (Briffa et al.,

1998; Driscoll et al., 2005; D’Arrigo et al., 2008).

To overcome the above-mentioned limitations, the range of

parameters characterizing annual rings and their use as

environmental proxies has notably been diversified during

recent decades. In particular, the measurement of maximum

latewood density (MXD), determined by the size of cells and the

thickness of their walls, plays a significant role in late Holocene

paleoclimatology (Briffa et al., 2004; Björklund et al., 2019) as it

is, for conifer species growing in cooler high-latitude and high-

elevation environments, more strongly coupled to growing

season air temperature than RW alone (Schweingruber et al.,

1978; Björklund et al., 2019). Over the last years, the

development of fully- and semi-automated processing

approaches of high-resolution imagery now allows delving into

the microscopic component of xylem trait features and to relate

cell characteristics to environmental signals (von Arx and

Carrer, 2014; Ziaco et al., 2016; Björklund et al., 2020; Lopez-

Saez et al., 2023). The annual variability of xylem cell traits relies

on mechanistic processes linked to the plant metabolism and

reveals consequences of climate limitations on its growth

(Wegner et al., 2013). In other words, the mechanistic link

between climate and growth response is simplified using the cell

characteristics with their direct structure-function link of xylem

cells (Hacke et al., 2015; Björklund et al., 2020).

Yet, to date, the discipline, known as quantitative wood

anatomy (QWA), has rarely been used on dwarf shrubs and, at

best, over short time periods. For instance, focusing on a 6-year

period of Vaccinium myrtillus at an experimental site in the

European Alps, Anadon-Rosell et al. (2018) showed a reduction

of vessel size as a response to experimental CO2 enrichment and

soil warming. Similarly, Nielsen et al. (2017) focused on a ten-

year window (2001-2011) to show a positive link between vessel

size and radial wood increments of Betula nana in Greenland,

whereas Lehejček et al. (2017) demonstrated the potential of
frontiersin.org
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Juniperus communis shrub anatomical parameters to trace past

summer temperature and standardized precipitation

evapotranspiration index (SPEI) fluctuations in the Arctic.

In this study, we compare the climatic signal of ring width

and xylem anatomical trait chronologies of Rhododendron

ferrugineum sampled above treeline (2550 m asl) on a north-

facing inactive rock glacier in the Italian Alps to test the potential

of QWA approaches in shrub dendroecology. The objective of

our study is twofold: (1) on the one hand, we aim at gaining

further insights into the climatic drivers of xylem anatomy of an

alpine shrub species. To this end, we hypothesize that the

climatic signals may differ and might be exacerbated in time-

series of wood-anatomical variables compared to ring width

chronologies. (2) On the other hand, we aim at comparing the

response of RW and xylem anatomy to recent global warming.

Here, we hypothesize that shrub RW and anatomical traits have

been affected by the relaxation of the limiting conditions

observed at high elevation sites, presumably reflecting the

divergent growth response reported since the late 20th century

to recent climate warming (e.g., Briffa et al., 1998). Hence, in our

study, R. ferrugineum growth is expected to suffer from a loss in

climate sensitivity, which might even be enhanced in xylem cells

as they are directly subjected to climate limitations (Björklund

et al., 2020).
2 Material and methods

2.1 Study site

The study was conducted on the north-facing Castelletto

rock glacier (46°29’56’’N, 10°11’26’’E, Figures 1A-C) in the

Upper Valtellina valley, Italian Alps (Calderoni et al., 1998).

The region is part of the Austroalpine domain (Froitzheim et al.,

2008) and is situated between the Periadriatic and the Engadine

tectonic lines (Peña Reyes et al., 2015). Geomorphic surveys of

the Castelletto rock glacier indicate a history comprising a glacial

expansion during the Late Glacial overprinted by subsequent

periglacial and slope processes (Guglielmin et al., 1994;

Calderoni et al., 1998) which then led to the deposition of

slope materials and rock glacier development during the

Holocene (Calderoni et al., 1998; Guglielmin et al., 2004).

Periglacial features at the site include avalanche cones as well

as several features typical for periglacial environments (i.e.

polygons and stripes, gelifluction lobes, and earth hummocks)

(Calderoni et al., 1998).

The rock glacier is currently composed of an active (>2580 m

asl) and an inactive (2500-2580 m asl) part (Guglielmin, 1989;

Calderoni et al., 1998; Guglielmin and Smiraglia, 1998). Active

features - consisting of two lobes (Guglielmin, 1989; Calderoni

et al., 1998) - are covered by a limited and scattered cover of

pioneer herbaceous species that are well adapted to mechanical

disturbances (Cannone and Piccinelli, 2021). On the inactive
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part - characterized by an elongated, lobe-shaped feature

spreading downvalley (Guglielmin, 1989; Calderoni et al.,

1998) - vegetation consists of alpine dwarf shrub communities,

including Rhodoretum-Vaccinietum, Loiseleurieto-Cetrarietum

and Junipero-Arctostaphyletum encroaching the alpine

grassland ecotone, dominated by Caricetum curvulae, Curvulo-

Nardetum, Festucetum variae, Nardetum alpigenum, Aveno

Nardetum associations (Cannone and Piccinelli, 2021).

Meteorological data do not exist at the study site. Yet,

according to the time series from the automatic weather

station Segl-Maria (46°26’ N, 9°46’ E, 1804 m asl), located

33 km to the W of the study site, mean annual air

temperatures and precipitation totals are 2.15 ± 0.67°C and

997 ± 206 mm, respectively, over the period 1960-2019.
2.2 Sampling strategy

In this study, we sampled Rhododendron ferrugineum L.

(Ericaceae) (Figure 1D), an evergreen dominant shrub species in

the subalpine belts of non-calcareous alpine regions (Pornon

and Doche, 1996; Căprar et al., 2014; Charrier et al., 2014), from

the inactive part of the Castelletto rock glacier at elevations

comprised between 2540 and 2580 m asl. Another motivation

for the species selection – in addition to its wide distribution – is

the potential of R. ferrugineum for dendroecological analyses as

recently stressed by several studies (Francon et al., 2017; Francon

et al., 2020a; Francon et al., 2020b; Francon et al., 2021) as well as

the longevity and clearly identifiable annual rings of the species.

We selected a total of 14 isolated individuals, separated from

each other by at least 4 m, to avoid replication from the same

individual. For each individual, we cut two to three cross-

sections (42 sections in total), from the root collar to the apex

of the main stem, at an interval of 5-10 cm between each cross-

section, with the aim to realize a serial sectioning approach

(Kolishchuk, 1990). Identification of the root collar was possible

due to the limited size of individuals (crown size within 1 m

diameter) and a careful sampling involving soil excavation up to

10 cm under the surface (Malfasi and Cannone, 2020). For each

cross-section, we prepared a 20-mm thick micro section using a

Leica Rotary Microtome. Micro-sections were stained with

safranin (1% w/v in 70% v/v ethanol) and Astra blue (1% w/v

in 100% ethanol) to enhance ring boundaries (Figure 1E) and

permanently fixed with Euparal on microslides following

standard preparation procedures (Schweingruber et al., 2011;

Gärtner et al., 2015; von Arx et al., 2016).
2.3 Ring-width and anatomical
trait measurements

We carefully inspected each cross-section to detect wedging

rings and measured RW along three radii from high-resolution
frontiersin.org

https://doi.org/10.3389/fpls.2022.1023384
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Piccinelli et al. 10.3389/fpls.2022.1023384
(1200 dpi), digitized images using the CooRecorder 9.0 software.

We first developed a RW chronology following a three-step

procedure which included the cross-dating and averaging of (1)

three radii within each cross-section, (2) three cross-sections of

the same individual, and (3) RW series from the 14 individuals

(Francon et al., 2017; Francon et al., 2020a; Francon et al., 2020b;

Francon et al., 2021).

Based on image quality, series length and correlation with the

master chronology (r > 0.6), we selected 9 individuals for QWA

analyses (Fonti et al., 2013). The sample size is in line with recent
Frontiers in Plant Science 04
studies investigating dwarf shrub anatomical traits and water

potential (5 individuals; Anadon-Rosell et al., 2018; Ganthaler

and Mayr, 2021), as well as tree species anatomical parameters,

including Larix siberica Ldb. (5 individuals; Fonti et al., 2013), Pinus

sylvestris L. (8-9; Pritzkow et al., 2014; Seo et al., 2014), Picea abies

(L.) Karst. (8 individuals; Castagneri et al., 2015), Larix deciduaMill.

and Pinus cembra L. (6-7 individuals; Carrer et al., 2017). For each

individual, we performed anatomical measurements along two

radial subareas of the root collar cross-section (2-mm wide bands

with lengths extending from bark to pith, selected with the Zeiss
FIGURE 1

(A–C) Location of the study site in the Central Italian Alps, Upper Valtellina region (B). The study focused on (D) Rhododendron ferrugineum
specimens growing on the Castelletto rock glacier from which (E) stem micro-sections were prepared and analyzed.
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ZEN software), while carefully avoiding incomplete ring sequences,

rotten parts, callus tissue, reaction wood, or mechanical damage

(Carrer et al., 2017). Using the ROXAS 3.0.586 image analysis

software (von Arx and Carrer, 2014), we measured eight vessel-

related anatomical traits within each ring: number of cells (CNo),

mean vessel lumen area (MLA), the 25th and 95th percentiles of

lumen area distributions (MLA25 and MLA95), hydraulically

weighted mean vessel diameter (Dh), theoretical total (Kh) and

xylem-specific (Ks) hydraulic conductivities as well as cell density

(CD) (Anadon-Rosell et al., 2018). The ROXAS software (von Arx

and Carrer, 2014) allowed thorough analysis of anatomical features

by coupling automated image-analysis tools, with accurate manual

editing at both ring (e.g., digitizing ring boundaries not

automatically recognized) and cell (e.g., correction of anomalous

structures) levels. After applying proper image calibration and

sample-specific configurations, the anatomical traits were detected

using an automated segmentation process, improved by manual

editing (von Arx et al., 2016, Garcia-Pedrero et al., 2018).
2.4 Chronology development and
variable selection

Using the dplR package (Bunn, 2008) for R software (R Core

Team, 2016), we detrended individual series of vessel anatomical

traits using a cubic smoothing spline with a 50% frequency

response at 30 years (Cook and Peters, 1981; Cook, 1987) to

eliminate non-climatic trends (e.g., age-related growth trends
Frontiers in Plant Science 05
and/or effects of natural or human-induced disturbances) and to

maximize interannual variations (Francon et al., 2017). The

resulting growth indices were averaged in annually-resolved

chronologies using a bi-weight robust mean designed to

reduce the influence of outliers (Cook and Peters, 1981). We

assessed the robustness of each chronology by computing the

mean inter-series correlation (rbar), the expressed population

signal (EPS; Wigley et al., 1984), and the subsample signal

strength (SSS; Wigley et al., 1984; Buras, 2017) (Table 1).

Accordingly, all further analyses refer to the minimum period

fulfilling the chronology coherence requirements (1960-2019).

Kh and CD chronologies which did not reach the commonly

accepted 0.85 threshold were disregarded. As many of the vessel-

related variables are correlated and carry redundant information

(Garcıá-González et al., 2016), we used principal component

analysis (varimax-rotated PCA) to reduce the full suite of

variables to a subset of different, statistically meaningful

variables by using the chronologies calculated from the

detrended individual time series (Akhmetzyanov et al., 2019)

(Figure 2B). The selection was based on the ordination of

variables according to the first two principal components (PCs).
2.5 Climate-growth relationships

For the analysis of climate-growth relationships, we used

meteorological data from the MeteoSwiss automated weather

station Segl-Maria (SIA; 46°26’ N, 9°46’ E). To assess potential
TABLE 1 Characteristics of Rhododendron ferrugineum chronologies including all wood parameters (RW= ring width; CNo= cell number; MLA=
vessel lumen area; MLA25 = 25th percentile of lumen area distribution; CA95= vessel lumen area at 95th percentile; DH= hydraulically weighted
mean vessel diameter; Kh= theoretical total hydraulic conductivity; Ks= theoretical xylem-specific hydraulic conductivity; CD= Cell density): mean
annual size (± standard deviation) computed on raw chronologies and signal strength (rbar and SSS), first-order autocorrelation (AR1) and
intercorrelation (Intercorr) calculated after detrending (standardized – spline y=30 f=0.5) over to the entire period (1946-2019).

N° indiv First year Last year Mean age Age range

9 1946 2019 49 74

Parameter
Raw Standardized – spline y=30 f=0.5

Units Size rbar SSS AR1 Intercorr

RW mm 0.13 ± 0.05 0.483 0.889 0.266 ± 0.18 0.607 ± 0.14

CNo no. 388 ± 212.23 0.484 0.887 0.236 ± 0.18 0.614 ± 0.15

MLA mm² 151 ± 32.02 0.332 0.838 0.183 ± 0.18 0.457 ± 0.18

MLA25 mm² 153 ± 31.30 0.288 0.819 0.225 ± 0.19 0.395 ± 0.18

CA95 mm² 155 ± 31.72 0.278 0.822 0.215 ± 0.19 0.378 ± 0.15

DH mm 15.4 ± 2.24 0.331 0.841 0.182 ± 0.20 0.375 ± 0.20

Kh m4*s-1*MPa-1 4.17E-10 ± 3.38E-10 0.026 0.679 -0.024 ± 0.12 0.059 ± 0.17

Ks m2*s-1* MPa-1 0.0011 ± 0.0005 0.311 0.833 0.075 ± 0.22 0.447 ± 0.16

CD no./mm² 1168 ± 219.15 0.021 0.672 0.154 ± 0.21 -0.104 ± 0.26

All the chronologies share the same sample size, chronology length, mean age, and age range.
f
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shifts in shrub growth responses to climate, we investigated the

entire period covered by meteorological records (1960-2019) as

well as two subperiods (1960-1989 and 1990-2019) of sufficient

length (i.e. 30 years) to be considered as climate normal. The two

subperiods were chosen according to the results obtained by

computing moving correlation functions (MCFs) over a 30-year

time window to test stability over time (see below).

We performed monthly and seasonal bootstrapped

correlation functions (BCFs) and 30-year moving correlation

functions (MCFs) using the Treeclim package (Zang and Biondi,

2015) for R software. To this end, we detrended meteorological

data prior to climate-growth relationship analyses using the

standardization procedure employed for the series of

anatomical traits. The time window considered for BCFs and

MCFs spans from August of the year preceding growth-ring

formation (n−1) to current August (n). In addition, to retrieve

more detailed information on anatomical and radial growth

responses to climatic parameters (Jevsěnak and Levanič, 2018;

Thomte et al., 2020), we computedMCFs between RW and those

vessel-related trait series that were identified from the PCA (i.e.

CNO and MLA25, see below) and daily temperature and

precipitation series from the Segl-Maria weather station

averaged over time periods ranging from 10 to 150 days data

using the dendroTools R package (Jevsěnak and Levanič, 2018).
Frontiers in Plant Science 06
3 Results and discussion

3.1 Sample characteristics and selection
of complementary variables

On average, the nine individuals included in our

chronologies had an age of 49 years, with mean ring widths

and mean lumen areas of 0.13 mm and 151 mm², respectively

(Table 1). The Varimax PCA (Figure S1) realized on all

parameters measured on the nine individuals discriminates

two clusters of parameters. The first cluster includes variables

related to cambium cell division, RW and CNo, whereas the

second cluster is composed of variables related to cell

enlargement (MLA, MLA25, MLA95, Dh, Ks). A similar

dichotomy has been reported in published work for various

tree (Wang et al., 2002; Vaganov et al., 2006; Martin-Benito

et al., 2013; Pritzkow et al., 2014; Carrer et al., 2017) and shrub

(Olano et al., 2012; Lehejček et al., 2017; Anadon-Rosell et al.,

2018) species. Based on the loadings of variables on the first two

principal components, we considered the RW, CNo, and MLA25

chronologies for further analysis (Figure S1). In addition, the

vicinity between CNo and RW chronologies in the PCA biplot

(Figure S1) confirms that radial growth is more strongly driven

by cell division than by cell enlargement (Panyushkina et al.,
A

B

FIGURE 2

(A) Running detrended signal strength of the three selected R. ferrugineum chronologies (blue = MLA25, beige = CNo, yellow = RW) including
mean inter-series correlation (rbar) and subsample signal strength (SSS) calculated at the first year of the moving window (30-year time
window). The blue area indicates the sample depth; (B) Standard chronologies of R. ferrugineum with ribbons designating parameter indices ±
standard deviation. RW= ring width, CNo= cell number, and MLA25= the 25th percentiles of lumen area distribution.
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2003; Martin-Benito et al., 2013; Pritzkow et al., 2014). Similarly,

the positive loadings of the three variables on PC1 and PC2

suggest a positive pathway between RW/CNo and MLA25. We

hypothesize that in the absence of drought or frost, wider vessels

will be beneficial for increased water conductivity which in turn

has benefits for radial growth (Tyree et al., 1994). Similar results

have been previously reported in tundra shrubs – such as

Juniperus communis (Lehejček et al., 2017) and Betula nana

(Nielsen et al., 2017) –, forbs (Olano et al., 2013), or conifer

species (Fonti et al., 2013; Pritzkow et al., 2014; Ziaco

et al., 2014).

We also show that over the period 1946-2019, inter-series

correlation statistics (i.e. SSS and rbar) are higher in the RW and

CNo detrended chronologies (rbar = 0.48 and SSS = 0.89 for

both chronologies) than in the MLA25 detrended chronology

(rbar=0.29, SSS=0.82, Table 1, Figure 2A). At the same time, the

moving rbar, computed over 30-year time windows, steadily

increased from 0.22 (1960-1989) to 0.45 (1990-2019) in the

MLA25, from 0.38 to 0.60 in the CNo, and from 0.42 to 0.54 in

the RW chronologies, respectively (Table S1). The first-order

autocorrelation (AR1) –0.27 for RW, 0.24 for CNo, and 0.23 for

MLA25 (Table 1) – is comparable between the three detrended

chronologies. One may also realize that the inter-series

correlations computed for the MLA, MLA25, and CNo

chronologies in this study are (considerably) higher than in

most other studies (e.g., Lehejček et al. (2017) for J. communis

Arctic dwarf shrubs, Carrer et al. (2017) for high-elevation L.

decidua and P. abies trees in the Alps, or Seo et al. (2012) and

Björklund et al. (2020) for P. sylvestris in subarctic regions)

where the rbar only rarely reached a value of 0.3.

Yet, the shared variance explained by our R. ferrugineum

wood anatomical chronologies remains lower than in the RW

chronology. Similarly, weak empirical signal strength has been

reported for wood anatomical chronologies built from tree

species (e.g., Quercus sp. (Tardif and Conciatori, 2006; Fonti

and Garcıá-González, 2008) or Castanea sativa (Fonti and

Garcıá-González, 2004)). In their case, the weaker signal has

been attributed to lower year-to-year variability in vessel lumen

area chronologies as compared to RW and CNo chronologies

(Olano et al., 2012; Liang et al., 2013; Martin-Benito et al., 2013;

Pritzkow et al., 2014; Ziaco et al., 2016) and to higher inter-

individual variability in vessel traits than in RW (Garcia-

Cervigon et al., 2021).

The fairly robust metrics that we computed for shrub

anatomical chronologies are very encouraging because shrubs

usually exhibit greater inter-individual heterogeneity than trees

(Lehejček et al., 2017; Buras et al., 2017). We, therefore, posit

that the statistics that we find in the case of R. ferrugineum do

not only validate the accuracy and representativeness of our

measurements and the cross-dating approach (Carrer et al.,

2017) but that they presumably point to a common macro-

environmental (i.e. climatic) influence on growth as well (Liang

and Eckstein, 2009). Nevertheless, although common variance
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may well be explained by common climate forcing (Wigley et al.,

1984), for various species, robust climatic signals have been

extracted from anatomical chronologies with low year-to-year

common signals (Yasue et al., 2000; Campelo et al., 2010; Olano

et al., 2013; Garcıá-González et al., 2016; Carrer et al., 2017).

Furthermore, one should keep in mind that the strength of the

common signal cannot be interpreted solely in climatic terms

because common variance may also arise from other factors

(e.g., pests and disease, soil and air contamination) (Wigley

et al., 1984).
3.2 Climatic drivers of ring width and
cellular chronologies over the 1960-
1989 period

Over the 1960-2019 period, bootstrap correlation functions

(BCFs) computed between RW, CNo, and MLA25 chronologies

and monthly climate data from Segl-Maria show comparable

profiles (Figure S2). However, moving correlation functions

(MCFs) computed over a 30-year time window demonstrate

that these relations are not stable over time and strongly differ

for the 1960-1989 and 1990-2019 periods (Figure S3). Therefore,

we decided to examine both subperiods successively.

Over the 1960-1989 period, the RW and CNo chronologies

show the largest correlations with spring and summer air

temperatures – averaged over a time window extending from

June 10 to September 17. These temperatures explain 42%

(r=0.646, p<0.05) and 47% (r=0.683, p<0.05) of the variability

of RW and CNo, respectively (Figure 3; Table 2). RW (r=0.557,

p<0.05) and, to a lesser extent, CNo (r=0.490, p<0.05) are also

affected by temperature in August in the year preceding ring

formation (n–1). The RW and CNo chronologies also show an

inverse relationship with winter temperatures averaged over

February 24 – March 21 (r= -0.630, p<0.05) and February 24

– March 10 (r= -0.591, p<0.05), respectively (Figure 3; Table 2).

In terms of precipitation, snowy winters (January 13 – March 4,

Figure 4; Table 2) had a negative effect on RW and CNo.

The positive influence of growing season temperatures on

shrub radial growth has been reported in many dendroecological

studies, from both arctic and alpine sites across the Northern

Hemisphere (Myers-Smith et al., 2015a), including the Alps

(Francon et al., 2017) and the Himalayas (Liang and Eckstein,

2009; Li et al., 2013; Lu et al., 2015). Regarding the negative

association between R. ferrugineum ring widths and winter

precipitation detected at our site, it seems likely that a more

persistent snowpack in spring/early summer will shorten

growing season length, and ultimately, limit shrub growth

(Francon et al., 2017; Francon et al., 2020b; Pellizzari et al.,

2014; Carrer et al., 2019). Finally, warm temperatures during the

summer and fall preceding ring formation (n–1) positively

influence (1) mycorrhizal activity by maintaining soils above

freezing (Oberhuber, 2004; Oberhuber et al., 2008), (2)
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carbohydrates accumulation (Hoch et al., 2003; Francon et al.,

2017) and (3) cambial zone formation (Vaganov et al., 2006;

Martin-Benito et al., 2013). On the other hand, it is less obvious

to find clear explanations for the negative association between

winter temperature and the RW/CNo chronologies. We

hypothesize that warm temperatures during winter may reduce

snowpack depth, modify insulating properties (Domine et al.,

2016), and may thus favor the occurrence of frost which has been

shown to be detrimental to R. ferrugineum growth (Jonas et al.,

2008; Choler, 2015). Following Carrer et al. (2019), one might

also argue that warmer winter temperatures can increase

snowpack density (Judson and Doesken, 2000), and thereby

lead to longer snow persistence.

Before the 1990s, correlations between vessel sizes (MLA25)

and growing season (May 8 – September 5) air temperature

(r=0.801, p<0.05) were much stronger than between any climate

parameter and the RW and CNo chronologies, whereas the

correlation between winter (January 12 – March 19)

precipitation totals and MLA25 (r=-0.684, p<0.05) was slightly

higher with respect to the correlations with RW (r=-0.598,

p<0.05) and CNo (r=-0.638, p<0.05) (Figures 3, Figure 4,

Table 2). Conversely, correlations with late-summer air

temperature in the year preceding ring formation (n–1) were
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weaker in the MLA25 chronology (r=0.528, p<0.05) compared

to the RW chronology and a winter air temperature signal was

almost absent (r= -0.397, p<0.05) prior to the 1990s (Figure 3,

Figure 4, Table 2). Our results thus strongly support the

hypothesis that air temperature in cold-limited environments

primarily determines the water conduction capacity of xylem

cells by influencing vessel lumen diameters (Kirdyanov et al.,

2003; Fonti et al., 2013). In addition, the formation of wider

vessels in years with warm air temperatures – during which

vulnerability to freezing-induced xylem cavitation is reduced –

could result from a shift in the trade-off between efficiency and

safety reweighted toward efficiency (Tyree et al., 1994; Gorsuch

et al., 2001; von Arx et al., 2012; Nielsen et al., 2017). The strong

correlation between MLA25 and current (n) May-early

September temperature (Figure 3, Table 2) can also be seen as

the combined effect of two distinct signals, i.e. (i) accelerated

snowmelt due to warm air temperatures in May and therefore an

earlier start of the growing season (Francon et al., 2017, Francon

et al., 2020) as well as (ii) vessel enlargement as a result of warm

summer (JJA) air temperatures. In addition, the weak response

of MLA25 to previous summer/fall air temperatures (n–1) tends

to confirm the assumption of cell enlargement being more

strongly influenced by direct insolation and air temperature
FIGURE 3

Correlation between the three selected chronologies (RW= ring width, CNo= cell number, and MLA25 = 25th percentile of lumen area
distribution) with daily temperature data over time periods (1960-1989, 1990-2019), ranging from 10 to 150 days data (window width), using the
dendroTools R package. In the graphs, R2 values are shown, with significant values (p < 0.5) displayed with brighter colors than not significant
ones (N.S., p > 0.05).
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than by the residual positive effects of warm conditions in the

year preceding ring formation (Martin-Benito et al., 2013).
3.3 Fading climatic signal in cell
chronology

By contrast, the same correlations between the different R.

ferrugineum chronologies and air temperature decrease sharply

when analyzed over the period 1990-2019 (Figure 3).

Interestingly, although correlations with summer temperatures

(June 10 – September 8, n) remain statistically significant

(p<0.05) in the RW and CNO chronologies, they decrease

markedly to 0.42 and 0.40, respectively. By contrast, in the

case of the MLA25 chronology, relationships with air

temperatures (n) are not significant anymore irrespective of

the time window selected (i.e. any time window between 10 and

150 days) (Figure 3, Table 2). The winter air temperature and

precipitation signals decrease equally in the three chronologies

(Figure 3, Figure 4, Table 2) while correlations with summer

(July 1 – July 21) precipitation totals (r = -0.6 for RW, -0.51 for

CNo, and -0.55 for MLA25, p < 0.05, respectively) become

significant during this period (Figure 4, Table 2).
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This evolution of ring widths–climate relations observed at

our study site somewhat echoes the “divergence problem”, first

identified by Briffa et al. (1998). This phenomenon refers to the

increasing loss of boreal forest growth to air temperature signals

since the late 20th century. Ever since, signs of divergence have

been reported for various tree species growing at high-latitude

(e.g., D’Arrigo et al., 2008) and high-altitude sites (e.g., Büntgen

et al., 2008). The results reported in this study on R. ferrugineum

are not only in line with work presented earlier on changes in

tree growth, but also align nicely with recent studies reporting

similar losses or shifts in climate sensitivity of shrubs and herbs

to climate at local (e.g., Gamm et al., 2018 inWestern Greenland;

Weijers et al., 2018 in the central Norwegian Scandes; Dolezal

et al., 2020 in the Low Tatras of Slovakia; Francon et al., 2020a;

Francon et al., 2020b in the Northern French Alps) and regional

(see Buchwal et al., 2020 in the Arctic; Francon et al., 2021 in the

Alps) scales since the 1990s.

Yet, such a drastic loss of a climatic signal like the one

documented in our study for cell lumen area (MLA25) has not

hitherto been observed and represents a completely new level of

signal loss in shrubs. The findings we report here are all the more

unexpected as one major argument for the development of

quantitative wood anatomy relies on the assumption that
FIGURE 4

Correlation between the three selected chronologies (RW= ring width, CNo= cell number, and MLA25 = 25th percentile of lumen area
distribution) and daily precipitation data from the automated weather station Segl-Maria over time periods (1960-1989, 1990-2019), ranging
from 10 to 150 days data (window width), using the dendroTools R package. In the graphs, R2 values are shown, with significant values (p < 0.5)
displayed with brighter colors than not significant ones (N.S., p > 0.05).
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series of anatomical features would be far less influenced by

external disturbances and more directly connected to climate

parameters than RW, and that wood anatomical series should

thus provide more stable relationships with climate (George and

Esper, 2019; Björklund et al., 2020). In fact, Lehejček et al. (2017)

have shown that cell wall thickness chronologies of J. communis

shrubs exhibit stable correlations with summer air temperatures

and the summer standardized precipitation evapotranspiration

index (SPEI) and that the same correlations could not be

observed in RW or other growth parameter series (including

MLA). In line with Mérian and Lebourgeois (2011), one could

therefore argue that the loss of climate signals since the 1990s

could result from higher inter-individual variability. Yet, the
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strong increase of inter-series correlation (Figure 2A, Table 1,

S1) observed after 1990 argues against this hypothesis in our

case. Instead, we rather adhere to two alternative hypotheses –

being of climatic and edaphic origins – to explain the evolution

observed at our site.

In a context of global warming, one might think that the

recent loss of vessel sensitivity to temperature could result from a

reduction of vessel lumen area aimed at protecting the plant

against more frequent summer drought and frost-induced

cavitation (Tyree et al., 1994). Yet, the negative correlation

that we observe between the MLA25 chronologies and

summer precipitation since the 1990s and the location of the

sampled individuals – at treeline, on a north-facing slope – leads
TABLE 2 Highest correlation coefficient values occurring in specific time periods calculated between the three selected chronologies (RW= ring
width, CNo= cell number, and MLA25 = 25th percentile of lumen area distribution) and daily climatic data (temperature and precipitation).

TEMPERATURE

1960-1989 1990-2019

R-value (optimum window) Period R-value (optimum window) Period

Current summer

MLA25 0.801 (121) May 08 – Sept 05 NS NS

CNo 0.683 (99) June 11 – Sept 17 0.493 (38) July 19 – Aug 25

RW 0.646 (98) June 10 – Sept 15 0.476 (46) July 09 – Aug 23

Previous* late summer

MLA25 0.528 (66) July 22* – Sept 25* 0.521 (38) Aug 01* – Sept 07*

CNo 0.490 (67) July 21* – Sept 25* NS NS

RW 0.557 (89) July 22* – Oct 18* NS NS

Current winter

MLA25 -0.397 (18) Feb 24 – March 13 -0.418 (29) Jan 12 – Feb 09

CNo -0.591 (15) Feb 24 – March 10 -0.410 (23) Feb 03 – Feb 25

RW -0.630 (26) Feb 24 – March 21 -0.440 (47) Jan 19 – Mar 06

PRECIPITATION

1960-1989 1990-2019

R-value (optimum window) Period R-value optimum window Period

Current winter

MLA25 -0.684 (67) Jan 12 – March 19 -0.492 (75) Dec 3* - Feb 14

CNo -0.638 (38) Feb 11 – March 20 -0.505 (22) Jan 23 – Feb 13

RW -0.598 (51) Jan 12 – March 13 -0.434 (22) Jan 23 – Feb 13

Current summer

MLA25 NS NS -0.548 (21) July 01 – July 21

CNo NS NS -0.505 (22) July 02 – July 21

RW NS NS -0.601 (17) July 03 – July 19

*=Previous year; NS, Not Significant.
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us to reject the summer drought hypothesis. By contrast, and

relying on results of a study from the French Alps using a locally

calibrated meteorological model, specifically designed for the

mountain environment, Francon et al. (2020) showed the

detrimental effect of spring frost events on R. ferrugineum

radial growth. Likewise, the sharp growth reductions observed

in 2001 and 2005-2008 (Figure 2B) at our study site might

indeed be attributed to frost and possibly add further evidence to

the role of frost on MLA25 and the associated loss of MLA25

sensitivity to conventional climate parameters since c. 1990. Yet,

in the absence of local meteorological data, this assumption lacks

on-site validation.

In addition, further factors related to climate and/or

morphological traits might have contributed to the signal loss

observed in our study, including a phenological shift in time due

to recent climate warming (e.g., Nagy et al., 2013; Ranjitkar et al.,

2013; Prevéy et al., 2020; Rosbakh et al., 2021). Although

differences in age/size within the population as well as a

divergence in inter-individual resistance to frost (e.g.,

Marchand et al., 2020) could also be related to a climate signal

loss, the strong inter-series correlation values observed in our

study together with the common growth-reduction responses

observed in all individuals independently of their age/size, tend

to exclude the latter hypothesis.

A second hypothesis might be considered in which the loss of

climate sensitivity of R. ferrugineummay have been exacerbated as

a result of permafrost degradation in the Castelletto rock glacier.

Although a thick layer of debris acts as a strong insulator and

consequently dampens ice melting in rock glaciers, several studies

report a marked warming of ice in rock glaciers and a related

acceleration in rock glacier movements in the European Alps over

the last decades (e.g., Hoelzle et al., 2001; Evatt et al., 2015;

Pruessner, 2017; Anderson et al., 2018; Jones et al., 2019;

Cusicanqui et al., 2021). At Castelletto, we cannot rule out the

possibility that the succession of warm summers (Figure S4),

amongst which the 2003 heatwave, may have reduced ice content

and increased active layer depth sufficiently (Gruber et al., 2004;

Åkerman and Johansson, 2008; Nowinski et al., 2010) to have

repercussions on R. ferrugineum growth. Indeed, an increase in

water and nutrient availability due to permafrost thaw is expected

to favor resource acquisition, shrub growth (Iturrate-Garcia et al.,

2020), and expansion (Limpens et al., 2021), at the expense of

their resistance to stress (e.g., extreme climatic events, mechanical

and hydraulic failure, pests), caused by a slower bark thickness

and stem density production (Dıáz et al., 2016; Iturrate-Garcia

et al., 2020). In our study, the combined effects of the recent

variation of site-specific edaphic conditions (i.e., permafrost

degradation leading to changes in soil properties) along with

climate warming may be larger than the impact exerted by a
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single-main driver (e.g., summer temperature) on shrub growth.

This in turn could point to a far more complex response to

interacting macro- and micro-environmental factors. Yet, in the

absence of local permafrost data, this assumption cannot be

validated with on-site data. Therefore, to better understand the

anatomical and growth responses of shrubs to climate change in

rock glacier environments characterized by complex interactions

between rising air temperatures, permafrost degradation, and

evolving soil properties, we recommend relying on monitored

rock glaciers when assessing shrub growth in permafrost

environments in future studies.
4 Conclusions

Our study is the first to provide insights into the anatomical and

growth response of a ring-porous shrub species, R. ferrugineum, to

climate warming in the Alps. The strong correlations computed

between summer air temperatures and the mean lumen area

(MLA25) chronology developed not only confirm the robustness

of our approach but also underline the potential of shrub wood

anatomy to track past climate variability at high elevation sites.

Similarly, the winter precipitation signal detected in MLA25 is

consistent with previous dendroecological studies showing negative

effects of long-lasting snow cover on shrub radial growth in the Alps

(Carrer et al., 2019; Francon et al., 2020a). At the same time,

however, the strong decoupling of vessel size from climate since the

1990s echoes a divergence which has been reported previously for R.

ferrugineum radial growth in the Alps (Francon et al., 2021). Yet,

the amplitude of the divergence reported in our study is both

unprecedented and unexpected as wood anatomy has hitherto been

considered to provide much more stable relationships with climate

parameters than ring width (Lehejček et al., 2017; Björklund et al.,

2019). We offer several hypotheses to explain this loss of climate

sensitivity, including a drastic evolution of the active layer of the

rock glacier due to thawing permafrost (Åkerman and Johansson,

2008), an increased exposure of R. ferrugineum to late frost or

winter drought (Neuner et al., 1999; Jonas et al., 2008) or a

phenological shift in time due to recent climate warming. To test

these hypotheses, we recommend future studies to focus on

monitored rock glaciers where a more in-depth comparison of

wood anatomical responses of shrubs would be possible on rock

glaciers and adjacent ice-free areas.
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