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Arbuscular mycorrhiza mitigates
zinc stress on Eucalyptus
grandis through regulating
metal tolerance protein gene
expression and ionome uptake

Li-Na Han, Si-Jia Wang, Hui Chen, Ying Ren, Xian-An Xie,
Xing-Yang Wang, Wen-Tao Hu and Ming Tang*

Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Conservation and
Utilization of Subtropical Agro-bioresources, College of Forestry and Landscape Architecture,
South China Agricultural University, Guangzhou, China
Arbuscular mycorrhizal (AM) fungi are symbionts of most terrestrial plants and

enhance their adaptability in metal-contaminated soils. In this study,

mycorrhized and non-mycorrhized Eucalyptus grandis were grown under

different Zn treatments. After 6 weeks of treatment, the growing status and

ionome content of plants as well as the expression patterns of metal tolerance

proteins and auxin biosynthesis–related genes were measured. In this study,

mycorrhized E. grandis showed higher biomass and height at a high level of Zn

compared with non-mycorrhized plants. In addition, AM plants accumulated P,

Mg, and Mn in roots and P, Fe, and Cu in shoots, which indicate that AM fungi

facilitate the uptake of ionome nutrients to promote plant growth. In addition,

mycorrhiza upregulated the expression of EgMTP1 and EgMTP7, whose

encoding proteins were predicted to be located at the vacuolar membrane.

Meanwhile, Golgi membrane transporter EgMTP5 was also induced in AM

shoot. Our results suggest that AM likely mitigates Zn toxicity through

sequestrating excess Zn into vacuolar and Golgi. Furthermore, the expression

of auxin biosynthesis–related genes was facilitated by AM, and this is probably

another approach for Zn tolerance.

KEYWORDS

Eucalyptus grandis, auxin biosynthesis–related genes, arbuscular mycorrhiza, metal
tolerance protein, nutrient uptake, zinc stress
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Introduction

Zinc (Zn) was an utmost important micronutrient for all

living organisms, and it acted as catalytic and structural

component in a large number of enzymes and regulatory

proteins (Maret, 2009; Zhang et al., 2018; Kaur and Garg,

2021; Bae et al., 2022). Zn played an important role in

regulating plant growth and development, which involves

modulating a wide range of physiological processes: cell

proliferation, respiration, auxin biosynthesis, and antioxidative

defenses (Broadley et al., 2007; Zhang et al., 2018; Kaur and

Garg, 2021; Bae et al., 2022). However, high concentration of Zn

can be toxic. Excess Zn strongly decreased fresh weight and

inhibited net photosynthetic rate, transpiration, and stomatal

conductance in bean seedlings (Vassilev et al., 2011). In rice, a

high level of Zn induced the lateral root formation through

modulating the redistribution of auxin in root tips (Zhang et al.,

2018) as well as inhibited the root-to-shoot translocation and

distribution of P into new leaves by downregulating P

transporter genes (Ding et al., 2021).

To maintain the intracellular Zn level within physiological

limit, plants had developed a dynamic system involving Zn uptake,

efflux, transport, and sequestration via particular transporters

(Clemens et al., 2002; Stephens et al., 2011; Sinclair and Krämer,

2012). Zn transporters in plant included zinc/iron-regulated

transporter-like proteins (ZIP), metal tolerance protein (MTP),

heavy metal ATPases (HMA), natural resistance-associated

macrophage protein (NRAMP), yellow stripe-like transporter

family (YSL), ATP-binding cassette transporters (ABC), zinc-

induced facilitator 1 proteins (ZIF1), and plant cadmium

resistance proteins (PCR) (Sinclair and Krämer, 2012; Neeraja

et al., 2018; Kaur and Garg, 2021). Zn toxicity resulted in

suppressed expression of ZmZIP4, ZmZIP5, ZmZIP7, and

ZmZIP8 in shoots and ZmZIP3 in maize roots (Li et al., 2013).

In response to Zn stress, upregulation of MsZIP2 was a

detoxification mechanism to store excess Zn in xylem

parenchyma cells of Medicago sativa (Cardini et al., 2021).

Enhanced expression of ZIF1 by excess Zn had also been verified

inArabidopsi thaliana (Haydon andCobbett, 2007).Moreover, the

transcript amount of HMA4 was elevated in the roots and shoots

of M. sativa exposed to surplus Zn (Cardini et al., 2021).

MTP family as divalent cation transporters involved in metal

ion efflux from the cytoplasm into subcellular compartments or

to extracellular space (Sinclair and Krämer, 2012) and played a

pivotal role in alleviating heavy metal toxicity. Previously, MTP

family had been investigated at the genomic level in A. thaliana,

Oryza sativa, Citrus sinensis, Populus trichocarpa, and Glycine

max (Gustin et al., 2011; Fu et al., 2017; Gao et al., 2020; Haque

et al., 2022). According to substrate specificity, the members of

MTP family were phylogenetically classified into three

subfamily: Zn-CDF (to transport Zn, Cd, Ni, and Co), Zn/Fe-

CDF (to transfer Fe, Zn, Cd, Ni, and Co), and Mn-CDF (mostly,

to target Mn) (Montanini et al., 2007). In A. thaliana, five MTPs
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had been reported to transport Zn: AtMTP1, AtMTP2, AtMTP3,

AtMTP5, and AtMTP12 (Desbrosses-Fonrouge et al., 2005;

Arrivault et al., 2006; Fujiwara et al., 2015; Sinclair et al., 2018).

Arbuscular mycorrhizal (AM) fungi were obligate biotrophic

fungi, which formed mutualistic symbiosis with more than 70%

of terrestrial vascular plants (Brundrett and Tedersoo, 2018;

Tedersoo et al., 2020). In addition, AM fungi were eco-friendly

and effective in alleviating heavy metal stress of plants (Ferrol

and Tamayo, 2016; Nuria et al., 2016; Tedersoo et al., 2020; Riaz

et al., 2021). For example, when plants were cultivated in soils

containing toxic amount of Zn, AM fungi symbiosis induced

higher phosphorus (P) concentration and lower Zn

concentration in shoots than those grown in control

conditions (Dıáz et al., 1996). In addition, mycorrhization

increased the total chlorophyll content of plant grown in

metal-polluted soil but diminished the concentration of H2O2

and activity of glutathione reductase (GR), catalase (CAT),

guaiacol peroxidase (POD) and ascorbate peroxidase (APX)

(Fernández-Fuego et al., 2017). Glomalin-related soil protein, a

kind of glycoprotein produced by AM fungi, was able to

combine with metal ions to sequester them in soil,

consequently, to mitigate metal uptake by plants (Yang et al.,

2017). AM fungi increased the resistance of host to Zn stress by

upregulating the expression of ZNT:4, COPT/Ctr:2, YSL:3, and

CE:1 (Wang et al., 2022).

Eucalypts was well known for its fast growth and superior

hardwood, and it had been widely planted as economical tree.

Furthermore, eucalypts was popular for reclamation of degraded

land in coal mines, because of its ability to uptake heavy metals

from contaminated soil (Maiti and Rana, 2017). Previous studies

showed that Eucalyptus grandis can form symbiosis

relationships with AM fungi in both plantation and natural

woodland community, and symbiosis protected it from potential

damage of heavy metals (Adams et al., 2006; Chen et al., 2007;

Canton et al., 2016). With the publication of E. grandis genome

(Myburg et al., 2014), molecular mechanisms of E. grandis on

metals stress need further exploration.

To get further insight into the role of E. grandis MTP on Zn

homeostasis, we analyzed their expression patterns with/without

AM fungi under different Zn treatments. We also assess the

effects of Zn and AM fungi on ionome content and expression of

auxin biosynthesis–related genes in E. grandis. This study will be

helpful to the development of molecular markers for cultivar

breeding of E. grandis with a high Zn tolerance.
Materials and methods

Biological materials and
growth conditions

Rhizophagus irregularis DAOM197198 was used as the

mycorrhizal fungus and was propagated on Zea mays. After
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inoculation for 3 months, roots were treated with drought for

another 2 months. Spores of R. irregularis were collected by

modified sucrose-gradient centrifugation (Charoenpakdee

et al., 2010).

The roots containing spores were broken with a blender;

then, the roots were filtered through 710-, 200-, and 45-µm pore

sieves. After backwashing the contents of 45-µm sieve into a 50-

ml centrifuge tube, an equal volume of 50% (w/v) sucrose

solution was gently added into the centrifuge tube. Then, the

tubes were centrifuged at 2,000 rpm for 1 min with bench

centrifuge. The spores were collected on 45-µm pore sieve and

washed thoroughly to remove traces of sugar solution. Last,

spores were backwashed into tube.

One milliliter of the liquid containing spores collected by

sucrose-gradient centrifugation was dropped onto Miracloth

(Calbiochem). The number of spores on Miracloth was

counted with microscope, and the total number of spores was

calculated according to the volume of the mixing liquid. Thus,

we calculated the volume of liquid containing about 500 spores.

Eucalyptus grandis was used as host plant in this study. Seeds

were surface-sterilized with 1.5% sodium hypochlorite for 15 min

and washed with sterile water for three times and then were

cultured in a quarter-strength Murashige and Skoog medium (pH

5.9) with 3 g L−1 agar. After 4 weeks, the seedlings were transferred

to pots that contained sterile sands (the sands were sterilized three

times for 2 h at 121°C) and inoculated with or without R.

irregularis (about 500 spores per plant). The seedlings were

cultivated in a greenhouse at 24°C/18°C day/night temperature

under 16-h daylight and 50%–60% humidity. Moreover, the

seedlings were fertilized with modified Long-Ashon solution (30

mM KH2PO4; Hewitt, 1966) every 3 days. After 5 weeks,

mycorrhiza formation was checked following the MYCOCALC

program (http://www2.dijon.inra.fr/mychintec/Mycocalc-prg/

download.html). Then, the seedlings were fertilized with the

abovementioned modified Long-Ashon solution containing 5,

50, and 150 mM Zn once a week for 6 weeks, respectively (Fu

et al., 2017; Gao et al., 2020; Wang et al., 2021). Before harvest,

fresh weight and length of root and shoot were measured. Then,

roots and shoots were separated and frozen immediately in liquid

nitrogen and then were stored in −80°C refrigerator.
Elemental concentration analyses

To measure Zn, P, Mg, Fe, Cu, and Mn concentrations in E.

grandis, the roots and shoots were dried in vacuum lyophilizer

(Christ, Germany). After fine grounding, the samples were

weighed and then were digested in 1 ml of 6 M nitric acids at

90°C for 2 h. The digested product was diluted with equal

volume of sterile water and then was filtered. After a further

dilution (1:10), the element concentrations were analyzed with

inductively coupled plasma optical emission spectrometry (710-

ES, VARIAN, USA) (Xie et al., 2021, 2022).
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Phylogenetic analyses

The MTP sequences of A. thaliana, O. sativa, G. max, C.

sinensis, P. trichocarpa, and E. grandis were obtained from the

NCBI (www.ncbi.nlm.nih.gov) and Phytozome database

(phytozome-next.jgi.doe.gov) (Gustin et al., 2011; Fu et al.,

2017; Gao et al., 2020; Haque et al., 2022). The sequences of

identified MTP were listed in Table S1. The sequences were

aligned with Clustal W. MEGA 7.0 was used to construct

neighbor-joining tree with 1,000 bootstrap trials, and the

evolutionary distance was analyzed with the Poisson

correction method (Qi et al., 2022).
Gene expression analyses

Total RNA was extracted from the roots and shoots of

E. grandis based on the modified CTAB-LiCl approach

(Singh et al., 2015). cDNA was synthesized from 1 mg of total

RNA with HiScript III RT SuperMix for qPCR (+gDNA wiper)

kit (Vazyme, Nanjing, China), and then, it was three-fold

diluted with sterile water. Real-time PCR were performed

using Bio-Rad iQ5 and ChamQ Universal SYBR qPCR Master

Mix (Vazyme, Nanjing, China). The relative expression level of

MTP in both roots and shoots of E. grandis, as well as auxin

biosynthesis–related genes in roots, were normalized with

the normalization factor EgUBI3 and presented as 2−DDCt

(Livak and Schmittgen, 2001). For the expression of EgMTPs,

the expression level in NM roots with 5 mM Zn was defined as 1.

The gene-specific primers for real-time PCR were summarized

in Table S2.
Mycorrhizal colonization

Fresh AM roots were fixed in 10% KOH (W/V) solution for 2

weeks under 37°C, and the solution was renewed every 3 days. After

washing with sterile water, the roots were neutralized with 2% HCl

(W/V) for 15 min. After another washing twice with sterile water,

the roots with WGA-Alexa Fluor 488 (WGA488) then stained for

2 h at room temperature (Xie et al., 2021). Mycorrhizal colonization

was quantified following the MYCOCALC program. We also

launched confocal microscopy analysis performed with Zeiss 780

laser scanning confocal microscope.
Statistical analyses

Data were analyzed by SPSS software version 19.0 (Chicago,

USA). The effects of mycorrhization and Zn on gene expression

and ionome concentrations were evaluated by one-way analysis

of variance. Results were indicated as mean ± standard error of

at least three biological replicates. Statistical differences were
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calculated using the Student’s t-test with P < 0.05 as the

significance thresholds. In addition, GraphPad Prism (version

8.0), TBtools (Chen et al., 2020), and iTOL were used to

display graphics.
Results

Effect of Zn and mycorrhiza on the
growth of E. grandis

Regarding the effects of Zn stress on non-mycorrhizal (NM)

plants, Zn treatment led to decrease of root and shoot fresh

weight (Figures 1A, B). Inoculation with AM fungi improved

both roots and shoots fresh weight of E. grandis, especially under

150 mM Zn treatment (Figures 1A, B). Considering AM plants,

Zn stress on the fresh weight of roots was prominent, whereas it

was not indistinctive for the shoots.

With the increase of Zn concentrations, the plant height was

suppressed in NM plants, whereas AM fungi inoculation eased

the suppression on the height of E. grandis from Zn (Figure 1C,

D). However, mycorrhiza cannot completely eliminate the

inhibition by Zn stress on plant height: The height of AM

plants at 50 and 150 mM Zn was still significantly lower than

at 5 mM Zn (Figure 1C, D).
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Effect of Zn and mycorrhiza on the
ionome of E. grandis

Nutrient interactions in plants, in response to variable

environmental stresses, significantly affect plant survival and

development. With Zn treatment, Zn accumulated in NM roots,

whereas the contents of P, Mg, Fe, and Cu decreased (Figure 2A).

Meanwhile, Zn accumulation also occurred in NM shoots, but

the concentrations of P, Mg, Fe, and Mn declined (Figure 2B).

Moreover, the concentration of Mn in roots and Cu in shoots

was unaffected.

Compared with NM roots, the concentration of Zn, P, Mg,

andMnwas much higher in AM roots; nevertheless, Fe decreased,

and Cu remained unaffected (Figure 2A). On the other hand,

Zn and Mn contents were lower in AM shoots than that in NM

shoots; P, Fe, and Cu were accumulated in AM shoots (Figure 2B).
MTPs of E. grandis

MTP sequences of A. thaliana were used as queries to search

against E. grandis genome in Phytozome database to identify the

MTP genes of E. grandis. After the conserved domain analysis, a

total number of 16 MTP encoding genes were identified:

EgMTP1, EgMTP2, EgMTP3.1, EgMTP3.2, EgMTP4, EgMTP5,
A B

D

C

FIGURE 1

Effects of Zn and AM fungi on the growth of E. grandis. (A) Root fresh weight; (B) shoot fresh weight; (C) plant height; (D) the phenotype of E.
grandis with or without AM fungi under 5, 50, and 150 mM Zn treatment. NM, non-mycorrhizal plants; AM, mycorrhizal plants. Values were
indicated as mean ± SE of six biological replicates. Different letters above bars indicated significant differences at P < 0.05.
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EgMTP6 , EgMTP7 , EgMTP8 .1 , EgMTP8 .2 , EgMTP9 .1 ,

EgMTP9 .2 , EgMTP10 , EgMTP11 .1 , EgMTP11 .2 , and

EgMTP12 (Figure 3).

To better understand the evolutionary characteristics and

possible functions of the MTP family in E. grandis, a neighbor-

joining tree consisting of 84 MTPs (including 12 MTPs from A.

thaliana, 10 from O. sativa, 12 from G. max, 12 from C. sativus, 22

from P. trichocarpa, and 16 from E. grandis) was constructed

(Figure 3). As previously reported, these proteins were divided

into Zn-CDF, Zn/Fe-CDF, and Mn-CDF clusters (Montanini et al.,
Frontiers in Plant Science 05
2007; Gustin et al., 2011), with seven (EgMTP1 to EgMTP5 and

EgMTP12), two (EgMTP6 and EgMTP7), and seven (EgMTP8.1 to

EgMTP11.2) MTP members, respectively (Figure 3).
Effect of Zn and mycorrhiza on the
expression of EgMTPs

Previously, the expression of ZIP2 was upregulated by excess

Zn and downregulated by AM symbiosis both in Medicago
A

B

FIGURE 2

Total mineral element concentrations. The microelements (Zn, Fe, Cu, and Mn) and macroelements (P and Mg) of roots and shoots were
analyzed by ICP-OES. NM, non-mycorrhizal plant; AM, mycorrhizal plant. (A) Total mineral concentration in root. (B) Total mineral
concentration in shoot. Values were indicated as mean ± SE. Different letters above the bars indicated significant differences between
treatments (P < 0.05).
frontiersin.org

https://doi.org/10.3389/fpls.2022.1022696
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Han et al. 10.3389/fpls.2022.1022696
truncatula and Astragalus sinicus (Burleigh et al., 2003; Xie et al.,

2021). Herein, we analyzed the expression patterns of MTPs in

NM and AM plants supplied with different concentrations of Zn.

In NM roots, the expression of EgMTP1, EgMTP5, and

EgMTP7 were significantly repressed by high-Zn treatment,

whereas EgMTP2 presented an overall upward trend, and no

significant difference was detected in EgMTP3.1, EgMTP3.2,

EgMTP4, EgMTP6, and EgMTP12 (Figure 4A). As for AM root,

Zn mostly reduced the expression of EgMTPs, except for EgMTP7.

However, compared with NM roots, mycorrhiza induced the

expression of EgMTP1, EgMTP5, and EgMTP7 (Figure 4A).

Regarding to NM shoots, the expression pattern of EgMTP3.1

showed a downward trend with increased Zn concentration,

whereas EgMTP1, EgMTP4, EgMTP5, EgMTP6, and EgMTP7

were upregulated (Figure 4B). In AM shoots, Zn treatment

induced the expression of EgMTP1, EgMTP2, EgMTP3.1, and

EgMTP5, and upregulated EgMTP1 and EgMTP5 compared with

that in NM shoots (Figure 4B). Overall, mycorrhiza induced the

expression of EgMTP1, EgMTP5, and EgMTP7 in roots and

EgMTP1 and EgMTP5 in shoots.
Effect of Zn and mycorrhiza on the
expression of the auxin biosynthesis–
related gene

To further investigate the effects of Zn stress on auxin

biosynthesis in E. grandis, we analyzed the expression patterns
Frontiers in Plant Science 06
of EgAAO3, EgYUC2, EgYUC3, and EgAMI1. EgAAO3 was

strongly induced at 50 and 150 mM Zn (Figure 5A).

Meanwhile, EgYUC2 and EgYUC3 significantly expressed at

150 mM Zn (Figures 5B, C), and the expression of EgAMI1

was unaffected under any Zn concentration (Figure 5D).

Chareesri et al. (2020) and Wang et al.(2021) demonstrated

that, compared to the NM roots, the content of auxin in the

mycorrhizal rice and tomato roots significantly increased. To

elucidate how mycorrhiza increased auxin accumulation in AM

roots, we evaluated the transcript level of EgAAO3, EgYUC2,

EgYUC3, and EgAMI1. Compared with NM roots, the

expression of EgYUC2 and EgYUC3 was induced in AM roots

(Figures 5B, C), whereas EgAAO3 was repressed at 150 mM Zn

treatment (Figure 5A).
Mycorrhizal colonization

To analyze the effect of Zn stress on AM fungi development in

E. grandis, we quantified the mycorrhizal colonization rates in

roots inoculated with R. irregularis. Plants grown with 5, 50, and

150 mM Zn showed similar mycorrhizal frequency (Figure 6A),

based on the percentage of roots colonized by AM fungi in the

whole roots. Although symbiosis had already existed for 5 weeks

before the Zn treatment, mycorrhizal intensity was lower in AM

roots grown at 50 and 150 mMZn compared with that at 5 mMZn

(Figure 6B). Moreover, the arbuscule numbers decreased in AM

roots exposed to a high level of Zn (Figure 6C). Roots exposed to
FIGURE 3

Phylogenetic relationships of MTP. The neighbor-joining tree was generated using MEGA 7.0 with 1,000 bootstrap replicates. E. grandis MTP proteins
were in bold. At, Arabidopsis thaliana; Os, Oryza sativa; Gm, Glycine max; Pt, Populus trichocarpa; Cit, Citrus sinensis; Eg, Eucalyptus grandis.
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5 mM Zn had normal arbuscules, with full hyphal branches in the

cortical cells, but fewer arbuscules were formed with high-Zn

treatment (Figure 6D). In addition, intraradical hyphae at 150 mM
Zn contained more septa (Figure 6D), which was a morphological

signature of degradation of AM fungi. Intraradical hyphae was the

channel for transporting nutrients in AM fungi, and the formation

of septa prevented transport of nutrients to arbuscule, which led to

the death of the arbuscule. In a nutshell, high-Zn treatments

disturbed the arbuscule development through forming more septa

in intraradical hyphae.
Discussion

Mycorrhiza promotes the growth of
E. grandis under Zn stress

AM fungi were beneficial symbionts of plants that increased

host resistance to various environmental stresses. Mycorrhizal

Betula pubescens had higher fresh and dry weight than NM

plants in metal-polluted industrial soil (Fernández-Fuego et al.,

2017). In Cu-contaminated soils, symbiosis facilitated Cu

tolerance of maize with increasing fresh weight (Gómez-

Gallego et al., 2022). In our study, significantly higher biomass

and height were detected in mycorrhizal E. grandis (Figure 1).

AM fungi absorbed nutrients beyond the depletion zone that

develops around the roots through external mycelium and then

delivers them to host roots (Wang et al., 2017; Xie et al., 2021;

Gómez-Gallego et al., 2022). This was a quite effective way to
Frontiers in Plant Science 07
promote plant growth, and higher biomass further enhances the

Zn tolerance of plants.
Zn and mycorrhiza affect the uptake of
mineral elements

The growth and development of higher plants needed at

least 17 essential elements, among which P and Mg were known

as macroelements; Fe, Zn, Cu, and Mn were regarded as

microelements; and the interactions between macro- and

microelement were one of the key processes in the life cycle of

plants (Xie et al., 2019; Fan et al., 2021; Kumar et al., 2021).

Previous studies indicated that excess Zn triggered P starvation

in lettuce and rice (Bouain et al., 2014; Ding et al., 2021).

Similarly, we observed Zn increasing and P decreasing in both

root and shoot of E. grandis along with elevation of Zn treatment

(Figure 2). High Zn downregulated the expression of uptake and

transporter-related genes of P (Ding et al., 2021), which

inhibited the uptake and translocation of P; thus, less P was

transported to shoots under high-Zn treatment (Figure 2).

Consisting with the case of rapeseed seedlings (Wang et al.,

2009), the concentrations of Fe and Mg in roots and shoots of E.

grandis decreased with surplus Zn (Figure 2). On the other hand,

when maize was grown in high-Zn condition, the concentrations

of K, Ca, Mg, Fe, Mn, Ni, and Co significantly decreased in root,

and Mn and Cu diminished in shoot along with the increase of S,

Mg, and Mo (Bokor et al., 2015). Excessive Zn affected the level

of Fe sensing, resulting in Fe deficiency (Leskova et al., 2017).
A B

FIGURE 4

Expression profiles of EgMTP. The heat map was generated using the expression fold changes of EgMTP family. Relative gene expression was
calculated by the 2−DDCT method using the EgUBI3 as a normalizer. For each gene, the expression level in NM roots with 5 mM Zn was defined as
1. (A) The expression profiles of EgMTPs in root. (B) The expression profiles of EgMTPs in shoot.
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However, Cu content reduced in roots and Mn increased in

shoots of E. grandis with a high level of Zn (Figure 2). Cross-

talks between mineral nutrients involved with complicated

mechanisms; therefore, multi-level interactions among nutrient

elements needed further explore to better understand

their availability.

AM fungi can improve shoot biomass and retain metals in

roots to restrict their translocation to aerial parts under heavy

metal stress (Huang et al., 2018; Janeeshma and Puthur, 2020;

Riaz et al., 2021). In our study, more Zn was accumulated in AM

roots; less Zn, therefore, was transferred to AM shoots

(Figure 2). Moreover, AM fungal hyphal network functionally

extended the root system of hosts, granting the hosts the ability

to uptake mineral nutrients from enlarged soil volume to

enhance the metal tolerance of hosts (Göhre and Paszkowski,

2006; Wang et al., 2017; Gómez-Gallego et al., 2022). For
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example, Thlaspi praecox grew in soils highly contaminated by

Cd, Zn, and Pb, the concentrations of P, S, Ni, and Cu in both

AM shoots and roots were found to be increased (Vogel-Mikus ̌
et al., 2006). AM fungi improved the nutritional (P, N, Mg, and

Fe) and water status, and stimulated proline biosynthesis

of hosts, which enhanced the tolerance to Cd and Zn (Garg

and Singh, 2018). In addition, concentrations of P, K, Mg, and

Ca in mycorrhizal maize grown in Cu-contaminated soil were

often higher than that in NM plants (Gómez-Gallego et al.,

2022). Mycorrhiza significantly increased the concentrations of

P, Mg, and Mn in E. grandis roots, as well as P, Fe, and Cu in

shoots. However, Fe concentration in AM roots was lower than

that in NM roots but higher in AM shoots than that in NM

shoots (Figure 2), probably because the effect of Zn

accumulation was dominant and stimulates Fe transporting

from root to shoot.
A B

DC

FIGURE 5

Expression profiles of auxin biosynthesis–related genes. The relative expression of EgAAO3 (A), EgYUC2 (B), EgYUC3 (C), and EgAMI1 (D) was
calculated by the 2−DDCT method using the EgUBI3 as a normalizer. For each gene, the expression level in NM roots with 5 mM Zn was defined as
1. NM-Root, the root of non-mycorrhizal plants; AM-Root, the root of mycorrhizal plants. Values were indicated as mean ± SE. Different letters
on the histograms indicated significant differences (P < 0.05).
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To sum up, high Zn threatens plant growth by disturbing the

homeostasis of nutrient elements, and AM fungi eases the stress

to some extent.
Zn and mycorrhiza regulate the
expression of EgMTPs

MTPs played vital roles in exporting excess metal ions into

subcellular compartments or to extracellular space (Desbrosses-

Fonrouge et al., 2005; Arrivault et al., 2006; Fujiwara et al., 2015;

Migocka et al., 2018; Sinclair et al., 2018; Gao et al., 2020).

Because MTPs of Mn-CDF cluster mostly transported Mn

(Montanini et al., 2007), we analyzed the expression patterns

of MTPs of Zn-CDF and Zn/Fe-CDF clusters. As showed in

Figure 3, EgMTP1, EgMTP2, EgMTP3.1, EgMTP3.2, EgMTP4,

EgMTP5, EgMTP12, and EgMTP7 of E. grandis had high

similarity with MTPs of A. thaliana, G. max, P. trichocarpa,

and C. sinensis, which implied that they shared comparable

functions. Previous studies reported that AtMTP1 and AtMTP3

were vacuolar membrane transporters (Desbrosses-Fonrouge

et al., 2005; Arrivault et al., 2006), and MTP1, MTP3, MTP4,

and MTP7 of G. max, P. trichocarpa, and C. sinensis were also

predicted to be located at vacuole (Fu et al., 2017; Gao et al.,

2020; Haque et al., 2022). AtMTP5, AtMTP12, and CsMTP5

were localized at the Golgi compartment (Fujiwara et al., 2015;

Migocka et al., 2018), whereas AtMTP2 and EgMTP6 were

endoplasmic reticulum membrane proteins (Sinclair et al.,

2018; Han et al., 2022). According to the grouping in the tree
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(Figure 3), we thus assumed that EgMTP1, EgMTP3.1,

EgMTP3.2, EgMTP4, and EgMTP7 were located at vacuole;

EgMTP2 and EgMTP6 were localized in the endoplasmic

reticulum membrane; and EgMTP5 and EgMTP12 were

membrane transporters of Golgi apparatus.

Desbrosses-Fonrouge et al. (2005) found that AtMTP1 acted

to exclude excess Zn into vacuoles and driven Zn accumulation

in young leaves. In this study, the expression of EgMTP1 was

suppressed in root but induced in NM shoot under Zn treatment

(Figure 4); the expression pattern was similar with that of

PtrMTP1 (Gao et al., 2020). As Zn can enter plant cell non-

specifically through plasma membrane transport proteins

(Arrivault et al., 2006), the overaccumulated Zn in root

suppressed the expression of EgMTP1 and enhanced the

transfer of Zn from root to shoot; then, excessive Zn in shoot

upregulated the expression of EgMTP1 to promote the storage of

Zn in shoot vacuole. AtMTP3 mostly expressed in root and

functioned in the immobilization of Zn in root vacuoles,

restricting the movement of Zn from root into shoot

(Arrivault et al., 2006). The expression of EgMTP3.1 in NM

shoot was reduced under Zn oversupply, indicating that

EgMTP3.1 mediated Zn exclusion from shoot. Conversely,

EgMTP4 in NM shoot was induced under Zn oversupply

(Figure 4). We speculated that EgMTP4 and MTP3 had

difference physiological functions, and EgMTP4 promoted the

Zn storage in shoot vacuoles. The expression level of EgMTP7

was strongly intensified by Zn in NM shoot (Figure 4), a case

similar with PtMTP7 (Gao et al., 2020), suggesting that EgMTP7

transported Zn into shoot vacuole to remit the Zn toxicity.
A
B

D

C

FIGURE 6

Mycorrhizal colonization. (A) Mycorrhizal frequency, (B) mycorrhizal intensity, and (C) arbuscule abundance were quantified using the
MYCOCALC program. Values were indicated as mean ± SE. Different letters on the histograms indicated that the means significant differences
(P < 0.05). (D) a, arbuscule; h, hyphae; v, vesicles; s, septa; bar, 50 mm.
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AtMTP5 and AtMTP12 formed functional heterodimer to

load Zn into Golgi, but the expression of AtMTP12 was irrelevant

to Zn concentration (Fujiwara et al., 2015). Similarly, the

expression of EgMTP12 in NM plants was not affected by Zn

(Figure 4). In cucumber, CsMTP5 and CsMTP12 also functioned

as a heterodimeric complex, which involved in transporting Zn

into Golgi compartment, and the expression of CsMTP5 was

obviously upregulated with low-Zn treatment (Migocka et al.,

2018). Conversely, a high level of Zn increased the expression of

EgMTP5 in both NM roots and shoots (Figure 4). Therefore, we

propose that the heterodimeric complex EgMTP5-EgMTP12

functions to deliver excess Zn to Golgi compartment and is

regulated by zinc at the level of EgMTP5 transcription.

AtMTP2 contributed to the root-to-shoot Zn translocation

through plasmodesmus (Sinclair et al., 2018). The high

transcriptional level of EgMTP2 in NM roots responded to

excess Zn (Figure 4); therefore, more Zn was transferred to the

shoot through symplast pathway. In addition, our previous study

found that the expression of EgMTP6 was irrelevant to Zn

concentration, and heterologous expression of EgMTP6 in

zrc1-mutant yeast enhanced the Zn tolerance of zrc1D, which
cannot grow in high-Zn condition (Han et al., 2022). Thus,

EgMTP6 mediated the sequestration of Zn to endoplasmic

reticulum in the non-transcript level.

Recently, Gómez-Gallego et al. (2022) found an enhanced

expression of the vacuolar membrane transporters ZmHMA3a

and ZmHMA4 in AM plants under Cu stress. Mycorrhiza

promoted sequestering Cu into vacuole of root and shoot to

reduce Cu translocation to aerial part by regulating the genes of

Cu transporters (Gómez-Gallego et al., 2022). In Astragalus

sinicus, mycorrhiza downregulated the expression of AsZIP2 to

reduce absorbing excessive Zn (Xie et al., 2021). It seems that

mycorrhiza downregulates genes involved in metal uptake and

upregulates genes related to exportation to protect host plant

from metals toxicity. With Zn oversupply, mycorrhiza increased

the expression of EgMTP1 and EgMTP7 in roots, as well as

EgMTP1 and EgMTP5 in shoots, to facilitate the transport of

excess Zn into vacuole and Golgi for plant detoxifying.
Zn and mycorrhiza affect the expression
of auxin biosynthesis–related genes

In recent years, the alterations of auxin biosynthesis and

transport induced by heavy metals stimuli had been intensively

explored (Jiang et al., 2018; López-Ruiz et al., 2020; Angulo-

Bejarano et al., 2021; Wang et al., 2021). For instance, toxic Cu, Al,

Fe, and Ni disturbed auxin biosynthesis and distribution in root

tips to inhibit root growth and development (Wu et al., 2014; Li

et al., 2015; Song et al., 2017; Lesǩovï et al., 2020). Different from

excess Se that decreased the auxin biosynthesis via reducing the

expression of YUCCA1 and YUCCA3 in rice plants (Malheiros

et al., 2019), excess Zn enhanced the expression of EgAAO3,
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EgYUC2, and EgYUC3 (Figure 5). Previously, a comparative

transcriptomic investigation indicated that 24-h treatment of

200 mM Zn significantly induced the expression of auxin

biosynthesis genes (ATP SULFURYLASE ARABIDOPSIS1,

SUPERROOT1, TRYPTOPHAN AMINOTRANSFERASE OF

ARABIDOPSIS1, YUC2, YUC3, CYTOCHROME P450, and

AAO3) (Zhang et al., 2018). On the other hand, Cu toxicity was

found to inhibit auxin biosynthesis via reducing the expression of

TAA1 and YUCCA (Song et al., 2017). In contrast, transcriptomic

analyses of auxin biosynthetic-related genes, including auxin

amide synthase and tryptophan synthase, showed that Cu

induced their expression (Zhao et al., 2009). The discrepancies

in results might be related to differences in experimental exposure

time and treatment approach. However, excess Zn promoted the

expression of AAO3, YUC2, and YUC3 in E. grandis.

AM fungi had a positive effect on the regulation of the auxin

levels in plants under salt stress, drought, and biotic stress, and

auxin concentration in mycorrhizal plants was higher than

nonmycorrhizal plants (He et al., 2017; Liu et al., 2016;

Chareesri et al., 2020). Moreover, the activity of synthetic

auxin-inducible promoter DR5 increased in roots colonized by

R. irregularis, mainly in cells containing arbuscules (Etemadi

et al., 2014). Mycorrhiza is thus likely to promote auxin

synthesis. Our results showed that EgYUC2 and EgYUC3 were

upregulated in AM roots (Figure 5). Furthermore, the positive

correlation between auxin content and arbuscule abundance

suggested that maintaining cellular auxin homoeostasis was

involved in finely tuning AM symbiosis (Hanlon and Coenen,

2011). The auxin content with denser AM fungi colonization

was higher than those with sparser colonization in rice

(Chareesri et al., 2020). According to this study, the arbuscule

number at 150 mM Zn was significantly lower than at 5 mM and

50 mM Zn, but the expression of EgYUC2 and EgYUC3 was

higher. The result reveals that, although Zn restrains the growth

of mycorrhiza, it remarkably promotes the expression of auxin

synthesis genes.
Conclusion

To sum up, we herein propose a mechanism of Zn

detoxification in E. grandis (Figure 7): EgMTP1, EgMTP3.1,

EgMTP3.2, EgMTP4, and EgMTP7 involve in sequestering Zn in

vacuole; EgMTP2 and EgMTP6 mediate the Zn transport into

endoplasmic reticulum; and EgMTP5 and EgMTP12 load Zn

into Golgi. AM fungi inoculation enhances the expression of two

putative tonoplast transporters (EgMTP1 and EgMTP7) and one

Golgi transporter (EgMTP5) in E. grandis under Zn toxicity,

indicating that mycorrhiza facilitates the transfer of Zn into

vacuole and Golgi. In addition, mycorrhiza promotes mineral

nutrient uptake to improve the growth of E. grandis and induces

the expression of auxin biosynthesis–related genes to improve

mycorrhizal colonization to enhance the Zn tolerance. The
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results will be valuable to the development of molecular markers

for cultivar breeding of eucalyptus with a high Zn tolerance.

Further functional investigations were required to better

understand their role of EgMTPs to alleviate Zn toxicity.
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