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Balanced below- and above-
ground growth improved yield
and water productivity by
cultivar renewal for
winter wheat
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and Liwei Shao1*

1Key Laboratory of Agricultural Water Resources, The Center for Agricultural Resources Research,
Institute of Genetics and Developmental Biology, The Chinese Academy of Sciences, Shijiazhuang,
China, 2University of Chinese Academy of Sciences, Beijing, China
Breeding cultivars that can maintain high production and water productivity

(WP) under various growing conditions would be important for mitigating

freshwater shortage problems. Experiments were carried out to assess the

changes in yield and WP of different cultivars by breeding and traits related to

the changes using tubes with 1.05 m depth and 19.2 cm inner diameter buried

in the field located in the North China Plain. Six winter wheat cultivars released

from the 1970s to 2010s were assessed under three water levels for three

seasons. The results indicated that yield was on average improved by 19.9% and

WP by 21.5% under the three water levels for the three seasons for the cultivar

released in the 2010s as compared with that released in the 1970s. The

performance of the six cultivars was relatively stable across the experimental

duration. The improvement in yield was mainly attributed to the maintenance

of higher photosynthetic capacity during the reproductive growth stage and

greater above-ground biomass accumulation. These improvements were

larger under wet conditions than that under dry conditions, indicating that

the yield potential was increased by cultivar renewal. Traits related to yield and

WP improvements included the increased harvest index and reduced root:

shoot ratio. New cultivars reduced the redundancy in root proliferation in the

topsoil layer, which did not compromise the efficient utilization of soil moisture

but reduced the metabolic input in root growth. Balanced above- and below-

ground growth resulted in a significant improvement in root efficiency at grain

yield level up to 40% from the cultivars released in the 1970s to those recently

released. The results from this study indicated that the improved efficiency in

both the above- and below-parts played important roles in enhancing crop

production and resource use efficiency.
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water deficit, yield components, biomass accumulation3, root: shoot ratio,
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1 Introduction

Aggravated water deficit is one of the limiting factors of

wheat growth and productivity in many regions, including the

North China Plain (NCP) (Alia et al., 2019; Motazedian et al.,

2019; Yao et al., 2019). Due to the shortage of precipitation

during the winter wheat growing season, supplementary

irrigation is necessary to obtain high and stable yield in the

NCP (Fan et al., 2019). The impacts of water stress on grain yield

depended on complex growth processes of below- and above-

ground parts of crops, influenced by the intensity of soil water

deficit and genetic background of wheat cultivars (Nguyen et al.,

2022). In response to water deficit, the plants will continue to

exhaust its water residuals through root proliferation as

phenotypic stability (Nicotra et al., 2010). After the soil

moisture was depleted, stomatal conductance of leaves thereby

decreasing transpiration and photosynthesis rate, shrinking the

relative growth rate of crops and ultimately limiting dry matter

accumulation as plasticity responses (Sade et al., 2018; Bacher

et al., 2021).

Breeding cultivars with enhanced drought tolerance

performance in key growth periods through natural and

artificial selection was critical for improving yield potential

and water productivity of crops (Senapati et al., 2019).

Identifying the various mechanisms that adapt to the yield

reduction caused by drought stress among different wheat

cultivars is important to improve water productivity during

breeding processes (Bailey-Serres et al., 2019; Zeng et al.,

2021). Under water-limited conditions, achieving high biomass

and harvest index (HI) values are crucial for yield improvement

(Zhang et al., 2010; Deery et al., 2016; Thapa et al., 2019).

Changes in dry matter allocation between below- and above-

ground affected crop production among different wheat cultivars

(Zhu et al., 2022). The influence of the environment on morpho-

physiological traits is relatively low and predictable, resulting in

higher genetic progress compared to yield-based selection

(Fischer et al., 2012). Thus, indirect selection of traits related

to drought tolerance and high resource use efficiency during the

breeding process is an analytic approach that involves

understanding interrelationships among various attributes and

responses to environmental variation (Li et al., 2018; Pouri et al.,

2019; Rezzouk et al., 2022). Meta-analysis has indicated that the

breeding process of high-yield dryland winter wheat has been

continuously enhancing drought tolerance (high leaf water

potential and osmotic adjustment, with a small root system)

while weakening drought avoidance (large root biomass, small

leaf area, and reduced stomatal conductance under water

deficits) of plants (Li et al., 2021). For above-ground parts of

crops, flag leaf is the main component of the canopy at the

reproductive stage of winter wheat, and it is an important organ

to determine the grain- filling rate and final yield (Vicentea et al.,

2018). Physiological indicators such as net photosynthetic rate

and stomatal conductance have been used to clarify the water
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demand and dry matter allocation of crops at different stages at

the leaf level (Ruszkowski et al., 2015; Costa et al., 2019; Lamptey

et al., 2020).

Traits constituting yield were interrelated with each other

and influenced by morpho-physiological traits such as

phenology parameters, plant structure and physiological

activity among different wheat cultivars (El Mohsen et al.,

2012). The current breeding processes mainly aimed at specific

physiological and agronomic characteristics contributes to the

improvement of yield and drought tolerance of wheat cultivars,

while yield performance under water stress conditions was

determined by coordination mechanisms between below- and

the above-ground parts of the plant (Xie et al., 2017; Figueroa-

Bustos et al., 2020; Ober et al., 2021). Both natural and artificial

selection of wheat cultivars with high yield and drought

resistance processes numerous physiological and molecular

mechanisms adapt to water stress while realizing the potential

yield (Liu and Qin, 2021).

The hypothesis of this study was that the breeding processes

for winter wheat from the 1970s to 2010s increased the yield

potential of wheat cultivars by optimizing both below- and

above-ground growth. Improvement in grain yield and WP by

cultivar renewal depends on balancing the growth of above-

ground and below-ground parts of plants, characterized by

higher root system efficiency and harvest index to achieve high

yield without increasing carbon cost.
2 Materials and methods

2.1 Experimental design

Tube experiments were conducted at the Luancheng Agro-

Eco-Experimental station of the Chinese Academy of Sciences

(37°C53′ N, 114°C40′ E; 50 m asl) located in the northern part of

the NCP during 2017-2020 for three winter wheat growing

seasons. The PVC tubes (1.05 m length with a 19.2 cm inner

diameter) were buried flush with the soil surface surrounded by

field-grown winter wheat to keep the growing conditions of the

crop and the soil temperature in the tubes consistent with that in

the surrounding field. There was a movable shed used during

rainfall events to prevent rain, therefore all the water supply

came from irrigation. The tubes were filled with soil obtained

from the tillage layer of 0-20 cm in the surrounding field. The

soil properties and nutrient contents are shown in Table 1. The

initial soil water content for all tubes was set at 0.21 g g-1 (87.5%

of field capacity). Soil was packed into tubes with a bulk density

of 1.4 g cm-3, and the bottom of the tubes was sealed with plastic

film. The total soil depth for each tube was 1 m, and there was

5 cm depth without soil for the top of the tubes for water supply.

The top 10 cm soil layer of the tubes was mixed with 5.0 g of

diammonium (containing 46% P2O5 and 16% N), 2.0 g of urea

(containing 46% N) and 6.0 g potassium chloride (containing
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60% K2O) as base fertilizers before filling. The cultivars used in

this study were released in different years and had been widely

cultivated locally, i.e., Jimai 7 released in 1976, Jiami 26 in 1988,

Jiami 30 in earlier 1992, Shi 4185 in late 1999, Kenong 199 in

2006 and Shimai 22 in 2013, reflecting the general trend of the

drought-resistant and high-yield breeding processes of winter

wheat cultivars in Hebei province in the NCP. Thirty seeds were

selected and planted into each tube manually on approximately

the 15th of October. After sowing, the soil surface was covered

with 1 cm fine sand to reduce soil evaporation. At the three-leaf

stage, seedlings were thinned to 20 per tube.

The seasonal irrigation amount was set at 320 mm for the

high-level water supply (HW), 240 mm for the medium-level

water supply (MW) and 180 mm for the lower-level water

supply (LW). There were 18 treatments for six winter wheat

cultivars under the three irrigation treatments. Each treatment

had four replicates, and 72 tubes were used in total. Tubes were

randomly arranged in the field.

The irrigation schedule for the three irrigation treatments is

listed in Table 2. The total irrigation amount was equally divided

into several irrigations, applied at key growing stages including

jointing (approximately 160 days after sowing, DAS), heading

(approximately 190 DAS), anthesis (approximately 200 DAS)

and grain filling (approximately 208 DAS). At the jointing stage,

2.0 g urea was applied to each tube by dissolving into the

irrigation water. All tubes were harvested on approximately

June 10th.
2.2 Measurements

2.2.1 Phenology and leaf photosynthesis
During the three growing seasons of winter wheat, the

phenology parameters of all tubes were regularly monitored.

Pests, diseases, and weeds were prevented by spraying the same

pesticides as the surrounding fields to ensure the crops being not
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affected by those factors. During the heading (around 25th of

April) and grain filling stages (around 15th of May), four fully

expanded flag leaves of each tube were randomly selected to

measure the leaf photosynthesis rate (Pn) by a CO2 gas exchange

system (LI-6400, LI-COR Inc., USA) from 10:00 to 14:00 h local

time on sunny days. The four leaves were randomly selected

from each replicate of the treatments.
2.2.2 Biomass, grain yield and yield
components

At harvest, plants in each tube were manually cut from the

ground, plant height and the spike numbers of each tube were

measured. After air-drying to a constant weight (80°C for 48

hours), the total biomass of above-ground part of plant was

weighed. A thresher was used to separate grains from straw, the

weight of the grains (at 13% of water contents) was obtained, and

seed numbers were counted by an automatic grain counting

machine. The mean environmental yield was calculated as the

seasonal average grain yield of the six wheat cultivars under each

irrigation treatment. The harvest index (HI) was calculated as

grain yield/total above-ground biomass.
2.2.3 Soil water contents and root
measurements at harvest

After the above-ground parts of the plants were harvested, the

PVC tubes were excavated and separated into 20 cm thick

segments from top to bottom. Approximately 100 g of soil

sample without roots was removed from each segment for soil

water content measurement by the oven-drying method. The rest

of each soil column was washed to separate roots, and roots were

oven dried at 80 °C for 24 hours to determine dry weight. The root

weight density (RWD) was calculated as root weight/soil volume,

and the root: shoot ratio (RS) was calculated as total root weight/

above-ground biomass. Root system efficiency (RSE) in this study

was defined as grain yield per unit root weight.
TABLE 2 Irrigation schedules for the three water treatments.

Irrigation treatments Irrigation timing and amount (mm) Total irrigation (mm)

Jointing Heading Anthesis Grain filling

High-level water supply (HW) 80 80 80 80 320

Medium-level water supply(MW) 80 0 80 80 240

Low-level water supply (LW) 80 0 80 0 160
TABLE 1 Soil properties and nutrient contents for the soils collected from the field and used to fill the tubes.

SoilTexture Field capacity
(g/g)

Wilting point
(g/g)

Organic matter
(g/kg)

Total N
(g/kg)

Ava. N
(mg/kg)

Ava. P
(mg/kg)

Ava. K
(mg/kg)

Loam 0.24 0.09 18.9 1.1 89.7 20.5 95.6
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2.2.4 Evapotranspiration and
water productivity

Seasonal evapotranspiration (ET) was calculated using the

following equation:

ET ¼ P+I+SWD+CR-R-D (1)

where ET is the total seasonal evapotranspiration; P is

precipitation (mm); I is the irrigation water (mm); SWD (mm)

is the soil water depletion, which is defined as the soil water

content (SWC) of the whole column at sowing after subtracting

that at harvesting; CR is the amount of water rising from the soil

capillary to the root zone (mm); R is surface runoff (mm); and D

is the drainage of the soil water from the root zone (mm). P, D, R

and CR were taken as zero under the experimental conditions of

this study. Water productivity (WP) at the grain level was

calculated as grain yield/seasonal ET.
2.3 Data analysis

Microsoft Excel 2021 (Microsoft, Redmond, USA) and IBM

SPSS statistics 26 (IBM, Stanford, USA) were used for data analysis.
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Correlations among different parameters were analyzed based on

the average values of three growing seasons for each treatment. The

standard deviation of each parameter among different treatments

was obtained from the average values of the three growing seasons.

When the variance homogeneity test was successful, the least

significant difference (LSD) test was performed (P < 0.05).
3 Results

3.1 Grain yield and water productivity
among the six cultivars

The yields of the six wheat cultivars under different

irrigation treatments in the three seasons are shown in

Figure 1. With the renewal of winter wheat cultivars, the

yield of new cultivars in the same growing season was

significantly higher than that of the old cultivars, and the

improvement in yield was most significant under the

condition of HW. The yield of wheat cultivars decreased

significantly with the reduction in irrigation amount. The

average values of environmental yield were 1021.4 g m-2
A B

DC

FIGURE 1

Grain yield for the six winter wheat cultivars released in different years for each of the growing season (A–C, respectively) and the average
values for the three seasons (D) under the three irrigation treatments (Means ‘±’ standard deviation with different letters for the same irrigation
treatment differ significantly at P < 0.05. HW, high-level water supply; MW, medium-level water supply; and LW, low-level water supply).
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under HW, 910.3 g m-2 under MW and 790.9 g m-2 under LW.

Compared with the old cultivar ‘Jimai 7’, the yield of new

cultivar’Shimai 22’ increased by 24.6% under HW, 15.2%

under MW and 19.8% under LW, indicating that the yield

potential was improved by cultivar renewing especially under

relatively sufficient water supply.

The SWD and ET of wheat cultivars (Table 3) was affected

by the water supply condition. The average seasonal ET for the

six cultivars ranged from 462.7 to 486.0 mm under HW, from

399.7 to 407.2 mm under MW, and from 321.3 to 336.5 mm

under LW. Similar water consumption was found among the six

cultivars under the same water level, but with a large variation in

grain yield, resulting in a large variation in WP for the six

cultivars (Figure 2). The environmental average WP in the three

seasons was 2.16 kg m-3 under HW, 2.26 kg m-3 under MW and

2.41 kg m-3 under LW. There was a slight increase in WP from

HW to LW, indicating that water stress increased the overall

WP. Compared with the old cultivar ‘Jimai 7’, the WP of the new

cultivar ‘Shimai 22’ increased by 30.1% under HW, 16.6% under

MD and 17.8% under LD. WP was significantly improved with

renewal in cultivars, similar to grain production.

The trends in yield and WP improvement with renewal in

cultivars were similar, as shown in Figure 3. Continuous

improvements in yield and WP were obtained with the

cultivars released from the 1970s to 2010s. The results also

indicated that the improvements in yield and WP were affected

by the water levels. The average improvements in grain yield by

cultivar renewal were 5.99 g/m2/a under HW, 3.82 g/m2/a under

MW and 4.27 g/m2/a under LW. The average improvements for

WP were 0.012 kg/m3/a under HW, 0.011 kg/m3/a under MW,

and 0.016 kg/m3/a under LW. The results showed that yield

improvements were greater under HW than that under the MW

and LW treatments by cultivar renewal, while the improvement

in WP was greater under LW than under HW and MW. New

cultivars had better environmental adaptability to achieve their

yield potentials under various water supply conditions and have

the advantage of efficiently utilizing water under drier conditions

characterized by higher WP.
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3.2 Changes in yield components and
above-ground biomass production

Table 4 shows the three yield components (spikes per area,

seeds per spike and 1000-seed weight) for the six wheat cultivars

under different water treatments during the three seasons. The

yield reduction from HW to MW and from HW to LW could

attribute to the reduction in spikes per area (from 6.1-7.8%),

seeds per spike (2.1-9.8%) and 1000-seed weight (2.7-6.7%). The

yield increase from cultivar renewal could be attributed to the

increase in 1000-seed weight under various water supply

conditions (R2 = 0.53-0.87, significant at P < 0.05 and P <

0.01), followed by the seeds per spike under HW supply (R2 =

0.56; significant at P < 0.05). The 1000-seed weight of ‘Shimai 22’

was 7.9%-10.3% higher than the environmental average value

under the different water treatments.

The seed weight of new cultivars was less affected by water

supply. For example, the 1000-seed weight of ‘Shimai 22’

decreased by 0.66% and 4.58% under MW and LW,

respectively, compared with that under HW, while ‘Jimai 7’

decreased by 4.86% and 11.63%, respectively. The results

indicated that the grain weight of the new cultivars was higher

and stable than that of the old cultivars.

Plant height showed a declining trend from the old cultivars

to the recent cultivars (Figure 4A). Breeding processes reduced

the plant height of the new cultivars. With the reduction in plant

height, the HI increased by 11.4-17.0% from the old to the new

ones, and negative correlations were found between plant height

and HI under the three water levels (Figure 4B). The results

indicated that the cultivar renewing characterized by decreased

plant height allowed more biomass allocated to seeds, which was

manifested as the improvement in grain yield and HI.

There was no significant difference in the Pn of flag leaves

among the six wheat cultivars at the heading stage under HW

(Figure 5A), but a significant difference was found under MW,

LW and all water supply levels during the later grain filling stage

(Figure 5B). The Pn of flag leaves were significantly affected by

the decreased of water supply level. Since both MW and LW
TABLE 3 The average values of soil water depletion (SWD) and seasonal evapotranspiration (ET) of the six winter wheat cultivars released in
different years under the three irrigation treatments for the three growing seasons *.

Cultivars High-level water supply Medium-level water supply Low-level water supply

SWD (mm) ET (mm) SWD (mm) ET (mm) SWD (mm) ET (mm)

Jimai 7 166.0 ± 9.3a 486.0 ± 9.3 164.6 ± 6.1a 404.6 ± 6.1 167.6 ± 6.5ab 327.6 ± 6.5

Jimai 26 157.9 ± 5.9a 477.9 ± 5.9 165.8 ± 4.2a 405.8 ± 4.2 169.7 ± 3.2ab 329.7 ± 3.2

Jimai 30 164.0 ± 6.8a 484.0 ± 6.8 167.2 ± 10.3a 407.2 ± 10.3 164.0 ± 7.8ab 324.0 ± 7.8

Shi 4185 142.7 ± 9.6b 462.7 ± 9.6 160.3 ± 5.3a 400.3 ± 5.3 161.3 ± 4.6b 321.3 ± 4.6

Kenong 199 145.1 ± 7.0b 465.1 ± 7.0 159.7 ± 4.8a 399.7 ± 4.8 172.0 ± 10.4a 332.0 ± 10.4

Shimai 22 145.2 ± 4.0b 465.2 ± 4.0 159.9 ± 2.0a 399.9 ± 2.0 176.5 ± 3.6a 336.5 ± 3.6
fro
*: ‘±’ represents the standard deviation obtained from the average values of the three growing seasons, different lowercase letter indicates the significant difference among wheat cultivars at
same irrigation level at P < 0.05.
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were not irrigated at heading stage, there were no significant

difference between mean environmental Pn of two treatments.

The Pn of the new cultivar ‘Shimai 22’ was significantly greater

than that of the old cultivar ‘Jimai 7’ during the grain filling stage
Frontiers in Plant Science 06
under the three water levels. Compared with the Pn at the grain

filling stage under HW, the reduction in the flag leaf Pn under

LW was 16.4% for ‘Jimai 7’, 14.6% for ‘Jimai 26’, 12.5% for ‘Jimai

30’, 11.2% for ‘Shi 4185’, 6.6% for ‘Kenong 199’ and 8.0% for
A B

DC

FIGURE 2

Water productivity (WP) in each of the three growing seasons (A–C, respectively) and the average values for the three seasons (D) for six winter
wheat cultivars released in different years under the three irrigation treatments (Means ‘±’ standard deviation with different letters for the same
irrigation treatment differ significantly at P < 0.05. HW, high-level water supply; MW, medium-level water supply; and LW, low-level water supply).
A B

FIGURE 3

The changes in the average yield (A) and WP (B) of three seasons with the year of release of six winter wheat cultivars under three water supply
levels (HW, high-level water supply; MW, medium-level water supply; and LW, low-level water supply).
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‘Shimai 22’. The results indicated that the sensitivity of flag leaf

Pn to water stress was lower in new wheat cultivars than that in

the earlier-released wheat cultivars.

Under MW and LW, the Pn at the heading growing stage

of new winter wheat cultivars was relatively higher than that of

old cultivars. The higher metabolism of new cultivars during

vegetative growth accelerated the growth of plants characterized

by earlier anthesis (Figure 6A); thus, prolonging the grain filling

period combined with higher leaf Pn contributed to dry matter

accumulation. The biomass production increased by 6.6-12.0%

from the old to the new cultivars under the three water levels,

and higher biomass allocation during the reproductive stage was

important for the 1000-seed weight and yield improvement of

new wheat cultivars (Figure 6B). Under the LW, the Pn at the
Frontiers in Plant Science 07
grain filling growing stage of the new cultivar ‘Shimai 22’ was

18.3% higher than that of the old cultivar ‘Jimai 7’, while the

improvement in the corresponding 1000-seed weight was

18.6% (Table 4).

Water supply levels had significant effects on above-ground

biomass accumulation (AGB) and HI among wheat cultivars

(Table 5). Both HI and AGB were effective factors to evaluate the

ability of biomass accumulation and allocation to grains, and

positive correlations existed between the HI (Figure 7A) and

AGB (Figure 7B) with grain yield. Under HW, the yield change

from the old cultivars to new ones was in the range of -6.9% to

12.6% as compared to the environmental background average

yield, while the variation range of HI was from -5.1% to 5.8%,

and the corresponding AGB changed from -1.8% to 7.0%. The
A B

FIGURE 4

Plant height changes with the year of release of six cultivars (A) and the correlation of plant height with the harvest index (B) under three water
supply conditions averagely for the three growing seasons (NS, no significant relationship; **, significant at P < 0.01 and *, significant at P < 0.05.
HW, high-level water supply; MW, medium-level water supply; and LW, low-level water supply).
TABLE 4 The average values of the three yield components for the six winter wheat cultivars released in different years under the three irrigation
treatments for the three growing seasons *.

Cultivars High-level water supply Medium-level water supply Low-level water supply

Spikes per
area (m2)

Seeds per
spike

1000-seed
weight
(g)

Spikes
per area
(m2)

Seeds per
spike

1000-seed
weight
(g)

Spikes
per area
(m2)

Seeds per
spike

1000-seed
weight
(g)

Jimai 7 987.7 ± 18.0ab 23.2 ± 0.1b 39.4 ± 0.9b 967.6 ± 25.9b 23.8 ± 0.6c 37.5 ± 0.5b 944.5 ± 20.0a 22.4 ± 0.5b 34.8 ± 0.1c

Jimai 26 996.4 ± 27.8ab 25.9 ± 0.9a 37.1 ± 0.9c 871.6 ± 24.2c 26.1 ± 0.7ab 37.3 ± 0.6b 921.5 ± 13.2a 23.4 ± 0.2a 34.2 ± 0.6c

Jimai 30 1013.7 ± 20.0a 26.6 ± 0.7a 38.5 ± 0.8b 953.2 ± 18.0b 25.1 ± 0.2b 37.8 ± 0.4b 915.7 ± 15.4a 23.5 ± 0.4a 35.0 ± 1.0bc

Shi 4185 1007.9 ± 13.2a 26.0 ± 0.6a 38.9 ± 0.3b 1019.1 ± 1.8a 25.2 ± 0.6b 34.9 ± 0.7c 935.9 ± 5.0a 23.0 ± 0.5ab 36.6 ± 0.4b

Kenong 199 930.1 ± 10.0c 26.8 ± 0.4a 43.7 ± 0.9a 826.5 ± 13.2d 26.5 ± 0.5a 43.8 ± 0.8a 840.9 ± 13.2c 23.5 ± 0.2a 42.8 ± 0.3a

Shimai 22 970.5 ± 18.0b 26.8 ± 0.2a 43.3 ± 0.3a 910.0 ± 14.1c 25.4 ± 0.1b 43.0 ± 0.1a 886.9 ± 3.6b 24.1 ± 0.8a 41.3 ± 1.2a
frontiersin.or
*: ‘±’ represents the standard deviation obtained from the average values of the three growing seasons, different lowercase letter indicates the significant difference among wheat cultivars at
same irrigation level at P < 0.05.
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results showed that the yield improvement with cultivars

renewing of winter wheat depended on higher HI and AGB

under water stress conditions.
3.3 Changes in below-ground growth
related to cultivar renewal

Three wheat cultivars, ‘Jimai 7’, ‘Jimai 30’ and ‘Shimai 22’,

with release year of 1976, 1992 and 2013 respectively were selected

to analyze the root distribution along the soil profiles (Figures 8A–

C) and the SWD at different soil layers (Figures 8D–F). Water

stress generally promotes the growth of the root system to take up

more water to meet crop water demand. The average total root

weight among wheat cultivars increased from 231.9 g/m2 to 260.9

g/m2 from the HW to LW treatment, while the average soil water
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depletion during the growing season was 153.5 mm for HW,

162.9 mm for MW and 168.5 mm for LW, corresponding to

91.4%, 97% and 100% depletion of the available soil water stored

before sowing, respectively.

Differences in SWD along soil layers were found among the

six cultivars. New cultivars tended to have the ability to increase

root growth in deeper soil layers under water stress conditions,

resulting in a higher SWD. On average, for the three seasons, the

new cultivar ‘Shimai 22’ had a higher proportion of root weight

below the 60 cm soil layers than the old cultivar ‘Jimai 7’, and the

soil water uptake below the 60 cm soil layer was 10.0-26.4%

greater in the former than in the latter under MW and LW. The

results showed that the new wheat cultivars significantly

enhanced the capacity of soil water utilization in deep layers.

Although the new cultivars tended to have smaller total root

weights, the decrease in total root weight did not affect the
A B

FIGURE 6

Average date of anthesis among wheat cultivars with year of release (A) and correlation of average Pn at grain filling growing stage with 1000-
seed weight (B) under different irrigation treatments for the three growing seasons (NS, no significant relationship; **, significant at P < 0.01 and
*, significant at P < 0.05. HW, high-level water supply; MW, medium-level water supply; and LW, low-level water supply).
A B

FIGURE 5

Average Pn at heading (A) and grain filling stage (B) under different irrigation treatments for the three growing seasons (Means ‘±’ standard
deviation with different letters for the same irrigation treatment differ significantly at P < 0.05. HW, high-level water supply; MW, medium-level
water supply; and LW, low-level water supply).
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effective use of soil water storage. The old cultivar tended to have

a more extensive proliferation of roots in the topsoil, which did

not increase the soil water use but increased the ineffective input

in root growth.

The difference in the root growth and biomass production

among the cultivars resulted in the difference in the root: shoot

(Figure 9A) and ultimately affected the root efficiency at the yield

level (Figure 9B). Although higher root weight density benefited

soil water use, excessive root growth in the topsoil layers resulted

in redundancy in roots without increasing soil water availability

to cultivars released in earlier years. Excessive resource input in

the root system was not conducive to the accumulation of

photosynthetic products in grains, reducing the corresponding

grain yield per unit root. That is, the root system efficiency (RSE)

of ‘Shimai 22’ was approximately 27.6–48.6% higher than that of

‘Jimai 7’ under the three irrigation treatments, with a total root
Frontiers in Plant Science 09
weight approximately 9.7-16.1% lower. The results indicated

that an optimized root system structure with a decline in root

biomass under HW and moderate proliferation of roots in deep

soil layers under MW and LW treatments were beneficial for

improving RSE.

Significant positive correlations (P < 0.01) were found

between WP with HI and RSE (Table 6). Soil moisture under

the HW treatment ensured a comparatively sufficient water

supply during the growth period of winter wheat to delay leaf

senescence and reduce the impact of Pn reduction during the

reproductive stage on WP. A negative correlation between the

root: shoot and WP indicated that excessive root growth in

the topsoil layer, where roots are usually abundant, increased the

carbon input in root growth, which was not conducive to the

increase in soil water availability in deep soil layers and caused a

waste of photosynthetic products. The results indicated that the
A B

FIGURE 7

Correlation of average value of harvest index (A) and above-ground biomass (B) among each wheat cultivar with grain yield for the three
growing seasons (NS, no significant relationship; **, significant at P < 0.01 and *, significant at P < 0.05. HW, high-level water supply; MW,
medium-level water supply; and LW, low-level water supply).
TABLE 5 The average values of above-ground biomass (AGB) and harvest index (HI) for the six winter wheat cultivars released in different years
under the three irrigation treatments for the three growing seasons *.

Cultivars High-level water supply Medium-level water supply Low-level water supply

AGB (g m-2) HI AGB (g m-2) HI AGB (g m-2) HI

Jimai 7 2602.9 ± 35.8bc 0.35 ± 0.01c 2553.1 ± 66.6ab 0.34 ± 0.01c 2228.7 ± 9.4d 22.4 ± 0.00c

Jimai 26 2640.9 ± 59.6bc 0.37 ± 0.01bc 2393.4 ± 45.3b 0.35 ± 0.01bc 2159.7 ± 38.7e 23.4 ± 0.00b

Jimai 30 2600.7 ± 31.7c 0.40 ± 0.01ab 2476.5 ± 45.5b 0.36 ± 0.02bc 2217.6 ± 42.8cd 23.5 ± 0.01b

Shi 4185 2671.5 ± 27.6b 0.38 ± 0.01b 2426.0 ± 48.7b 0.37 ± 0.01b 2269.2 ± 12.6c 23.0 ± 0.00b

Kenong 199 2713.8 ± 77.3ab 0.40 ± 0.02ab 2585.4 ± 50.0a 0.37 ± 0.01ab 2324.2 ± 15.5c 23.5 ± 0.00a

Shimai 22 2771.5 ± 36.2a 0.41 ± 0.01a 2537.8 ± 15.1ab 0.39 ± 0.00a 2419.4 ± 44.6a 24.1 ± 0.01a
fro
*: ‘±’ represents the standard deviation obtained from the average values of the three growing seasons, different lowercase letter indicates the significant difference among wheat cultivars at
same irrigation level at P < 0.05.
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WP of winter wheat was affected by both above- and below-

ground characteristics.

4 Discussion

4.1 Contribution of above-ground
traits and dry matter allocation to
high-yielding wheat cultivars

The results from this study indicated that yield and water

productivity of new released wheat cultivars were significantly

higher than that of earlier released cultivars under a range of water
Frontiers in Plant Science 10
supplyconditions (Figures1–3).Manystudieshave indicated that the

biomass accumulation after anthesis play an important role in

achieving high grain production of winter wheat especially under

water stress condition (Liu et al., 2016; Yang et al., 2021). It has been

shown that each additional millimeter of water extracted by crops

during reproductive stage of winter wheat can produce an additional

grain yield of 55 kg ha-1 in the arid environment (Manschadi et al.,

2006). Zhang et al. (2009) reported that 60-80%of seedsweight came

from the dry matter accumulation of leaf photosynthesis during

anthesis and grain filling stage of winter wheat. The comparison of

the six wheat cultivars further showed that an earlier anthesis date

and maintaining a relatively high Pn at grain filling stages under
A

B

D

E

FC

FIGURE 8

Distribution of average root weight density (RWD) along soil profiles (A-C) and average soil water depletion (SWD) in different soil layers (D-F)
among three wheat cultivars released in different years under three irrigation treatments for the three growing seasons (HW, high-level water
supply; MW, medium-level water supply; and LW, low-level water supply).
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various irrigation treatments are important traits related to higher

biomass accumulation and yield improvement by cultivar renewal

(Figures 5, 6). The results of this study agreed with previous reports

that post anthesis dry matter production was significantly related to

the improvement in yield, while the leaf senescence of the old

cultivars sensitive to water stress conditions accelerated the

degradation of stored dry matter, ultimately limiting dry matter

accumulation and final yield (Abbasi et al., 2014; Sade et al., 2018;

Fang et al., 2021).

Grain yield of winter wheat was both affected by the biomass

production as well as the harvest index. Harvest index is

generally increased with the shortening in plant height. The

results from this study showed that the average value of plant

height at maturity decreased from 65.9 cm to 62.3 cm for the six

wheat cultivars released from the 1970s to 2010s (Figure 4A).

Wheat cultivar stabilized its grain yield at the cost of shoot

biomass via a significant decrease in plant height, suggesting a

potential for partitioning of biomass to seeds characterized by HI

is an important drought tolerance trait frequently found for

cereals (Dreccer et al., 2009; Beche et al., 2014). Artificial

selection for high-yielding cultivars indicated that shorter

plants allocated fewer resources to grow in height and more to

reproduction (Herder et al., 2010). Therefore, dwarfing alleles

were integrated into high durum wheat by crossing semi-
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dwarfing bread wheat, achieving significant improvement in

grain yield (Elazab et al., 2016).

The increased HI by cultivar renewing in this study was not

only related to the reduction in plant height, but also to the

increased efficiency in dry matter assimilation (Figures 7A, B)

and allocation of carbon products to seeds (Figure 4B). The

findings were consistent with others, such as Zhang et al. (2010);

Zhang et al. (2013) and Fang et al. (2017) found that the stable

and high yield of new winter wheat cultivars under various

irrigation treatments was attributed to the increased efficiency in

dry matter accumulation and allocation of carbon products to

grains. The improvement in HI of new wheat cultivars was the

result in the improved allocation of photosynthetic products to

seeds, and the annual genetic gain with cultivar renewing has

been proved consistently and positively associated with the grain

weight and harvest index (Sun et al., 2014).

The increased WP at grain yield level for the new released

cultivars as compared to the earlier released ones could be

explained by the increase in biomass production and HI under

similar water consumption, and in which HI played an important

role in the increased WP. Water productivity at grain yield level is

decided by the equation of biomass*HI/ET, the increased HI by the

cultivar renewing significantly benefited the improvement in WP.

Cultivar renewing not only increases the yield potential, but also
A B

FIGURE 9

Changes in root: shoot ratio at harvesting with the released year of wheat cultivars (A) and average RSE for the six cultivars (B) under three
water supply levels during the three growing seasons (Means ‘±’ standard deviation with different letters for the same irrigation treatment differ
significantly at P < 0.05. HW, high-level water supply; MW, medium-level water supply; and LW, low-level water supply).
TABLE 6 Correlation analysis of water productivity of winter wheat cultivars with the average Pn of flag leaves at grain filling (PnGF), harvest
index (HI), proportion of soil water depletion in deep soil layers (SWDd), root: shoot (RS) and root system efficiency (RSE) under three irrigation
treatments during the three growing seasons ※.

Water supply levels PnGF HI SWDd RS RSE

High water supply NS +** +* -** +**

Medium water supply +** +** +* -* +**

Low water supply +** +** +** -** +**
frontiers
※: +: meaning positive correlation, -: meaning negative correlation. NS: not significant, *: significant at P < 0.05 level, **: significant at P < 0.01 level.
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WP. Higher WPmeans less water use for similar yield or increased

yield without apparent increase in water consumption, which

would be quite important for food security under increased

water shortage situations around the world. New wheat cultivars

could restrict luxury transpiration over the growing season through

a more conservative water uptake strategy under water stress

conditions, and tended to achieve higher efficiency in dry matter

assimilation and water productivity (Richards et al., 2010).
4.2 Responses of root-related drought-
adaptive characteristics among different
winter wheat cultivars

Roots play an important role in the uptake of soil water and

nutrients to meet the requirements of the above-ground parts.

Maintaining a large root system would cost a lot of carbon

products from the above-ground part. Therefore, an economic

root system would be preferred. The results from this study

indicated that cultivar renewing decreased the root: shoot ratio,

but not the efficiency in utilization of the soil water (Figure 9).

Continued breeding and cultivar testing in high input conditions

removes constraints that would reveal root plasticity and selection

of cultivars with ideal responses (Schneider and Lynch, 2020). The

process of breeding shorter wheat cultivars may have produced

indirect responses such as the reduction in root biomass and root:

shoot ratio (Zhang et al., 2009; Bai et al., 2013).

The below-ground traits related to grain yield among wheat

cultivars, including root distribution and root: shoot ratio, are

affected by the genetic background and soil moisture (Fang et al.,

2017; Nakhforoosh et al., 2021; Bacher et al., 2021). Soil water

availability is the major limiting factor for yield improvement

under deficit water supply (Wu et al., 2020). The root system

architecture (spatial distribution of root length and biomass), as

well as its anatomical and hydraulic properties, regulates plant

water flow and maintains the whole plant water balance

(Sivasakthi et al., 2017). The results from this study indicated

that the limited-irrigation stimulated roots to grow into deeper

soil layers and thus enhanced the uptake of soil-stored water

from the subsoil layer (Figure 8), and there was higher density of

root system and soil water utilization in deep soil layers for the

new released wheat cultivars. Under deficit irrigation, water

consumption during vegetative growth of winter wheat would

results in insufficient available water for crops during the

reproductive stage (Liang et al., 2021). Previous studies have

shown that both yield and WP of winter wheat could be

improved by increasing subsoil water consumption, which can

increase available water for crops, especially during the

reproductive growth stage (Lilley and Kirkegaard, 2011; Xu

et al., 2016; Figueroa-Bustos et al., 2020).

Phenotypic plasticity of root: shoot ratio represents an

adaptive mechanism for plants to water stress, that the root
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growth is favored over the shoot to limit evaporation and

extract water residuals under drought (Correa et al., 2019;

Carminati and Javaux, 2020). However, when the total amount

of carbon assimilates is limited under water deficit, the

accumulation of a larger proportion of carbohydrates in root

tissues that maximize individual fitness in nature was one of the

reasons that reduced the yield of old cultivars (Ma et al., 2008; Qin

et al., 2019; Fradgley et al., 2020). In contrast, the root biomass in

total dry matter (root + stem) was decreased among new cultivars

with lower sensitivity to water stress conditions, and an optimized

root system structure could efficiently uptake soil water under

water stress conditions and allocate more biomass to grains

characterized by higher RSE (Figure 9B). The results of this

study were similar to those of Friedli et al. (2019) and Qi et al.

(2019), who reported that the reduction in plant height of renewed

cultivars significantly reduced the size of roots, thereby reducing

the root: shoot ratio among wheat cultivars under various water

supply conditions (Figure 9A). The gradual decrease in root

biomass of wheat cultivars introduced over the last 50 years of

breeding processes to increase grain yield by reducing nutrient

allocations to root growth (Aziz et al., 2017). In general, cultivars

with economical root structure under specific circumstances are

conducive to the improvement of grain yield (Van Oosterom

et al., 2016; Lynch, 2018; Boudiar et al., 2021).
4.3 Comprehensive regulation of below-
and above-ground parts of dryland
wheat cultivars to improve yield and
water productivity

Results from this study indicated that new released cultivars

out-performed the earlier released cultivars in both the below-

and above-ground part of plants. For the above-ground part, the

new released wheat cultivars produced more biomass and had

higher efficiency in allocation of the dry matter to grains,

resulting in a higher HI under various water supply

conditions. For the below-ground part, the new cultivars

reduced the input in root growth, but without compromising

the efficiency in utilization of the soil water, which resulted in the

reduction in root: shoot ratio and improved root efficiency. Plant

species have evolved specialized strategies to regulate their

above-ground biomass (AGB) and below-ground biomass

(BGB), thereby affecting carbon (C) inputs and cycling (Sierra

et al., 2017). Optimal partitioning theory (OPT), which assumes

that there are trade-offs in biomass allocation between AGB and

BGB, suggests that plants allocate biomass to acquire the limited

resource and achieve the maximum yield with the renewal of

cultivars (Ledo et al., 2018).

Previous studies indicated that the leaf photosynthetic rate

was regulated by both hydraulic and non-hydraulic root-sourced

signal (Lawlor and Cornic, 2002; Kong et al., 2013). There was
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positive correlation between leaf stomatal conductance and gas

exchange rate with water uptake by root system (Fang et al.,

2017). Deep, wide and multibranched roots are ideal target

traits for soil water utilization in the breeding processes of

drought-tolerant wheat cultivars, but there are trade-offs in

corresponding grain yield (El Hassouni et al., 2018; Carminati

and Javaux, 2020). Excessive growth of roots in topsoil

accelerated the depletion of soil water storage in early growth

stage of winter wheat, competition from adjacent roots

promoted the production of abscisic acid and triggered

reactive oxygen species generation, all of which would

negatively affected grain production (Batool et al., 2019).

During anthesis and grain filling stages, photosynthetic

products are mainly transported to grains instead of roots

(Woo et al., 2021). Maintain a large root system consuming a

large amount of photosynthetic assimilates and negatively

affecting crop production (Mehrabi et al., 2021). Newly

released wheat cultivars with thicker roots in the deep soil

layers and reducing roots in topsoil had a greater ability to

penetrate deeper soil layers; thus, plants have access to more soil

water storage under limited water supply (Figure 8), resulting in

relatively higher Pn during the reproductive stage with more dry

matter production for yield formation than cultivars that could

not efficiently utilize stored water (Rebetzke et al., 2016;

Figueroa-Bustos et al., 2020).

The results of this study were carried out under tube conditions,

and the correlations between specific traits with grain yield andWP

within tubes were not identical to those obtained from the field

(Zhang et al., 2009; Fang et al., 2017; Lu et al., 2020). The reason for

difference in results could be attributed to the proliferation of below-

and above-ground parts of crops responding to adjacent plant

structures in the field (Chen et al., 2021). Wheat cultivars that are

similar to their wild ancestors have strong competitiveness, while

artificial selection for high-yielding cultivars weakens the

competitiveness of individual plants with smaller root sizes and

the overlap between the canopies of nearby plants, indicating that

the results obtained from wheat cultivar breeding processes under a

control environment should be adopted for population selection in

the field (Weiner et al., 2017; Zhu et al., 2022).

Another factor that might affect the experimental results in

this study was that the growing conditions in the tubes was

different from that in the field, due to the restrictions to the root

growth by the tube wall. The soil physical properties of the

repacked soil inside the tube might also affect the root growth.

Valentine et al. (2012) reported that the elongation of roots in

repacked soil was much less than that in the field due to

differences in the continuous pore network among soil layers.

Therefore, in the processes of winter wheat breeding, either

high-yield traits of a single plant or the yield formation of plant

groups should be considered synchronously under various

environmental conditions.
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5 Conclusions

Breeding processes of cultivars with stable yield under water

stress conditions are of great importance to improve the yield and

WP of winter wheat. The results from this study showed that the

increased HI and reduced plant height among wheat cultivars

released from the 1970s to 2010s were important factors for the

improvement in grain production. New wheat cultivars could

make effective use of deep soil water storage by increasing the

proportion of deep roots and reducing the redundant root growth

in the topsoil layer without increasing the input to root growth.

Full utilization of soil water storage in deep soil layers among new

cultivars maintained a relatively higher leaf photosynthesis rate

and extended the reproductive stage through an earlier anthesis

date, increased biomass production and allocation to seed weight

and achieved higher yield than old cultivars. The root: shoot ratio

decreased with the renewal of wheat cultivars, resulting in more

photosynthetic products distributed to grains under limited

resources supplemented by higher RSE and WP. The results of

this study indicated that breeding high yield and high resource use

efficiency winter wheat cultivars need to balance the growth of

above- and below-ground parts of plants.
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