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Plant breeding field trials are typically arranged as a row by column rectangular

lattice. They have been widely analysed using linear mixed models in which low

order autoregressive integrated moving average (ARIMA) time series models,

and the subclass of separable lattice processes, are used to account for two-

dimensional spatial dependence between the plot errors. A separable first order

autoregressive model has been shown to be particularly useful in the analysis of

plant breeding trials. Recently, tensor product penalised splines (TPS) have

been proposed to model two-dimensional smooth variation in field trial data.

This represents a non-stochastic smoothing approach which is in contrast to

the autoregressive (AR) approach which models a stochastic covariance

structure between the lattice of errors. This paper compares the AR and TPS

methods empirically for a large set of early generation plant breeding trials.

Here, the fitted models include information on genetic relatedness among the

entries being evaluated. This provides a more relevant framework for

comparison than the assumption of independent genetic effects. Judged by

Akaike Information Criteria (AIC), the AR models were a better fit than the TPS

model for more than 80% of trials. In the cases where the TPSmodel provided a

better fit it did so by only a small amount whereas the AR models made a

substantial improvement across a range of trials. When the AR and TPS models

differ, there can bemarked differences in the ranking of genotypes between the

two methods of analysis based on their predicted genetic effects. Using the

best fitting model for a trial as the benchmark, the rate of mis-classification of

entries for selection was greater for the TPS model than the AR models. This

has important practical implications for breeder selection decisions.
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ARIMA time series models, tensor product penalised spline, separable lattice
process, spatial dependence, linear mixed models, genetic relatedness, Akaike
information criteria
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2022.1021143/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1021143/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1021143/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1021143/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1021143/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.1021143&domain=pdf&date_stamp=2023-01-18
mailto:bgogel@uow.edu.au
https://doi.org/10.3389/fpls.2022.1021143
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.1021143
https://www.frontiersin.org/journals/plant-science


Gogel et al. 10.3389/fpls.2022.1021143
1 Introduction

Spatial dependence between neighbouring plots occurs

naturally in plant breeding and other agricultural field trials

laid out as a row by column rectangular lattice. This is due to

heterogeneity across the trial area, mostly due to local variation

in soil conditions, for example, changes in soil fertility and

moisture content. As early as the 1920’s, Sir R. A. Fisher was

concerned that yield observations on adjacent plots in field trials

were highly correlated relative to observations that were further

apart (Box, 1978). Since then there is a rich literature on

methods to account for this dependence in field trial analysis,

where a main aim is to produce accurate and reliable estimates of

the treatments under evaluation (or treatment contrasts) and

their standard errors. Early methods involved adjusting plot

yields by the value on neighbouring plots in a covariance analysis

(Papadakis, 1937; Bartlett, 1978). Differencing techniques were

introduced to remove non-stationary spatial association between

adjacent plots in a single dimension (Wilkinson et al. (1983);

Green et al. (1985); Green (1985); Besag and Kempton (1986)),

and Gleeson and Cullis (1987) modelled spatial correlation

directly using a low order autoregressive integrated moving

average (ARIMA) process, also in one dimension. Their

framework was a linear mixed model (LMM) for first- or

second-differenced data and they used the residual maximum

likelihood (REML) method (Patterson and Thompson, 1971) for

variance parameter estimation. Martin (1990) encouraged the

use of time series models for field trial data and suggested that

the subclass of separable lattice processes could overcome many

of the problems associated with modelling covariance in two

dimensions. Motivated by Martin (1990); Cullis and Gleeson

(1991) extended their one-dimensional spatial analysis to a two

dimensional analysis assuming separability. Martin (1990)

recognised that increased correlation along rows and columns

due to trial management practices was a common cause of non-

stationarity in field trial data, and Cullis and Gleeson (1991)

recommended differencing the data to ensure that the spatial

process is stationary. However, empirical evidence over many

years suggests that a separable first order autoregressive process

(A×A), together with random row and column terms, generally

provides an adequate fit for (un-differenced) field trial data

measured on a rectangular lattice. Where the A×A model does

not provide an adequate representation of the spatial

dependence in the data, a wide range of alternative models are

available through the ARIMA class. This provides a rich and

very flexible framework for modelling two-dimensional

spatial dependence.

A simple extension of the A×A model is the errors-in-

variables model of Besag (1977) which adds an independent

error or uncorrelated noise component to the spatial process. He

explained that this formulation might be appropriate for

agricultural field trial data where “plant yields are likely to

reflect local variations in soil fertility as well as intrinsic
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variability in the plants themselves”. We label this the

A×Ae model.

The spatial methods of Cullis and Gleeson (1991) have been

in widespread use since they were first introduced in the 1990’s

(see for example, Smith et al. (2001); Ganesalingam et al. (2012);

Oakey et al. (2016); De Faveri et al. (2017); Norman et al. (2018);

Hunt et al. (2020). Gilmour et al. (1997) popularised the method

and suggested the use of residual diagnostics to identify non-

stationary effects across the trial area and to assist in identifying

an appropriate spatial model for the plot errors. Recently, tensor

product penalised splines (TPS) have been implemented to

explicitly model smooth variation in field trial data

(Rodrıǵuez-Álvarez et al., 2017) They are fitted as a two-

dimensional smooth surface within an LMM in which the

terms that form the smooth surface account for both small-

and large-scale continuous trend effects across the trial region.

This is a non-stochastic method (no assumed dependence

structure) and is in contrast to the ARIMA method which

models a separable and spatially correlated stochastic error

process for the lattice or residuals, with additional terms to

ensure that the assumption of stationarity is met.

The TPS model can be accessed through the SpATS package

(Rodrıǵuez-Álvarez et al., 2017) in R (R Development Core

Team, 2020). Velazco et al. (2017) compare the A×Ae model to

the TPS model for a set of Australian sorghum breeding trials

and Rodrıǵuez-Álvarez et al. (2017) provide a comparison under

simulation. They used the SpATS package for the TPS model

and the ASReml-R software (Butler et al., 2018) for the A×Ae

model. Currently the SpATS package is limited to the

assumption of independent and identically distributed (IID)

random genetic effects. The TPSbits package (Welham, 2020)

has recently been developed to allow us to fit the TPS model

using ASReml-R and in LMM that incorporate genetic-

relatedness through either ancestral (pedigree) information or

genomic (molecular marker) data. This has allowed us to

compare the A×A, A×Ae (collectively AR) and TPS models, as

well as a baseline model which represents no modelling of spatial

dependence, for LMM that include more plausible models for

the genetic effects.

We have compared the AR, TPS and baseline models for a set of

110 pulse breeding trials. To a degree this work has been motivated

by Laslett (1994) who examined the difference between the kriging

method (stochastic) and the spline method (non-stochastic) for

spatial prediction from both grid data and sparse samples in a

geostatistical context. He showed that “for data sets that, from

various diagnostics, appear to be a realization of a stationary

stochastic process with autocovariance monotonically decreasing to

0 with increasing lag, kriging may outperform splines as a predictor by

a factor of two or more in mean squared error of prediction…”. This

research is to investigate if similar results hold between stochastic

and non-stochastic methods in this alternate setting.

The paper is arranged as follows. We first introduce the

empirical data set, Section 2. The AR, TPS and baseline LMM are
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special cases of a general LMM which we present in Section 3.

Technical details concerning the fitted LMM and comparisons

between them are given in Section 4 and the results of the

empirical study are presented in Section 5. A discussion is

presented in Section 6.
2 Empirical data set

We considered a set of early generation lentil and field pea

trials conducted by Agriculture Victoria between 2016 and 2020.

The lentil data comprised 48 stage 0 (labelled S0), 1 (S1) and 2

(S2) trials conducted across 28 environments in South Australia

and Victoria. The field pea data comprised 62 stage 0 (labelled

P0), 1 (P1) and 2 (P2) trials conducted across 45 environments

in Victoria, New South Wales, South Australia and Western

Australia. Collectively, the lentil and field pea data are

considered to be representative of early stage plant breeding

field trial data in Australia. Supplementary Table 1 gives a

summary of the full set of 110 trials, each of which was laid

out as a rectangular lattice with 12 columns and between 6 and

88 rows. With the exception of one trial (LGS0HO19), the lentil

S0 and S1 trials were designed as p-rep trials (Cullis et al., 2006)

with two replicate blocks in either one or both directions and a

single occurrence of each replicated test entry in each replicate.

The vast majority of test entries in these trials were unreplicated.

LGS0HO19 was designed as a randomised complete block

(RCB) trial with three blocks. The lentil S2 trials were

designed as RCB trials with two replicates and blocking in a

single direction for all but L2RHO18 which was blocked in both

directions. For field peas, the P0 trials were designed as p-rep

trials with blocking in a single direction and most test entries

unreplicated. The P1 and P2 trials were designed as RCB trials

with two replicates. We note that a small subset of test entries

had just one replicate in a number of the S2, P1 and P2 trials,

indicated in the single replicate (1r) column in the summary

table. Prior to 2019, the lentil and field pea trials were designed

by the breeding program in-house. From 2019, model based

designs have been generated using the od software (Butler, 2013)

available in R (R Development Core Team, 2020). Furthermore,

the stage 0 and stage 1 trials for both crops have been designed

using pedigree information (Cullis et al., 2020).

For the lentil data, pedigree information was available for

5771 individuals comprising the 5049 individuals in the full set

of trials conducted between 2016 and 2020 (including both early

and late stage trials) and 722 additional individuals (ancestors).

For field peas, pedigree information was available for 11482

individuals comprising the 3511 individuals in the full set of

trials and 7971 additional individuals. In the empirical study we

utilized the full pedigree in the analysis of each trial within

each crop.
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3 Statistical methods

We have compared the performance of a baseline model that

ignores spatial dependence with the A×A, A×Ae and TPS

models. The baseline, A×A and A×Ae models fall within the

ARIMA class of models. The TPS model is from a separate, non-

stochastic class but can be considered within the same

statistical framework.
3.1 General form of the LMM for field
trial analysis

Let y be an n×1 vector of phenotypic data from an individual

field trial ordered as rows within columns. An LMM for field

trial analysis that accommodates the baseline, AR and TPS

models has the following general form:

y = Xpt p + Zgug + Zpup + e (1)

where t p is a t×1 vector offixed effects with designmatrixXp, ug is
anm×1 vector of genetic effects with design matrix Zg , up is a q×1
vector of non-genetic (or peripheral) random effects with design

matrix Zp, and e is the n×1 vector of plot errors. We note that t p
includes the overall mean and may include other fixed effects. We

assume that ug , up and e are mutually independent and have a

multivariate normal distribution with zero means and covariance

matrices var(ug ) = Gg(s g ), var(up) = Gp(s p) and var(e) = R(s r),

where s g , s p and s r are sets of variance parameters for the

genetic and peripheral effects and the plot errors, respectively.

3.1.1 The genetic effects
In the case where information on genetic relatedness is

included in the analysis, the effects in ug are written as the

sum of a set of additive genetic effects (ua) and a set of non-

additive (or residual) genetic effects (ue), that is,

ug = ua + ue

The additive effects can be modelled using either pedigree

information or marker data, see Tolhurst et al. (2019). Here we

use pedigree information but the marker model takes a similar

form. Let A be the m×m numerator relationship matrix (see

Oakey et al. (2006) and Beeck et al. (2010), for example). In this

case the variance matrix of the additive genetic effects is given by

var(ua) = s 2
aA. The non-additive effects represent the specific

performance of the individuals in the data that cannot be

accounted for by their ancestry (Oakey et al., 2006). We

assume that they are a set of IID effects, that is, varðue) =
s 2
e Im, and that ua and ue are mutually independent sets of

effects. The covariance matrix for the total genetic effects is then
frontiersin.org
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Gg = s 2
aA + s 2

e Im (2)
3.1.2 Non-genetic fixed and random effects
and the errors

Table 1 is a summary of the fixed and non-genetic random

terms and the error variance structure for the four models

(baseline, A×A, A×Ae, TPS) that were fitted to the yield data

for each trial.

The baseline model is a simple independent error model

with no modelling of spatial dependence. It contains a constant

term (1n) as a fixed model term. In addition to the random

genetic term, it has IID random terms to account for blocking

effects (with design matrix Zb) and row and column effects (with

design matrices Zrow and Zcol). We note that in the few cases

where blocking is present in two directions, separate IID

blocking terms are fitted for each direction.

The A×A model adds a number of terms to the baseline

model. The fixed model includes linear trends in the row and

column directions (denoted r and c in Table 1) to protect against

this form of non-stationarity. The variance model for the plot

errors takes the form s 2 Sc(rc)⊗ Sr(rr) which is a scaled direct

product of separate autoregressive processes of order 1 (AR1) in

the column and row directions. In each direction, this models a

pattern of exponential decay as the lag between plots increases,

where rc and rr are the lag 1 correlations in the column and row

directions, respectively.

The A×Ae model adds an independent error term to the

A×A variance model for the plot errors. The parameter a
(Table 1) is the ratio of independent error variance to spatial

process variance. We note that the independent error term has

been widely referred to as the “nugget”, see for example, Gilmour

et al. (1997); Piepho et al. (2015); Rodrıǵuez-Álvarez et al.

(2017); Velazco et al. (2017); Rodrıǵuez-Álvarez et al. (2018).

Use of the term nugget has it’s origins in geo-statistics so that our

preference is to refer to the set of ‘independent error’ effects and

their associated variance because this reflects their derivation

from the errors-in-variables model of Besag (1977).

The TPS model takes a slightly different form, following

that used by Velazco et al. (2017). The fixed part of the TPS

consists of bilinear trend across the lattice surface, that is, Xs =

½1n ∣ r ∣ c ∣ r : c� here : indicates the interaction operator. Block

terms are included in the fixed model, with design matrix Zb
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being relabeled as Xb to indicate their status as a fixed model term

(s). The random part of the model includes the genetic effects and

IID terms for random row and column effects, plus the random

part of the TPS. The latter is indicated by Zs and has 5 associated

variance parameters. Details are given in the Appendix.

Table 1 also counts the number of variance parameters

associated with each model. The two genetic parameters have

been added into this count in each case. The number of block

terms, usually 1 but occasionally 2, is enumerated by p. We can

see that a similar number of variance parameters is available

across the AR and TPS approaches.
4 Empirical study

4.1 Fitted models

We analysed each trial using the A×A, A×Ae, TPS and

baseline models. For the TPS model, we specified 6 and 19 (25)

equally spaced knots for the row and column directions for

lentils (field peas). This follows the approach of Velazco et al.

(2017) and represents approximately 1 knot per two rows or

columns. Example code to fit each model in ASReml-R is

provided in the Supplementary File accompanying this paper.
4.2 Comparing the LMM

4.2.1 Akaike information criteria
In the empirical study we have compared the four models

using the AIC of Verbyla (2019) which can be used for models

that have different sets of fixed terms and have been fitted using

the REML method of variance parameter estimation. This gives

an indication of the fit of the model to the data, with an

adjustment for the number of variance parameters fitted. We

have used the AIC to evaluate the difference in fit among the four

models and to identify the best fitting model (lowest AIC) for

each trial.

4.2.2 Predicted genetic effects
A main objective in plant breeding field trials is to evaluate

the best linear unbiased predictors (BLUPs) of the genetic effects

for the set of test entries as these inform selection decisions. We
TABLE 1 Summary of the fixed and non-genetic random terms, and the error variance structure in the A×A, A×Ae, TPS and baseline LMM.

Model Fixed (Xp) Non-genetic random (Zp) R(sr) Total variance parameters

baseline 1n [Zb Zrow Zcol] s 2In p+5

A×A [1n r c] [Zb Zrow Zcol] s 2 Sc(rc)⊗Sr(rr) p+7

A×Ae [1n r c] [Zb Zrow Zcol] s 2 (Sc(rc) ⊗ Sr(rr) + aIn) p+8

TPS [Xb Xs] [Zrow Zcol Zs] s 2 In 10
The total number of variance parameters includes the two variance parameters for the additive and non-additive genetic effects. p denotes the number of block terms, with value 1 or 2.
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note that in practice we use the empirical BLUPS (e-BLUPs)

which are formed using the REML estimates of the variance

parameters. A property of BLUP is that the correlation between

the true underlying set of effects and the set of predicted effects is

maximised. For the genetic effects, this is only true if the variance

structure of the non-genetic effects is as close as possible to the

true underlying structure. We therefore expect e-BLUPs from

well-fitting models (judged by AIC) to be better for selection

than those from poorer models (which will have different non-

genetic variance structures). For models including genetic-

relatedness, we need to consider both the additive and total

genetic effects. Generally speaking, in inbred crops the e-BLUPs

of the additive genetic effects are used for gene pool development

while the e-BLUPs of the total genetic effects are used to select

individuals to advance through the breeding program.

In Sections 5.3.1 and 5.3.2 we consider correlation and mis-

classification measures based on the e-BLUPs of the additive and

total genetic effects for each model and those of the best fitting

model for each trial. In Section 5.3 we consider the correlation

between the e-BLUPs of the additive and total genetic effects for

each model and those of the best fitting model for each trial, mis-

classification of entries for selection and distance between the e-

BLUPs of the additive and total genetic effects for each model

and those of the best fitting model for each trial. In Section 5.3.3

we use the distance measure of Martin (1990) to compare two

models in terms of the closeness between their respective sets of

estimates. For models 1 and 2 in a pair, the distance measure d is

defined to be the sum of the squares of the differences between

the individual estimates under the two models. For the predicted

additive genetic effects say, d has the algebraic form

d =o
m

i=1
(~ua1i − ~ua2i )

2

where ~uaki is the predicted additive effect for individual i under

model k, k =1,2 and m is the number of individuals with data.

Similarly for the total genetic effects. In Section 5.3.3 we also

consider the distance measure for the subset of 74 trials where

the A×Ae model (best performing of the three stochastic

models) was the best fitting model. In this case, model 1 is the

A×Ae model and model 2 is either the A×A, TPS or the baseline

model. Likewise for the subset of 15 trials where the TPS model

(only non-stochastic model) was the best fitting model. In this
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case, model 1 is the TPS model and model 2 is one of the three

stochastic models.
5 Results

We have compared the A×A, A×Ae, TPS and baseline

models based on iterations and convergence behaviour,

goodness of fit using information criteria, and measures of

discrepancy (mis-classification and distance) centred on the

predicted genetic effects.
5.1 Iterations and convergence behaviour

For the A×A, TPS and baseline models there was no

convergence failure for any trial. For A×Ae, one trial

(P2HO19) failed to converge and was removed from any

further calculation involving this model. The median number

of iterations was 8, 9, 10 and 7 for the A×A, A×Ae, TPS and

baseline models, respectively. The median time per iteration (in

seconds) was 0.27, 0.45, 0.56 and 0.11 for this same order of

models. The baseline model (no modelling of spatial

dependence) converged in fewer iterations and in markedly

less time than the other models. On the other hand,

differences in run time between the AR and TPS models

were negligible.
5.2 Information criteria

We have used the information criteria of Verbyla (2019) to

compare the goodness of fit of the four models. Table 2 gives the

number and percentage of trials for which the A×A, A×Ae, TPS

and baseline models achieved the lowest AIC and were

consequently judged to be the best model for a trial. The total

for each model is separated into the number of p-rep trials (S0,

S1, P0) and the number of trials where the entries were mostly

replicated (S2, P1, P2). Excluding the baseline model, a chi-

squared goodness of fit test showed no difference in distribution

across p-rep and replicated trials for the A×A, A×Ae and TPS

models. The A×Ae model was judged to be the best model in
TABLE 2 Total number of trials where the A×A, A×Ae, TPS and baseline models were judged by AIC to be the best model.

Trial type A×A A×Ae TPS baseline Total

p-rep 4 22 8 4 38

replicated 11 52 8 1 72

total 15 74 16 5 110

% 13.6 67.3 14.5 4.6 100
frontier
Percentages are also given. Totals are separated into the number of p-rep trials (S0, S1, P0) and trials in which the entries were mostly replicated (S2, P1, P2).
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67.3% of trials (74) while the A×A and TPS models were each

judged to be best in 13.6% (15) and 14.5% (16) trials,

respectively. The baseline model was the best model in less

than 5% of trials (5). Together the AR models were best in 80.9%

of trials. The baseline model can be considered as part of both

the ARIMA and TPS classes. The TPS approach would therefore

lead to the best model in 19.1% of trials, and the AR approach to

the best model in 85.5% of trials.

We are particularly interested in comparing the TPS model

to the AR models. To gauge the amount by which the best model

was superior to the TPS model, Figure 1 is a histogram of the

difference in AIC between the TPS and best model. The blue bar

at zero is for the sixteen trials where the TPS model was itself

judged best. The bars to the right of zero are for the 94 (85.5% of)

trials where the A×A, A×Ae or baseline model was better than

the TPS model (AR models indicated by green, baseline model

by purple). On average, the best model was an improvement

over TPS by 34.4 AIC units. In 40.4% of trials the TPS model was

at least 25 AIC units worse than the best model, and in 19.1% of

trials it was at least 50 AIC units worse than the best model. The

baseline model (indicated by purple) was better than the TPS

model by at most 15.5 AIC units. Conversely, the largest

difference in AIC was for field pea trial P1GP20 for which the

A×Ae model was better than the TPS model by 240.1 AIC units.

In a final comparison we note that for the sixteen trials where the

TPS model was the best fitting model, the most by which it was

better than its closest competitor (the model with the next

highest AIC) was by 9.6 AIC units. This demonstrates that in

general, when the TPS model outperforms the AR models it does

so by only a small amount compared to the AR models which

can be the best fitting model by a substantial margin.
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5.3 Predicted genetic effects

5.3.1 Correlation with the best fitting model
The predicted genetic effects (additive and total) form the

basis of selection decisions. For each trial we determined the e-

BLUPs of the additive and total genetic effects for each of the

four models A×A, A×Ae, TPS and baseline, together with their

correlation with those of the best fitting model for that trial.

Table 3 gives the median and mean correlation for each model

for both the additive and total effects. In each case the

calculations have been undertaken excluding the set of trials

for which the model under consideration was itself the best

fitting model. For both types of effect (additive and total), the

A×Ae model is most highly correlated with the best model across

both summary statistics. The TPS model is less correlated with

the best model than both AR models. For both sets of effects

there is markedly lower correlation between the e-BLUPs of the

best and baseline models when compared to the other

three models.

5.3.2 Mis-classification of entries
To demonstrate the discrepancy that can occur between the

TPS and AR models, Figure 2 is a plot of the predicted total

effects for the TPS model against the A×Ae model (judged best)

for field pea trial P2GP20 for which there were 241 entries. For

this trial there was a drop of 200.02 in AIC units for A×Ae

compared to TPS and a correlation of only 0.781 between the e-

BLUPS (similar results for the additive genetic effects, not

presented). The pink horizontal line separates out the top 20%

of entries under the TPS model (49 entries above the line) while

the pink vertical line separates out the top 20% of entries under
FIGURE 1

Histogram of the difference in AIC between the TPS model and the model with the lowest AIC within the set of four models. The blue bar at
zero is for the trials where the TPS model was the best fitting model based on AIC. The green bars are for trials where the A×A or A×Ae model
were the best model. Purple is for the five trials where the baseline model was the best model.
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the A×Ae model (49 entries to the right of the line). The top

right quadrant contains entries that would be selected for

progression under both models (37) while the entries in the

bottom left quadrant would be discarded under both models

(180). Conversely, the top left/bottom right quadrant is where

the TPS model would select/reject while the A×Ae model would

reject/select. In this case, 12 of the 49 entries selected under the

A×Ae (best fitting) model, would not be selected under the TPS

model, and vice versa. This represents a 24.5% discrepancy

between the selection sets based on the A×Ae and TPS models

(26.5% discrepancy for the set of additive genetic effects).

This is just one example from the full set of 94 trials for

which the TPS model was not the best model. For each of A×A,

A×Ae, TPS and baseline, Figure 3 presents a boxplot summary of

the percentage of entries in the selection set (top ranking 20% of

entries based on e-BLUP) that do not match the top 20% of

entries for the best model and would therefore be mis-classified
Frontiers in Plant Science 07
by that model. The plots are for the additive effects (top plot) and

total effects (bottom plot). For each model, the distribution

excludes the set of trials for which that model was the best

fitting model. Supplementary Table 2 contains the matching six-

point summary for each model and type of effect.

We have chosen to consider median percentage mis-

classification. This is to avoid the influence of a small number

of trials for which there are large differences in the additive and/

or non-additive variance parameter estimates, and consequently

inflated values of mean percentage mis-classification between

the best and other model. The results for median percentage

mis-classification are consistent with those of Table 3 for

correlation between the predicted genetic effects. The A×Ae

model has the lowest rate of mis-classification (4.08% for

additive, 4.17% for total). The TPS model has a higher rate of

mis-classification than both AR models (10.42% and 11.52% for

TPS compared to 6.52% and 8.33% for A×A, and 4.08% and
TABLE 3 Median and mean correlation between the e-BLUPs of the additive and total genetic effects for the A×A, A×Ae, TPS and baseline models
and those for the best model for each trial.

Effect type Model Number of trials Median Mean

additive A × A 95 0.994 0.988

A × Ae 35 0.998 0.996

TPS 94 0.986 0.968

baseline 105 0.969 0.936

total A × A 95 0.991 0.982

A × Ae 35 0.997 0.994

TPS 94 0.983 0.965

baseline 105 0.963 0.932
frontier
For a particular type of model, the summary statistics have been calculated excluding trials for which that model was the best fitting model. The number of trials in the subset of trials for
each type of model is given in the third column.
FIGURE 2

Plot of the total genetic effects for the TPS model against the A×Ae model for field pea trial P2GP20. The pink horizontal/vertical line separates
out the top 20% of entries under the TPS/A×Ae model.
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4.17% for A×Ae). The rate of mis-classification is higher for the

baseline model when compared to the other three models

(15.09% for additive, 16.47% for total). There was no evidence

of any difference in the rate of mis-classification for p-rep trials

and rcb trials.
5.3.3 Distance measure
The first six rows of Table 4 give the median and mean

distance measure of Martin (1990) (d of Section 4.2.2) for

pairwise comparisons between the A×A, A×Ae, TPS and

baseline models, for the sets of additive and total genetic

effects and for the 109 trials in the data set (excluding

trial P2HO19).

The A×A and A×Ae models are closer to each other than

they are to the TPS model in terms of both median and mean

distance for the additive effects and median distance for the total

effects. They are as close or closer to each other in terms of mean

distance for the total effects. We note that for the comparison

between A×A and A×Ae for the set of total effects, there was an

outlying distance of 16.73 for field pea trial P0CY17. For this

trial, the non-additive genetic effects of the A×A model

correspond closely to the sum of the non-additive genetic

effects and the non-genetic independent errors (averaged for

individuals) of the A×Ae model, the better model for this trial.

This has resulted in a very large distance between the total effects

for the two models and a shift in the mean distance for this

comparison. There is a matching rate of misclassification of

49.6% for the A×A model for this trial, see Section 5.3.2. This is

the maximum percentage mis-classification for this model and
TABLE 4 The median and mean distance measure of Martin (1990) for pairwise comparisons between A×A, A×Ae, TPS and baseline models, for
the sets of additive and total genetic effects and for all individuals in the data, rows 1 to 6.

Row Comparison Number of trials Additive effects Total effects

Median Mean Median Mean

1 A×A vs A×Ae 109 0.03 0.09 0.06 0.32

2 A×A vs TPS 109 0.14 0.37 0.26 0.76

3 A×A vs baseline 109 0.17 0.49 0.33 0.99

4 A×Ae vs TPS 109 0.08 0.23 0.12 0.32

5 A×Ae vs baseline 109 0.18 0.42 0.28 0.65

6 TPS vs baseline 109 0.12 0.29 0.21 0.45

7 A×A vs A×Ae 74 0.03 0.10 0.07 0.43

8 TPS vs A×Ae 74 0.09 0.23 0.12 0.28

9 baseline vs A×Ae 74 0.23 0.46 0.30 0.62

10 A×A vs TPS 15 0.09 0.28 0.21 0.55

11 A×Ae vs TPS 15 0.05 0.15 0.07 0.35

12 baseline vs TPS 15 0.13 0.45 0.29 0.77
frontier
For each comparison, the statistics have been constructed using the full set of 109 trials in the data set. Also presented are the median and mean distance between the A×Ae model and the
A×A, TPS and baseline models for the set of 74 where the A×Ae model was judged by AIC to be the best model, rows 7 to 9. Rows 10 to 12 present the median and mean distance between
the TPS model and the A×A, A×Ae and baseline models for the set of 15 trials where the TPS model was judged to be the best model.
FIGURE 3

For the A×A, A×Ae, TPS and baseline models, a boxplot summary
of the percentage of entries in the selection set (top ranking 20%
of entries for each trial based on e-BLUP) that are mis-classified
by that model when compared to the best model. Plots are for
the additive effects (top plot) and total effects (bottom plot). For
each model, trials for which that model was the best fitting
model have been excluded from the summary.
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set of effects (see Figure 3 and Supplementary Table 2). The

apparent confounding of non-additive genetic effects and

independent residual error for P0CY17 does not appear to

have occurred to the same extent for other trials.

Rows 7 to 9 of Table 4 allow us to directly compare the

closeness of the A×A, TPS and baseline models to the A×Ae

model for the 74 trials where the A×Ae model was judged to be

the best model. Likewise, rows 10 to 12 allow us to compare the

closeness of the A×A, A×Ae and baseline models to the TPS

model (the non-stochastic model) for the set of 15 trials where

the TPS model was best. Considering median figures (for reasons

highlighted above concerning field pea trial P0CY17), when the

A×Ae model is the best model, the A×A model is closer than the

TPS model for both sets of effects. When the TPS model is best,

the A×Ae model is closer for both sets of effects, with greater

discrepancy between the A×A and TPS models.

It is not possible to make direct comparisons between the

figures in rows 7 to 9 and rows 10 to 12 in Table 4 due to their

dependence on the genetic variances which vary between trials

(75 trials for A×Ae and 15 for TPS). On the other hand, it is

possible to compare the rate of mis-classification of entries for

selection (range = 0 - 100%). For the 74 trials where the A×Ae

model was the best model, the median percentage mis-

classification for the A×A model was 6.5% for the additive

effects and 8.3% for the total effects, compared to higher rates

of mis-classification for the TPS model, that is, 10.3% for the

additive effects and 11.3% for the total effects. For the 15 trials

where the TPS model was the best model, there were relatively

low rates of mis-classification for the A×Ae model, that is, 4.5%

for the additive effects and 6.7% for the total effects, with a higher

rate of mis-classification for the A×A model, that is, 8.2% for the

additive effects and 10.9% for the total effects. For both subsets of

trials and both sets of effects, the median percentage mis-

classification was highest for the baseline model.
6 Discussion

The AR and TPS methods represent alternative approaches for

the analysis of plant breeding field trial data for trials in which the

plots have been arranged as a rectangular lattice. The AR approach

makes use of low order time series models and the class of separable

lattice processes to model two-dimensional spatial covariance

among the plot errors. Alternatively, the TPS approach models

two-dimensional smooth trend across the trial area.

We have analysed 110 pulse breeding trials using the A×A,

A×Ae and TPS models, as well as a baseline model representing no

modelling of spatial covariance or smooth trend effects. The A×Ae

was judged by AIC to be the best fitting model for almost 70% of

trials, and together the AR models were the best fitting models in

more than 80% of trials. Conversely, the TPS model was the best

fitting model in less than 15% of trials. We judged the goodness of

fit of the four models using the AIC of Verbyla (2019). An
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alternative to the AIC is the Bayesian Information Criteria (BIC),

see also Verbyla (2019). However, the BIC is known to favour

simpler models (models with less variance parameters) and in our

study the TPS model was best in just 2/110 = 1.8% of trials based on

BIC. We therefore chose to proceed with AIC as the measure of

goodness of fit in our study. For measures associated with the

predicted genetic effects, the ARmodels, and in particular the A×Ae

model, generally outperformed the TPS model in terms of being

most highly correlated and closely aligned with the best fitting

model. Perhaps the most relevant measure for plant breeding

programs is the percentage mis-classification of entries for

selection for comparisons with the best fitting model. The TPS

model had consistently higher rates of mis-classification than both

the A×A and A×Ae models.

An important outcome of this study is the degree to which

the AR models are superior to the TPS model, particularly the

A×Ae model which was generally also an improvement over the

(nested) A×A model. Critics of the AR models (Piepho et al.,

2015; Rodrıǵuez-Álvarez et al., 2017; Velazco et al., 2017;

Rodrıǵuez-Álvarez et al., 2018) describe the A×Ae model as

being slow to fit and prone to problems with convergence. In our

study, the A×Ae model failed to converge for just one in the full

set of 110 trials, with negligible difference in run-time between

the AR and TPS models. For plant breeding programs currently

implementing the A×Amodel, this may motivate a greater use of

the A×Ae model. On the other hand, the A×A model has been

shown to be generally closely aligned with the A×Ae model and

is therefore expected to perform well even in cases where the

A×Ae model is a better fit for the data.

One major difference between the TPS and AR models is the

presence of non-stationarity in the TPS model. This means that

the variance and correlation patterns for the TPS model can

change across the field trial area, and might be thought to give

additional flexibility. However, the non-stationarity takes a pre-

determined form, dependent on the spline design matrices, that

seems incompatible with any likely underlying variance or

correlation pattern. This may be one reason why the AR

models generally performed better in our study.

The A×A and A×Ae models are just two from the wider class

of ARIMA models. Consequently, in cases where the A×A or

A×Ae models do not provide an adequate representation of the

spatial dependence in the data, there is a wide range of

alternative time series and other related models to choose

from. For example, the equal-roots autoregressive model of

Stringer et al. (2011) is likely to provide a better fit in the

presence of competition effects. This highlights the flexibility and

utility of autoregressive processes, and particularly the ARIMA

class, in modelling spatial dependence.

Piepho et al. (2022) have recently carried out a detailed study

of TPS models in the context of plant breeding trials. They note

that the TPS model with second-order differencing implemented

in SpATS and used here requires the introduction of correlation

between random terms to ensure invariance to choice of the
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underlying eigenvector basis. The difficulty in fitting these

correlation parameters may prompt practitioners to omit

them, so our results are relevant in showing the performance

of these models ignoring the extra parameters. Piepho et al.

(2022) used their results as the motivation to consider TPS

models with first-order differencing. Choice of an appropriate

TPS model reintroduces a model selection step that the SpATS

approach had been intended to avoid (Velazco et al., 2017).

Given that the TPS approach does not avoid problems associated

with model selection, and that in its simple use here it does not

perform as well as the AR models in terms of selection of entries,

we strongly recommend the continued use of time series models

in field trial analysis.

The results of this study are significant, particularly for plant

breeding programs seeking to implement the most efficient

processes within their analysis and evaluation systems.
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Rodrıǵuez-Álvarez, M. X., Boer, M. P., van Eeuwijk, F. A., and Eilers, P. H. C. (2018).
Modelling spatial trends in sorghum breeding field trials using a two-dimensional p-
spline mixed model. Spatial Stat 23, 52–71. doi: 10.1016/j.spasta.2017.10.003

Smith, A., Cullis, B., and Thompson, R. (2001). Analyzing variety by
environment data using multiplicative mixed models and adjustments for spatial
field trend. Biometrics 57, 1138–1147. doi: 10.1111/j.0006-341X.2001.01138.x

Stringer, J., Cullis, B., and Thompson, R. (2011). Joint modeling of spatial variability
and within-row interplot competition to increase the efficiency of plant improvement.
J. Agric. Biol. Environ. Stat 16, 269–281. doi: 10.1007/s13253-010-0051-5

Tolhurst, D. J., Mathews, K. L., Smith, A. B., and Cullis, B. R. (2019). Genomic
selection in multi-environment plant breeding trials using a factor analytic linear
mixed model. J. Anim. Breed. Genet. 136, 279–300. doi: 10.1111/jbg.12404
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Appendix A

The TPS model is the special case of model (1) in which spatial

trend is modelled as a smooth two-dimensional function of the plot

positions in both the row and column dimensions, represented as a

combination of fixed and random spatial terms. The smooth trend

component of the TPS model can be written algebraically as

g(r, c) = Xst s + Zsus

where g(r, c) represents the smooth two-dimensional function.

This function is an interaction between two one-dimensional

cubic P-splines with a modified second-order differencing

penalty. Let ra = r − �r1n and ca = c − �c1n be the n×1 vectors

of centred row and column positions. In addition, let kr and kc
be the number of knots in the row and column directions,

respectively. In the row direction, the design matrix for a cubic

P-spline with second-order differencing penalty can be written

as [1n ra Zr] (Velazco et al., 2017). In this matrix, the first two

terms represent linear trend in the row direction while Zr has kr
columns and represents a basis for smooth non-linear trend

in the same direction. Likewise for columns, with matrix [1n ca
Frontiers in Plant Science 12
Zc]. Interacting these matrices results in composite matrices Xs

and Zs, where Xs = ½1n ∣ ra ∣ ca ∣ ra:ca�. The matrix Zs = ½Zr ∣ ca:
Zr ∣Zc ∣ ra:Zc ∣Zr:Zc� where Zr and Zc are as defined above and

represent smooth trend over rows and columns, respectively,

ca:Zr represents linear trend in columns varying smoothly over

rows, ra:Zc represents linear trend in rows varying smoothly

over columns and Zr:Zc represents a smooth two-dimensional

surface. In g(r, c), Xst s represents the unpenalised partition and

the terms in t s are fitted as fixed model terms. Conversely, Zsus
is the penalised partition, and the terms in us that correspond
to the five components in Zs are fitted with known diagonal

variance matrices, each with its own variance component to be

estimated (Rodrıǵuez-Álvarez et al., 2018 for details). Finally,

the sum of the fitted values from the full set of fixed and random

terms gives the smooth spatial surface.
In theory, there is a choice of polynomial degree for B-spline

basis underpinning the P-spline in each dimension, the order of

differencing and the number of equally-spaced knots. In practice, a

cubic B-spline basis with a modified second-order differencing

penalty in each direction is the usual choice. Velazco et al. (2017)

suggested 1 knot per 2 units in each direction for modelling spatial

trend in field trials and give full details of the models.
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