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Editorial on the Research Topic

Protein phosphorylation and dephosphorylation in

plant-microbe interactions

Protein phosphorylation and dephosphorylation play key roles in all types of

host-microbe interactions, such as pattern-triggered immunity (PTI), effector-triggered

immunity (ETI), induced resistance (IR), systemic acquired resistance (SAR) and

symbiosis (Liang and Zhou, 2018; Albert et al., 2020; Li et al., 2020; Ngou et al.,

2022; Sun and Zhang, 2022). Among them, PTI-related phosphorylation events have

been extensively studied in the past 30 years (Albert et al., 2020; Ngou et al., 2022).

During PTI, plasma membrane-localized receptor-like kinases (RLKs) or receptor-

like proteins (RLPs) sensing the presence of conserved pathogen-associated molecular

patterns (PAMPs). Perception of PAMPs by RLKs/RLPs triggers the activation of

receptor-like cytoplasmic kinases (RLCKs), a subset of RLKs lacking extracellular

ligand-binding domain. Activated RLCK then activates a series of subsequent signaling

events, including mitogen-activated protein kinase (MAPK) activation, reactive oxygen

species (ROS) burst, calcium spiking and cytoskeleton remodeling. In the case of

flagellin sensing, BIK1, a RLCK downstream of FLS2, was shown to phosphorylate

NADPH oxidase RBOHD and two calmodulin-gated calcium channel CNGC2 and

CNGC4, which activate ROS burst and cytoplasmic calcium spiking, respectively

in Arabidopsis (Liang and Zhou, 2018; Tian et al., 2019). As a second messenger,

calcium spiking activates further phosphorylation signaling events to fine-tune

signaling output. Arabidopsis calcium-dependent protein kinases (CPKs), CPK1-6

positively, while CPK28 negatively regulate PTI (Yip Delormel and Boudsocq, 2019).
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The amplitude and duration of kinase activations during PTI are

also fine-regulated by phosphatase-mediated dephosphorylation

(Li et al., 2020). Though detailed molecular phosphorylation

mechanisms are not extensively elucidated in ETI, IR and SAR,

accumulating data suggest that their phosphorylation signaling

components are largely overlapping with those found in PTI.

This Research Topic provides an update on protein kinases

in host-microbe interactions including a review summarizing

protein kinase signaling pathways in plant-Colletotrichum

interaction (Jiang et al.); two phosphoproteomics studies, one

focusing on dynamic changes of phosphoproteins in SAR

(Zhou et al.), the other identified novel putative targets of

an atypical kinase ILK1 (Brauer et al.); two classical genetic

studies, one demonstrates the requirement of Arabidopsis

MKK4/MKK5-MPK3/MPK6 signaling module in suppressing

Agrobacterium-mediated gene transformation (Liu et al.); the

other characterized a fungal calcium/calmodulin-dependent

protein kinase (CAMK) (Pan et al.).

Colletotrichum spp. is a causal agent of anthracnose

disease on crops, trees, and vegetables. In the review

paper, the authors summarized the current knowledge on

protein kinase pathways from both the host and pathogen

perspectives with the emphasis on non-model plants (Jiang

et al.). In addition to the requirement of cyclic adenosine

monophosphate (cAMP) – protein kinase A (PKA) signaling,

MAPK signaling, morphogenesis-related NDR kinase pathway

(MOR) pathway and two-component phosphorelay system

(TCSs) for Colletotrichum virulence (Jiang et al.). Pan et al.

found that CAMK CgSgt4 is also required for full virulence

of Colletotrichum gloeosporioides, a fungal pathogen causing

anthracnose disease in many tropical fruits. We believe these

fundamental studies on fungal kinases would greatly facilitate

the development of kinase inhibitor-based fungicide.

Phosphoproteomics has been successfully applied to

studying dynamic phosphorylation events during PTI and

ETI (Benschop et al., 2007; Nühse et al., 2007; Kadota et al.,

2019). To date, phosphoproteome changes during SAR have

not been explored. Through quantitative phosphoproteomics,

Zhou et al. identified 859 significantly changed phosphoproteins

in systemic leaves 48h after Psm ES4326 treatment, at a

time point when SAR has been successfully established.

In future, it would still be interesting to explore dynamic

changes of phosphoproteome during the establishment of

SAR with short time points. Another proteomic study in

this Research Topic screened putative targets and interacting

proteins of ILK1, an atypical kinase belonging to the ILK

family of Raf-like MAP3K (Brauer et al.). Though ILK1

is classified as a pseudo-kinase, it showed kinase activity

in vitro, with unusual preference for Mn2+ as cofactor

(Brauer et al., 2016). ILK1 activity is essential for flg22-,

elf18- and pep1-induced root growth inhibition (Brauer

et al., 2016). Recently, ILK5 was shown to be a true MAP3K

function upstream of MKK5-MPK3/MPK6 in extracellular

perception (Kim et al., 2022). The identification of MEEK1

and MEKK3 as potential ILK1 interactors encourages future

work to test whether ILK1 functions as MAP3K or MAP4K

in PTI.

In plants, theMKK4/MKK5-MPK3/MPK6 is the keymodule

functioning downstream ofmanyMAP3Ks in both development

and immunity (Jagodzik et al., 2018; Sun and Zhang, 2022).

Previous work suggested MPK3 promote Agrobacterium-

mediated gene transformation by phosphorylating of

VIP1 (Pitzschke et al., 2009). However, an original article

in this Research Topic suggests that MKK5/MKK5-

MPK3/MPK6 negatively regulates Agrobacterium-mediated

gene transformation with classical genetic studies (Liu et al.).

Enhanced transformation was observed in both mkk4 mkk5

double and mpk3 mpk6 mutants (Liu et al.). Accordingly,

inducible activation of MPK3/MPK6 by MKK4 or MKK5

suppressed Agrobacterium-mediated gene transformation

(Liu et al.). It worths noting that MPK3/MPK6 activation

is transient during Agrobacterium treatment (Liu et al.),

but is long-lasting when induced by inducible expression

of upstream constitutive MEKs (Su et al., 2018). Though

mkk4 mkk5 and mpk3 mpk6 mutants showed an increased

transformation ratio, the possibility that MPK3 promotes

transformation by phosphorylating VIP1 could still not be

excluded. Thus, the role of MKK4/MKK5-MPK3/MPK6 in

Agrobacterium-mediated gene transformation is remain to be

examined further.

Altogether, these articles in this Research Topic

highlight the importance and complexity of protein

phosphorylation in different types of plant-microbe

interactions. With rapid improvements in phosphoproteomics

and precision gene editing technologies, comprehensive

phosphorylation regulatory networks and mechanisms will

be revealed.
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