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The growth of Panax notoginseng (Burk.) F. H. Chen is frequently hindered due

to replanting failure. In the present study, the objective is to determine whether

root exudates from P. notoginseng have autotoxicity and identification of

allelochemicals from root exudates or rhizosphere soil. We investigated

autotoxicity in P. notoginseng using seedling emergence bioassays and

hydroponic culture. The allelochemicals in the soils and root exudates were

identified with GC-MS, and the autotoxicity of the identified key

allelochemicals was investigated by bioassay. The results showed that the

root exudates, and extracts from consecutively cultivated soils also showed

significant autotoxicity against seedling emergence and growth. In the non-

renewed culture solution without activated charcoal (AC), the fresh and dry

mass of P. notoginseng tubers of roots was reduced by about half compared to

the addition with AC. A total of 44 different components from all samples were

defined by GC-MS analyses. Furthermore, the results of multiple statistical

analysis showed a t the difference among cultivated soil, uncultivated soil and

root exudates. Bioassay of the identified allelochemicals revealed that benzoic

acid, phthalic acid, palmitic acid, and stearic acid significantly affected the root

growth of P. notoginseng. These substances at 100 mM more significantly

decreased the number of lateral roots. Our results demonstrated that

autotoxicity results in replant failure of P. notoginseng.
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1 Introduction

Panax notoginseng (Burk.) F. H. Chen is a valuable

medicinal material in China. In China, P. notoginseng has

more than 400 years of artificial cultivation (Qiao et al., 2018).

Due to its unique geographical environment, P. notoginseng is

mainly distributed in Yunnan and Guangxi Province, China

(Dong et al., 2003). Demand for ginsenosides has rapidly

increased due to their significant effects on cancer and

cardiovascular disease (Xu et al., 2018; Liu et al., 2020).

However, P. notoginseng on the market mainly relies on

artificial cultivation, with limited land resources, production is

often hindered by replanting failure, leading to lower yields and

other difficulties when reestablishing plants in arable land

(Yang et al., 2015; Dong et al., 2018). Generally, rotation is

the preferred method to avoid failure of crop replanting

(Wang et al., 2022). However, the successful replanting of

P. notoginseng replanting requires more than 30 years of rotation

(Yang et al., 2018), which limit the production of P. notoginseng.

Many factors can contribute to this problem, including

deterioration of soil physicochemical properties, nutrient

imbalance, soil-borne diseases, and autotoxicity (Qiao et al., 2020).

Currently, the research on the continuous cropping obstacles of

P. notoginseng ismostly focused on the treating and preventing pests

and diseases. Diseases were caused by many types of soil-borne

pathogens established, including fungi, oomycetes, bacteria,

nematodes, and viruses (Jin et al., 2019; Fang et al., 2022; Wang

et al., 2022). However, even using of specific fungicides, satisfactory

results have not been achieved (Liu et al., 2019; Ye et al., 2019).

Therefore, continuous cropping obstacles have become a major

problem limiting the development of the P. notoginseng industry.

Previously, plant autotoxicitywas reported to be one of themain

factors causing continuous cropping obstacles (Singh et al., 1999).

Autotoxicity is a common phenomenon in natural and

agroecosystems, where toxins were released by living or decaying

plants into their surroundings, thus lead to inhibition of the growth

and development of the same species (Inderjit and Duke, 2003). In

crop root exudates or rhizosphere soil, allelochemicals accumulate

over years of cultiva, causing nutrient imbalances and microbial

dysfunction in the soil, which cause continuous cropping obstacles

(Li et al., 2019). The autotoxicity of Panax ginseng and Panax

quinquefolius has been reported as a possible factor for transplant

failure. (Zhang et al., 2020; Ji et al., 2021). Some phenolic acids in

American ginseng’s root exudate and rhizosphere soil have been

evaluated as potential allelochemicals (He et al., 2009). Ferulic acid,

total saponin, and root extract of P. notoginseng could inhibit the

plant’s growth (Yang et al., 2015). The crop can be grown

continuously on the same land for years when the inhibitory

chemicals are removed. (Gao and Wen, 2016; Xiang et al., 2020).

Therefore, it is very important to understand the compositions of

these inhibitory chemicals.
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Studying on the autotoxicity of P. notoginseng would provide

effective guidance for crop sustainable production. The objective

of this study was to (i) confirm autotoxicity of root exudates in P.

notoginseng, and (ii) identify allelochemicals therein.
2 Materials and methods

2.1 Determination of biological activities
of soil extracts

Soil samples were collected in Baise city, Guangxi County (23°

34 ′ 11 ″ N, 105°55 ′ 56 ″ E). The rhizosphere soil samples were

obtained from fields that had been cultivated with continuous

cropping for 1 to 3 years. Soil samples were collected from an

adjacent uncultivated land as a control. At each collection site, nine

samples were collected randomly and mixed thoroughly before

being divided into three. Take 150 g of the air-dried and sieved soil

samples, and put them in a triangular flask. After adding 100 mL of

distilled water, ultrasonically extract for 30 min. The obtained

solution was filtered with filter paper, and the extracts were

collected. The above steps were repeated two times for the

remaining samples, and all the extracts were mixed. The solvent

was removed by vacuum rotary evaporation at 55°C to obtain the

extracts. The extracts were dissolved in distilled water, and the

volume was made up to 100mL, and the concentration of 1.5 g/mL

(that is, the extract containing 1.5 g of soil sample in 1mL aqueous

solution) was prepared as a stock solution. Two layers offilter paper

were placed in Petri dishes (9 cm in diameter), and 5 mL of distilled

water or soil extracts were added, respectively, and three replicates

were set up for each treatment. Select the same size and disease-free

P. notoginseng seeds, these seeds were sterilized with 1% NaClO for

15 min and then washed three times with sterilized water. Twenty

seeds were placed in each dish and then put in a constant

temperature incubator, cultivated at 25°C without light, ventilated

once a day, ensured that the filter paper was wet and determine the

germination rate after 30 d (Yang et al., 2015).
2.2 Plant cultivation either with or
without AC

The autotoxicity of P. notoginseng was researched using

hydroponics with or without activated charcoal (AC). The P.

notoginseng used in the study was collected in Guangxi County

(23°34 ′ 11 ″N, 105°55 ′ 56 ″ E). The plants were transplanted into
the seedling pots (50 cm × 25 cm × 15 cm) in a greenhouse of

Guangxi University. Twelve plants were grown in each pot, with

three replicates per treatment. Each pot was filled with an 8 L

nutrient solution, and the nutrient solution was updated every 15

d. The nutrient solution uses the general formula ofHoagland and
frontiersin.org
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Arnon (Zandvakili et al., 2019). Each pot has two air pumps with

filters for continuous aeration (3.5 L/min), and eachfilter contains

100 g AC. The control group was treated equally. The AC is used

for chemicals secreted from plants, and at the same time, it is

replaced with fresh AC for 2 weeks until the end of the

experiment. The used AC was either immediately stored at 4°C

for later extraction. Relevant agronomic traits were measured at

the end of the experiment. Also, three plants from each treatment

were taken to test the enzymatic activities of root viability, the

enzyme activities of catalase (CAT), peroxidase (POD), and

malondialdehyde (MDA) in leaves (Md. Asaduzzaman, 2012).
2.3 GC–MS analysis of root exudates
adsorbed in AC and soil

Extracted components in AC or soils samples with reference to

previous reports (Md. Asaduzzaman, 2012). One microliter of the

concentrated sample was injected into a GC-MS system (Agilent

GC7890A/MSD5975C, USA). The GC conditions were as follows:

carrier gas, helium; splitless mode; temperature programming, 60°

C (1 min), 60-180°C (10°C/min), and 180-280°C (20°C/min).

Separation was achieved on a HP-5MS 5% Phenyl Methyl Silox

column (30mm×0:25mm×0:25mm).Mass spectrawere obtained

at an electron impact (EI) of 70 eV (Ren et al., 2017).
2.4 Autotoxicity bioassays

In order to further determine the autotoxicity of the

precipitated chemical substances. Allelochemical aqueous

solutions of different concentrations were prepared with 50%

Hoagland nutrient solution (Md. Asaduzzaman, 2012). The

selected plants were transplanted to seedling trays, each hole

containing one plant, and an equal amount of vermiculite was

added to each hole to hold the plants tight and upright. The trays
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were placed in a greenhouse at 25°C with a light intensity of 2000

Lux and 16 h photoperiod. Every 30 d, 20 mL of test solution was

added to each hole, and each treatment was replicated 20 times.

The plants were grown for twomonths and then the plant length,

root length, and the number of lateral roots were measured.
2.5 Statistical analysis

The growth and yield data obtained from bioassay and

hydroponics of plants were compiled and analyzed for statistical

differences among the treatments and means were separated by the

analysis of variation with Duncan’s test, LSD test, and t-test using

SPSS Statistics 24. The multivariate data (GC-MS) analyses were

conducted using MetaboAnalyst 4.0 (www.metaboanalyst.ca). To

confirm an overview of clustering separation between different

exposure groups, a partial least squares-discriminant analysis

(PLS-DA), which is a supervised pattern recognition method, was

conducted to distinguish between each treatment group, and R 2 Y

and Q 2 parameters were also calculated. The VIP (variable

importance in the projection) in PLS-DA was calculated to select

metabolites with VIP scores > 1.
3 Results

3.1 Effects of aqueous extract from
consecutively cultivated soil on seedling
germination and growth

Compared with the control (aqueous extract from the

uncultivated soil), the aqueous extract from different

consecutively cultivated soils inhibited seed germination and

seeding emergence to different degrees (Figure 1). Moreover, the

germination rate declined significantly with the increase of

successive planting years. The germination rate only reached
BA

FIGURE 1

Effects of aqueous extract from consecutively cultivated soil on seedling germination rate (A), and seedling survival rate (B). Control represents
the aqueous extract from the uncultivated soil, and One-CS, Two-CS, and Three-CS represent the aqueous extract from one, two, and three
years of continuously cultivated soil. Values presented are means. Error bars represent the standard error of three replicates. Asterisks indicate
statistically significant differences of treatment compared with control. *, p < 0.05; **, p < 0.01; ***, p < 0.005; ****, p < 0.001, LSD test.
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21.1% when the seeds were treated with aqueous extract from

soil that was continuously cultivated for three years. Three

months after added different aqueous extracts from soils in the

seeding tray, the seedling survival rate in the control was 99.1%.

However, the seeding survival rate treated with the aqueous

extracts from soils that were consecutively cultivated for two and

three years was reduced significantly to about 20.79% and

28.05%, with control, respectively.
3.2 Growth of P. notoginseng in
hydroponics

Culture solutions containing AC had significant effects on

the growth of P. notoginseng. The survival rate declined

significantly(Log Rank P=0.0352)in the plants grown without

AC compared with those grown with AC (Figure 2). After the

fourth month of observation, in control (without AC) plants, the

plant length, and their fresh and dry mass of aboveground in P.

notoginseng were reduced to about 1.57%, 19.35%, and 17.95% of

the values compared with AC, respectively. There was a

significant difference in fresh and dry mass of roots between

plants cultivated with and without AC addition, and the values

increased by about 72.6% and 88.5% compared with the control,

respectively (Table 1, Figure 3).
3.3 Effects of root exudates on the
physiological indexes of P. notoginseng

The results for antioxidant enzymes (CAT, POD, and MDA)

activity and root activity of these plants were shown in Table 2,

the activities of CAT, POD, and MDA were 33.02%, 22.42%, and
Frontiers in Plant Science 04
11.73% lower than those of the control group, and the root

activity was 6.59% higher than that of the control group.

However, the difference in these values between the two

groups was not considered statistically significant (p<0,05).
3.4 Identification of allelochemicals from
soils and root exudates

Herein, three rhizosphere soil samples (CS) were obtained

from the continuously cultivated soil of P. notoginseng for three

years, and three uncultivated soil samples (US) were obtained

from the adjacent field. Moreover, three samples (RE) were

extracted from exudates of P. notoginseng adsorbed on AC and

added to the nutrient solution. A total of 44 different

components with more than 80% similarity value were

identified from all samples based on the GC-MS analysis

(Table 3). The identified components were of four types: 14

acids (32%), 22 esters (50%), 6 alkanes (13%), and 2 benzene

derivatives (5%). By comparing the types of compounds in the

two soil extracts (Figure 4), continuous cropping soil contains

more acid compounds than uncultivated soil. However, RE

contains the most types of acids compounds.

As shown in Figure 5, the RE, CS, and US were clearly

separated by PC1 and PC2 in the score plot. Based on the

loading plot and the VIP value, 12 compounds, were found to

play key roles in the classification. In the CS or RE grouping, the

relative concentrations of the four compounds palmitic acid

(27), stearic acid (37), benzoic acid (1), and phthalic acid (7) are

higher than those in the US, and benzoic acid and phthalic acid

are unique substances in the RE samples. Therefore, we selected

these 4 compounds for activity testing to test their self-toxic

activity against P. notoginseng.
3.5 Bioassay with the identified
allelochemicals

Seedling growth bioassays were used to evaluate the

allelopathic potential of the identified chemicals at different

concentrations. The autotoxicity of the allelochemicals was

assayed for growth parameters of P. notoginseng at several

concentrations (Table 4). The benzoic acid, phthalic acid,

palmitic acid, and stearic acid significantly inhibited the

growth of P. notoginseng seedlings at a concentration of 1000

mM. The concentration of the test solution is basically positively

correlated with inhibition. Benzoic acid at 1000 mM significantly

reduced plant length, root length, and the number of lateral roots

to 16, 31, and 42% of those of the control, respectively. When

P.notoginseng was grown in the nutrient solution containing

phthalic acid or palmitic acid, the number of lateral roots was

significantly reduced to 24, and 18% compared with those of the

control, respectively, even at a low concentration (10 mM).
FIGURE 2

Survival curves of P. notoginseng either with or without AC
addition in hydroponics. Through Kaplan-Merier with log-rank
test (Prism).
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Obviously, these substances more significantly affect the growth

of lateral roots. All compounds (at 100 and 1000 mM) decreased

the number of lateral roots significantly.
4 Discussion

Our results demonstrated that autotoxicity is a factor in the

replant failure of P. notoginseng. Many factors are considered to

be responsible for crop succession disorders (Bouhaouel et al.,
Frontiers in Plant Science 05
2019; Yan et al., 2019). Autotoxicity was reported to be one of

the main factors causing continuous cropping obstacles

(Singh et al., 1999). Our results show that the water extract of

continuous cropping soil has autotoxicity on P. notoginseng.

Previous studies showed that P. notoginseng had a lower

germination rate and index when replanted in heavy cropping

soil. The EtOAc extract of P. notoginseng soil showed the most

significant inhibition of germination rate, germination index,

and root elongation of P. notoginseng seeds (PeiJin et al., 2009).

The presence of allelochemicals in the soil affects the growth of
FIGURE 3

Dry root of P. notoginseng either with or without AC addition in hydroponics.
TABLE 2 Physiological indexes of P. notoginseng either with or without AC addition in hydroponics.

Treatment
CAT POD MDA Root vitality

(U·g-1Fw·min-1) (U·g-1Fw·min-1) (mmol·g-1Fw) (ug·g Fw·h)

Without AC 12.57 ± 3.30 3.88 ± 0.15 13.90 ± 0.94 197.33 ± 6.26

With AC 8.42 ± 2.30 3.01 ± 0.70 12.27 ± 1.04 210.33 ± 5.30

Values presented are means ± SE. SE represent the standard error of three replicates.
TABLE 1 Growth of P. notoginseng either with or without AC addition in hydroponics.

Treatment Plant length (cm) FM1 of above ground(g) FM of root(g) DM1 of above ground(g) DM of root(g)

Without AC 27.42 ± 1.38 3.25 ± 0.22 5.22 ± 0.41 0.64 ± 0.04 1.31 ± 0.12

With AC 27.86 ± 1.43 4.03 ± 0.37 9.01 ± 0.40 ** 0.78 ± 0.08 2.47 ± 0.23 **

1 FM Fresh mass (FM), dry mass (DM). Note: Values presented are means ± SE. SE represent the standard error of three replicates. Asterisks indicate statistically significant differences
of treatment compared with control (Water). ** p< 0.01, T-test (SPSS).
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TABLE 3 The list of the identified components in the soils and root exudates of P. notoginseng.

Peaks ID Compounds CAS RT (min) Source * Classification

1 Benzoic acid 65-85-0 12.863 RE Acid

2 o-Toluic acid 118-90-1 14.599 RE Acid

3 Ethyl caproate 123-66-0 14.796 RE Ester

4 m-Toluic acid 99-04-7 15.093 RE Acid

5 2,5-Dimethylbenzaldehyde 5779-94-2 15.171 CS Benzene derivative

6 p-Toluic acid 99-94-5 15.29 RE Acid

7 Phthalic acid 88-99-3 16.421 RE Acid

8 2-Hydroxyoctanoic acid 617-73-2 17.115 RE Acid

9 2-Propionylbenzoic acid 2360-45-4 17.887 CS Acid

10 3-methylphthalic acid 37102-74-2 18.495 RE Acid

11 4-Methylphthalic acid 4316-23-8 19.356 RE Acid

12 Dimethyl phthalate 131-11-3 20.608 US, RE Ester

13 2,4-Di-tert-butylphenol 96-76-4 21.917 US, CS Benzene derivative

14 Heptadecane 629-78-7 22.459 CS Alkane

15 1-Fluorododecane 334-68-9 26.091 CS Alkane

16 Hexadecane 544-76-3 26.169 CS Alkane

17 Tetradecanoic acid 544-63-8 26.524 RE Acid

18 Methyl tetradecanoate 124-10-7 26.767 US, CS Ester

19 Methyl 3-(3-hydroxyphenyl) acrylate 3943-95-1 27.377 CS Ester

20 Methyl 4-hydroxycinnamate 3943-97-3 27.391 CS Ester

21 Methyl tetracosanoate 2442-49-1 28.101 US, CS Ester

22 Methyl pentadecanoate 7132-64-1 28.127 US Ester

23 Methyl 9-methyltetradecanoate 213617-69-7 28.899 US Ester

24 Methyl hexacosanoate 5802-82-4 30.183 US Ester

25 (Z)-Methyl hexadec-9-enoate 1120-25-8 30.49 US Ester

26 Dibutyl phthalate 84-74-2 30.54 US, CS, RE Ester

27 Palmitic acid 57-10-3 30.605 CS, RE Acid

28 11-Hexadecenoic acid methyl ester 55000-42-5 30.679 US Ester

29 Methyl palmitate 112-39-0 30.898 US, CS, RE Ester

30 Butyl PalMitate 111-06-8 31.571 CS, RE Ester

31 Ethyl palmitate 628-97-7 32.23 CS, RE Ester

32 Elaidic acid 112-79-8 33.883 RE Acid

33 Oleic Acid 112-80-1 33.986 RE Acid

34 methyl linoleate 112-63-0 34.072 US, CS Ester

35 Methyl oleate 112-62-9 34.191 US, CS Ester

36 2-Octylcyclopropanedodecanoic acid methyl ester 10152-65-5 34.211 US, CS Ester

37 Stearic acid 57-11-4 34.337 CS, RE Acid

(Continued)
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plants (Guo et al., 2016; Xin et al., 2019). Besides, the extracts of

P. notoginseng soil have been found to have chemosensitizing on

other plants, such as cabbage, radish, and lettuce (Liu et al., 2019;

Ye et al., 2019). In summary, this may be caused by the

accumulation of certain allelochemicals in the soil (He et al.,

2019; Meng et al., 2022).

In the hydroponic experiment, the addition of AC to the

nutrient solution can significantly increase the weight of the roots

of P. notoginseng, indicating that root exudates have a greater

impact on the roots. The content of hydrogen peroxide,

peroxidase activity, and malondialdehyde in the leaves of P.

notoginseng cultured without the addition of activated carbon

were all higher than those of the other, but the difference was not

significant. It has been reported that allelochemicals can

significantly reduce the enzyme activity of hydrogen peroxide

and peroxide in tomato leaves (Staszek et al., 2021). In this study,

the allelochemicals had no significant effect on the enzyme

activity, which may be due to the insufficient concentration of

root exudates in the hydroponic environment. However, it is

inferred from the overall trend that with the increase in the

concentration of root exudates of P. notoginseng, hydrogen

peroxide, and peroxide the activity of bio-enzymes may also
Frontiers in Plant Science 07
increase significantly, which can eliminate excessive hydrogen

peroxide to protect the cell (Asgher et al., 2021; Zhang et al., 2021).

These data demonstrate that the presence of potential autotoxic

factors in the soil will affect the growth of P. notoginseng

ginseng.Several types of chemicals have been associated with

autotoxicity, including terpenoids, phenolics, steroids, alkaloids,

and cyanogenic glycosides (Bruce and Richardson, 1988).In

recent years, many of studies have proved that organic acids

can significantly inhibit the germination of seeds and the growth

of seedlings (Asao et al., 2003). Besides, some ginsenosides have

been considered that cause the autotoxicity of P. notoginseng

(Yang et al., 2015). This study used GC-MS to analyze the key

allelochemicals in soil extracts and root exudates. The rhizosphere

soil has many organic acids and their derivatives than

uncultivated soil. Benzoic acid, phthalic acid, palmitic acid, and

stearic acid were found in rhizosphere soil and hydroponic root

exudates. These substances are similar to the allelochemicals

reported in other plants (Md. Asaduzzaman, 2012; Qiao et al.,

2019; Yang et al., 2019). It shows that these substancesmay also be

self-toxic substances with significant self-toxic activity in the root

exudates of P. notoginseng. In this study, it can be seen from the

ion maps of soil extracts and root exudates that the substance
TABLE 3 Continued

Peaks ID Compounds CAS RT (min) Source * Classification

38 Methyl stearate 112-61-8 34.684 US, CS, RE Ester

39 Ethyl stearate 111-61-5 34.902 RE Ester

40 Bis(2-ethylhexyl) Fumarate 141-02-6 35.455 RE Ester

41 Heptacosane 593-49-7 39.32 CS Alkane

42 Diethyl sulfite 623-81-4 40.896 CS Ester

43 Tetracosane 646-31-1 42.418 CS, RE Alkane

44 9-Butyldocosane 55282-14-9 43.881 CS Alkane

* US represents the uncultivated soil;CS represents the continuously cultivated soil;RE represents the root exudates from hydroponics.
BA

FIGURE 4

Categories of the metabolites identified from the soils and root exudates by GC-MS analysis (A), The Venn diagram shows the number of
metabolites detected in soils and root exudates samples (B). The Numbers in brackets represent the total number of identified metabolites in
each group. Additional CS-MS chart can be found in Supplementary Material.
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dibutyl phthalate was detected in the three samples, and the

relative content was more than 30%. Some researcher believe

that this substance belongs to root exudates. Another part of

the researchers believes these substances are pollutants

(Deng et al., 2017; Ge et al., 2020). Whether dibutyl phthalate is

notoginseng root exudates remains to be further verified.

Some identified chemicals showed autotoxicity against seed

germination and seedling growth at a certain concentration. The

benzoic acid, phthalic acid, palmitic acid, and stearic acid

significantly affected the root growth of P. notoginseng.

Previous studies have shown that allelochemicals exert

autotoxic effects on P. notoginseng seed germination at a

concentration of 10-1000mM. Therefore, we chose this

concentrat ion for the bioassay . In pract ice , some

allelochemicals are present in lower concentrations and have

no effect on plants, but allelopathy occurs (Cheng and Cheng,

2015). This experiment demonstrated the autotoxicity of a single

allelochemical, which is in consistent with the actual field
Frontiers in Plant Science 08
conditions. Although this concentration may not be related to

natural conditions, our experiment was designed to test the

causal relationship. Of course, our work has some limitations,

and additional studies are needed to assess the interaction

between autotoxicity and other factors of replanting failures,

such as soil-borne pathogens, deterioration of soil

physicochemical properties, and soil microbial community

imbalance. These studies could be used to understand the

mechanism of replantation failure of P. notoginseng.
5 Conclusions

The results showed that the growth of P. notoginseng was

inhibited by the root exudates, and the AC has the function of

adsorbing allelochemicals. The potential allelochemicals were

detected as benzoic acid, phthalic acid, salicylic, palmitic acid,

and stearic acid. In summary, allelochemicals accumulate in the
B

C

A

FIGURE 5

Multivariate analysis using PLS-DA. (A) PLS-DA score plots. The explained variances are shown in brackets; (B) PLS-DA loadings plot. The
numbers in the loading plot of all the samples correspond to the Peak ID provided in Table 3; (C) Important features identified by PLS-DA. The
colored boxes on the right indicate the relative concentrations of the corresponding metabolite in each group under study. The numbers on the
left correspond to the Peak ID provided in Table 3.
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rhizosphere during the course of root secretion or degradation,

etc. and exhibit autotoxicity to P. notoginseng when they reach a

certain concentration.
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TABLE 4 Effects of the identified chemicals at different concentrations on the growth of P. notoginseng.

Allelochemicals Conc.(mM) PlantLength(cm) RootLength(cm) No. oflateral roots

None (control) 0 6.98 a 4.00 a 6.2 a

Benzoic acid 10 6.43 ab 3.81 ab 6.7 a

100 6.32 ab 3.32 abcd 5.0 bc

1000 5.88 b 2.76 cd 3.6 de

Phthalic acid 10 6.43 ab 3.80 ab 4.7 cd

100 5.86 b 3.46 abcd 3.3 e

1000 5.87 b 2.62 d 3.1 e

Palmitic acid 10 6.19 ab 3.54 ab 5.1 bc

100 6.77 ab 3.36 abc 4.5 cd

1000 6.06 ab 3.06 bcd 3.3 e

Stearic acid 10 6.73 ab 3.90 ab 6.0 ab

100 6.10 ab 3.02 bcd 3.8 de

1000 4.90 c 2.88 cd 4.2 ced

Values in a column followed by a different letter differ significantly by Duncan’s test (p < 0.05).
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