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non-omics data in soybean
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1Department of Agronomy, College of Agriculture and Natural Resources, National Chung Hsing
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Sriracha, Kasetsart University, Sriracha, Thailand, 3Advanced Plant Biotechnology Center, National
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Soybean is sensitive to low temperatures during the crop growing season. An

urgent demand for breeding cold-tolerant cultivars to alleviate the production

loss is apparent to cope with this scenario. Cold-tolerant trait is a complex and

quantitative trait controlled by multiple genes, environmental factors, and their

interaction. In this study, we proposed an advanced systems biology framework

of feature engineering for the discovery of cold tolerance genes (CTgenes)

from integrated omics and non-omics (OnO) data in soybean. An integrative

pipeline was introduced for feature selection and feature extraction from

different layers in the integrated OnO data using data ensemble methods and

the non-parameter random forest prioritization to minimize uncertainties and

false positives for accuracy improvement of results. In total, 44, 143, and 45

CTgenes were identified in short-, mid-, and long-term cold treatment,

respectively, from the corresponding gene-pool. These CTgenes

outperformed the remaining genes, the random genes, and the other

candidate genes identified by other approaches in an independent RNA-seq

database. Furthermore, we applied pathway enrichment and crosstalk network

analyses to uncover relevant physiological pathways with the discovery of

underlying cold tolerance in hormone- and defense-related modules. Our

CTgenes were validated by using 55 SNP genotype data of 56 soybean samples
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in cold tolerance experiments. This suggests that the CTgenes identified from

our proposed systematic framework can effectively distinguish cold-resistant

and cold-sensitive lines. It is an important advancement in the soybean cold-

stress response. The proposed pipelines provide an alternative solution to

biomarker discovery, module discovery, and sample classification underlying a

particular trait in plants in a robust and efficient way.
KEYWORDS

soybean, cold tolerance, feature engineering, omics and non-omics data integration,
systems biology, non-parameter random forest prioritization, pathway-network
analysis, sample classification
Introduction

Soybean [Glycine max (L.) Merr.] is served as one of the

most economically valuable crops globally and currently is the

first and fourth largest grain or oilseed crop in the world in terms

of harvested area and yield, respectively (FAOSTAT, http://

www.fao.org/faostat/en/#compare). Soybean is not only a

dietary staple in human society, but also the material of many

kinds of the processed products (e.g., soymilk, tofu, miso, and so

on) and has a positive effect on the human body (Messina, 1997;

Van Ee, 2009; Qin et al., 2022). In recent years, the soybean’s

growing environment has faced more severe pressure, due to the

extreme temperature incurred by rapid climate change

(Gonçalves et al., 2021). Soybean is regarded as a cold-

sensitive crop species (Robison et al., 2017). Hence, it has an

urgent need to identify candidate tolerance genes for cold-stress

in soybean and breed the cold-resistant cultivars to cope with its

endangered growing environment.

Recently, agriculture around the world has faced more serious

abiotic stresses (such as extreme temperatures, drought, flooding,

and salinity), resulting in approximately 51-82 percent loss in crop

yield annually (Oshunsanya et al., 2019). Therefore, efforts to

enhance plants’ tolerance toward abiotic environmental stresses,

such as temperature extremes, remain challenging. Cold stress is

an abiotic stress factor that suppresses crop productivity, which

can be divided into chilling (0~15 °C) and freezing (< 0 °C) stress

(Ding et al., 2019). Both stresses can influence plants’

photosynthesis, cellular metabolism, and the production of

abscisic acid (ABA) and jasmonic acid (JA), causing

physiological damage during exposure. Growing tropical crops,

such as soybean, rice, and corn in temperate climates (e.g., North

America, North-Eastern China, Brazil.), tends to induce their cold

sensitivity when exposed to chilling stress (Bandara et al., 2021).

The appropriate temperature for soybean growth during the

vegetative stage is 15~22 °C (Liu et al., 2008). Under chilling stress,

soybean seedlings may result in growth retardation (below 15 °C), a

low rate of germination, and declining vitality (below 10 °C).
02
The decreases in the germination rate and the seedlings’ vitality

happen at temperatures below 10 °C. Furthermore, temperatures

below 6°C will cause little growth in soybean seedlings, severely

blocking the physiological features. (Bandara et al., 2021). Cold

stress imposes a significantly adverse impact on shoot height and

shoot dry matter accumulation of soybean, and also declines the

development of new leaves. In addition, low temperatures at

flowering deter soybean’s floral initiation. Cold stress can

negatively interfere with growth and development at all

phenological stages in soybean and, therefore, is an enormous

impediment to crop growth (Sanghera et al., 2011).

As highlighted above, there is a solid need to breed cold-

tolerant soybean cultivars under climate change conditions.

Cold-tolerant soybean species can resist low temperature

environments to prevent chilling injury signs, such as

chlorosis, necrosis, or growth retardation (Sanghera et al.,

2011). Cold inducible genes in plants involve many metabolic

pathways that drive the plant metabolism to respond to low

temperature environment (Sanghera et al., 2011). The C-repeat/

DRE binding factors (CBF/DREBs) play a vital role in cold

tolerant plants. The research shows that both cold treatments,

1hr and 24hr, changed the CBF/DREBs genes transcript level

significantly (adjusted p-value< 0.001) (Yamasaki and

Randall, 2016).

Over the last decade, candidate-gene approaches based on

knowledge of potential functions and physiological responses are

most commonly used to search for functional or adaptively

relevant loci that play key roles in a phenotypic trait of interest

using a variety of experimental designs and genetic approaches,

including linkage mapping (Jiang et al., 2009; Qiu et al., 2011;

Zhang et al., 2012), and gene expression profiling (Yamasaki and

Randall, 2016; Robison et al., 2019). Advances in high-

throughput experimental technologies have dramatically

generated and accumulated massive omics data and complex

bioinformatics, providing the opportunity to merge new

dimensions in crop improvement programs. Omics

technologies such as genomics, transcriptomics, proteomics,
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and metabolomics, either genome wide or targeted, use a

systems biology approach to characterize and quantify pools of

biological molecules for comprehensively understanding the

structures, functions, and their dynamics of a cell, tissue, or

organism (Vailati-Riboni et al., 2017). Systems biology

integrated multi-omics data across a wide range of fields

(biology, informatics , data science , s tat is t ics , and

computational science) involved, from different experimental

backgrounds, providing a more powerful foundation, more

comprehensive understanding and more meaningful insight

into stress tolerance, physiology mechanism, genetic processes

and others in different crop species (Pazhamala et al., 2021). Von

Bertalanffy (1973) introduced the concept of systems biology

and then used it to systematically integrate multi-omics data on

potatoes (Acharjee et al., 2016). With the development of

integration methods, it is becoming available to incorporate

complex biological information from several omics and non-

omics (OnO) data. Recently, Lai et al. (2021) proposed a

framework of multi-dimensional databases integration,

combining genomic and genotypic data, and a step function-

based weighting scheme to select flooding tolerance genes.

Integrating knowledge derived from genetic information and

multiple omics data, coupled with bioinformatics and

bioanalytical approaches, can improve gene discovery to better

understand complex networks of interactions between genes,

proteins, metabolites and environmental factors within a

complex phenotypic trait (e.g., cold tolerance and response to

cold stress).

Most abiotic stress-related traits result from the interaction

of several phenotypic features with multi-environment

conditions, which are complex in nature. Understanding these

complex mechanisms underlying biological processes and

molecular functions requires complete and precise data to

characterize such features and conditions in detail. However,

the integration of OnO data is not an easy task due to data

complexity, data heterogeneity (e.g., different data types and

formats from varying designs/technologies), data harmonization

(e.g., different data scaling, normalization, standardization, and

transformation), and identifiers mapping (e.g., matching gene/

pathway annotations with transcripts/proteins/metabolites).

Alternatively, incorporating high-dimensional omics data and

low-dimensional non-omics data is still a challenge in reducing

potential bias, noise, and interaction between multi OnO data.

Therefore, many modelling approaches, including independent

modelling, conditional modelling, and joint modelling were

developed to overcome the challenges mentioned above during

OnO data integration (López De Maturana et al., 2019).

Dimension reduction is an important step in the modeling

process. Feature engineering is one of the effective ways to

reduce the complexity of data, remove irrelevant variables, and

increase the modeling efficiency (Khalid et al., 2014).

Appropriate feature engineering plays an important factor in

successful modeling, and the techniques of feature engineering
Frontiers in Plant Science 03
differ from field to field (Verdonck et al., 2021). An example of

application of feature engineering in the agricultural fields was

applied to yield prediction, using the manpower-based

(agricultural experts), the algorithm-based (random forest

variable importance), and the mathematical model-based

(Pearson correlation) feature selection and feature extraction

to eliminate the redundant variables (Shahhosseini et al., 2020).

Therefore, benefits from the feature engineering enable us to

know more clearly about the interaction between environmental

factor and crop yields.

The concept of gene prioritization is not new. Several

prioritization approaches were proposed for complex traits in

human diseases. Recently, the idea of gene prioritization was

applied to rice bacterial leaf blight (Xia et al., 2013), Arabidopsis

thaliana flowering-time (Zhai et al., 2016), and soybean flooding

tolerance (Lai et al., 2021). Nevertheless, there is still some space left

for improvement. The gene prioritization approaches used in these

studies were evidence-based (e.g., rank, impact factor, and term

frequency-based), which were highly dependent upon a specific set

of features. The key challenge in gene prioritization is to precisely

prioritizing a list of candidate genes accordingly and selecting

important genes for a specific phenotype of interest. The random

forest (RF) has been one of the most widely-known algorithms in

the scientific area. The RF algorithm undergoes two random stages,

bootstrapping and random feature selection. Additionally, the RF

chooses features randomly to generalize over the data to prevent

overfitting and provide stable generalization errors. The RF is

always a better way for researchers to solve multi-class problems

and cope with a large amount of data (Breiman, 2001). In this study,

we employed the non-parameter random forest (NPRF) algorithm

to prioritize a list of genes in a large-scale dataset to avoid false-

positive results and provide a much more accurate decision during

the gene prioritization stage.

A gigantic amount of biological data has been generated due

to the progress of computational technologies and biological

techniques, providing opportunities to identify the underlying

biological phenomena through pathway analysis and crosstalk

networks. The concept of pathway crosstalk describes the

correlations or relationships among pathways in terms of the

degree of the overlapping or sharing genes due to closely related

functions. Studying pathway crosstalk at the network level in

plants can not only reveal the whole architecture of the

mechanism underlying a certain phenotype of interest but also

can validate hypotheses experimentally about the crosstalk.

Several applications of crosstalk in plants have uncovered

novel findings and new insights, including hormone crosstalk

on the regulation of plant defense (Aerts et al., 2021). The first

application of crosstalk in soybean was introduced by Song et al.

(2019) to uncover the role of BZR1-like proteins (GmBZLs) in

brassinosteroids signaling regulation, involved with several plant

hormones and abiotic stress. Investigation of such interaction is

imperative to unveil the potential crosstalk and provides a more

comprehensive insight into physiological mechanisms.
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Because of the increasing frequency and intensity of cold

extremes and being a cold-sensitivity crop, there is an urgent

need to identify the candidate genes relevant to cold-tolerant

responses in soybean for breeding cold-resistant cultivars to

alleviate the production loss. In particular, soybean cold-tolerant

responses are complex quantitative traits controlled by many

genes, environmental factors, and their integration. Therefore,

we developed a systematic and comprehensive framework of

feature engineering in the present study, including integrated

feature selection and feature extraction for OnO data integration

and genes prioritization, to identify key genes favoring cold

tolerance (denoted as CTgenes) in soybeans. Here, we defined

the CTgenes as significantly associated with cold tolerance or

cold responses contributing to cold-related traits during the

vegetative growth phase in experiments with treatments at low

temperature (below 15 °C). According to the period of time of

cold tolerance, we classified them into three periods, including

short-term (shorter than 12hr), mid-term (between 12hr to 48

hr), and long-term (longer than 48hr) (Hannah et al., 2005). We

first employed the data-ensemble methods to systematically grab

and integrate valid information from collected OnO data to

access valuable insights into biological events and processes.

Possible sources of potential biases (i.e. selection bias and

ascertainment bias) and noise were minimized during the

data-ensemble stage. A scoring system was set to evaluate the

varying magnitude of associations for each of the collected genes

related to the cold tolerance or response to cold stress in

soybean. A NPRF prioritization algorithm and statistical

testing approaches were proposed to select prioritized CTgenes

for short-, mid-, and long-term cold tolerance. We compared

our results to other existing methods to evaluate the robustness

and effectiveness of the prioritized CTgenes in a large-scale

RNA-seq gene expression data (Yamasaki and Randall, 2016)

under cold treatment in soybean leaves. Furthermore, a model-

based pathway enrichment analysis and pathway crosstalk

network were performed to gain insight into the biology of

functional contexts of the CTgenes. Finally, we validated our

CTgenes using genotypes data of 56 soybean samples in cold

tolerance experiments. Significant contributions to scientific

research may include multiple aspects through our developed

systems biology pipelines. (1) Fast-precise biomarker discovery

and sample classification: important key genes underlying a

particular phenotype can be efficiently selected to distinguish

diverse sample features. (2) Higher accuracy and fewer false-

positive results: rigorous data quality control can typically

produce high-quality results without information loss. (3) Cost

reduction: through the pipelines, several costs in time, funding,

manpower, and workforce can be minimized. (4) Application

and generalization: our proposed systems biology framework

can be applied to other important phenotypes (e.g. drought

tolerance) in soybeans and generated for other plant species (e.g.

rice) in an efficient way.
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Materials and methods

We proposed a comprehensive and systematic framework of

feature engineering for OnO data integration from multiple data

sources, and prioritized them for the identification of cold

tolerance genes in soybean. Our framework is comprised of four

steps. The first step is data input, including OnO data mining and

data ensemble. The second step is data processing consisting of

integration analysis and gene prioritization. Integrated feature

selection and feature extraction included unwanted data (i.e.,

uncertainties, irrelevant and redundant data, noise, errors, and

false positives) exclusion using the data-ensemble method and the

OnO data integration using the association-based method in the

integration analysis. Feature fitness utilized the NPRF

prioritization on decision trees construction. The third step is

data output comprising CTgenes discovery, pathway enrichment

analysis, and crosstalk network (i.e. module discovery). The fourth

step is the validation study including cold tolerance experiments

and cluster analysis (i.e. sample classification). A detailed pipeline

of feature engineering for the OnO data integration and analytic

strategy in this study is illustrated in Figure 1.
OnO data mining and wrangling

The OnO data was mined from publications and open

databases available in NCBI PubMed and Google Scholar. Only

data related to soybean cold tolerance or response to cold stress

(temperature below 15 °C) were collected by searching keywords.

The related search terms were combinations of crop and trait.

Keywords for crop included ‘soybean’ and ‘Glycine max’. Keywords

relevant to cold tolerant trait were ‘cold’, ‘freezing’, ‘cool’, ‘chilling’,

‘low temperature’, ‘hypothermia’, and ‘microtherm’. To maximize

the completeness of the datasets, we collected omics data (genomics,

transcriptomics, proteomics, and metabolomics) from different

layers (DNA, RNA, protein, function) of information. Similarly,

physiological, pathological, phenotypic, demographic and ecological

data from individual studies and large-scale non-omics data were

collected. We recorded different types of OnO features analyzed by

different approaches in each layer. For example, genomic data was

collected from genome-wide association study (GWAS), association

mapping, linkage mapping, and pathway analysis at the DNA layer.

Transcriptomic data were collected from gene expression, non-

coding RNA, and pathway regulation in the RNA layer. Proteomic

data were collected from protein-protein interaction networks

(PPIN) and proteome studies in the protein layer. Metabolome

data were collected from functional networks and pathway

regulation studies at the function layer. Besides, model plants

(Arabidopsis thaliana and Medicago truncatula) have been

studied for a comprehensive understanding of soybean functional

genes. Hence, they were included in the OnO data integration as

a layer.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1019709
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Kao et al. 10.3389/fpls.2022.1019709
We defined inclusion criteria as soybean and cold tolerance

or response to cold stress only. The exclusion criteria considered

studies that were related to genetically modified studies, human

and animal experiments, non-soybean traits, and other

irrelevant studies. To avoid possible noise and false positive

results, we only considered QTLs and targeted traits (cold

tolerance or response to cold stress) were associated within a 5

centimorgan (cM) interval. Both inclusion and exclusion criteria

were used to minimize potential noise and biases.
Integrated feature selection and feature
extraction

The integrated feature selection and feature extraction

consists of the data-ensemble method and the OnO data
Frontiers in Plant Science 05
integration analysis. The data-ensemble method involves

several processes of data management and quality control,

including data cleaning, data harmonizat ion, data

heterogeneity, and data mapping. In data cleaning process, we

discarded unwanted data (i.e. duplicate, irrelevant, and not

applicable data to this study) and also corrected inaccurate

data (i.e. typos and incorrect data) to ensure correct and

consistent data. In data harmonization process, we unified

diverse data in formats, types, levels, and dimensions that were

curated from different data sources into an aligned entire to

ensure that data are comparable. An association-based scoring

system was developed to integrate OnO data. Each marker,

including single nucleotide polymorphism (SNP), simple

sequence repeat (SSR), and QTL, was assigned a score to

evaluate the magnitude in relation to cold tolerance or cold

response in soybean. Scores for p-values, fold-change (FC), the

logarithm of odds (LOD), degrees, and cluster coefficients were

correspondingly transformed by using 10-based logarithms,

absolute values, floor function, and step function to extract a

suitable representation of data. Because OnO data were

generated by different technologies, all scores were constrained

within a reasonable range to avoid overestimated or

underestimated scores extracted from a single platform in the

data heterogeneity process. A detailed scoring scheme for diverse

data formats across different layers is described in

Supplementary Table 1. In the data mapping process,

annotations of OnO entities (transcripts, proteins, SNPs, SSRs,

and QTLs) with bioinformatics were matched to annotated

genes. A window spanning 20 kb upstream/downstream of a

gene was used in gene annotation mapping (Lai et al., 2021). In

addition, annotated pathways (e.g., GeneOntology, GO-terms)

were matched with corresponding gene sets. Finally, gene

version correspondence analysis was performed to match

different gene versions (Glyma v1.0, Glyma v1.1, and Glyma

v2.0) (Grant et al., 2010; Schmutz et al., 2010), and unify them

into Glyma v2.0 (Wm82.a2.v1) gene version (https://

phytozome-next.jgi.doe.gov/info/Gmax_Wm82_a2_v1; https://

soybase.org/dlpages/#annot).

Comparative genome mapping to different plant species

using homologous genes with similar functions provides great

potential for biomarker discovery (Gale and Devos, 1998). To

extend the OnO data dimension, we included homologous genes

from Arabidopsis thaliana and Medicago truncatula as the

model plants. The keyword search technology was used to

excavate relevant publications on cold tolerance in NCBI

PubMed. Only data reported to be significantly tolerant to

cold stress and validated in cold stress experiments were

collected. We used BLASTP (Camacho et al., 2009) to conduct

a sequence similarity search for protein sequences of the Glycine

max genome by using alignment to match those from

Arabidopsis and Medicago. Homologous proteins or genes,

corresponding to soybean genes, were identified by the highest

similarity in sequence searches. The similarity selection criteria
FIGURE 1

The pipeline of feature engineering for omics and non-omics
(OnO) data analytic strategy. The OnO data were classified into
different layers (DNA, RNA, protein, function, homologs) of
information, which were regarded as the input data. Integrated
feature selection and feature extraction include the data-
ensemble step and the integration step (using the association-
based method), which were applied to remove unwanted data
(i.e., uncertainties, irrelevant and redundant data, noise, errors,
and false positives) and integrate the OnO data. The data
processing step consists of the OnO data integration and gene
prioritization. In the feature fitness, we proposed the non-
parameter random forest algorithm for gene prioritization. The
steps of data-ensemble and association-based integration
approach are an iterative procedure for data updates (e.g. noise
or errors removal, new added data). Data output step was
illustrated by the discovery of CTgenes, enriched pathways, and
module discovery. Validation study step was executed by cold
tolerance experiments using 55 SNP genotypes data of 56
soybean samples.
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included E-value less than 1.0×10-10 and an identity greater than

35 percent. We applied a step-function proportional to the

number of references to score the importance of homologous

genes in relation to cold tolerance or response to cold stress.

Figures 2, 3 (only the ‘Systems Biology’ panel) demonstrates a

novel framework of OnO data integration based on

comprehensive data management and quality control

rigorously and systematically. More attentively, Figure 2

displays the framework of integrated feature selection and

feature extraction for OnO data integration. The OnO data

mining was implemented on keyword searches. Multiple OnO

data, consisting of omics data (genomic, transcriptomic,

proteomic, and metabolomic data) and non-omics data, were

classified into different layers (DNA, RNA, protein, function,

and homologs) with different types of features analyzed by

different methods. The collected data were filtered to exclude

irrelevant data from this study, and classified into DNA, RNA,

protein, and function layer in the data-ensemble step. In

addition, homologous genes from model plants were extracted

and included in the homologs layer. The ‘Systems Biology’ panel

in Figure 3 demonstrates an overview of the integrated OnO data

at the systems level. The OnO data integration was implemented

based on the association-based scoring system. Feature selection

and feature extraction were performed using the data-ensemble

methods during data clean, data harmonization, data

heterogeneity, and data mapping steps. A weighting scheme

was applied through different cold treatment span to give

respective weights. The test genes were compared to the core

genes to determine the number of the top genes by an optimal

cut-off threshold of combined score.
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We defined Xi (i=1,2,⋯,k ) to be the OnO matrix, with m

layers (e.g., DNA, RNA, protein, function, and homologs) and

ni features (e.g., SNPs, QTLs, mRNA, miRNA, gene, etc.). We

jointly merged the k OnO matrices into a (n×m) OnO-specific

matrix, where n sums over all features across all OnO matrices

(i.e. n =ok
i=1ni). For each gene, a score (denoted as S

l
j, j=1,⋯,n

and l=1,⋯m) was calculated for each layer using the scoring

scheme mentioned above. We defined Wj (j=1,⋯,n ) as a

weight based on the duration of cold tolerance to evaluate

the capacity of exposure to cold stress for each gene. Overall, a

pool of genes (denoted as the test genes) extracted from the

OnO data, each with a combined score, was established to

uncover the CTgenes.
To determine the number of the CTgenes, a set of core genes

is required to compare with the test genes. The core genes were

defined to be significantly associated with cold tolerance or

response to cold stress in soybean. Criteria for core genes

selection were as follows: (1) the most significantly reported

genes that were associated with cold tolerance or response to

cold stress; (2) the most frequently reported genes with

significant characteristics (i.e. reported on more than three

layers, combined score ranked within the top 0.5% of the test

genes, and scored higher than 3 at each layer excluding

homologs); and (3) only genes that performed transcriptome

measurement and were further validated by the quantitative

polymerase chain reaction (q-PCR) with significant p-value less

than 0.0001. An optimal cut-off score between the core genes (a

left-skewed distribution) and the test genes (a right-skewed

distribution) was identified to determine the number of the

CTgenes in the NPRF prioritization procedure.
FIGURE 2

Framework of integrated feature selection and feature extraction for OnO data integration. Multiple OnO data (genomic, transcriptomic,
proteomic, and metabolomic data) were classified into different information layers (DNA, RNA, protein, function, and homologs). Each layer has
different types of the OnO features analyzed by different methods.
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The NPRF prioritization

We proposed the NPRF prioritization algorithm based on

the decision tree model to select important genes for feature

fitness iteratively. A bootstrap resampling and random

permutation approach were applied to build r decision trees

from bootstrap samples. The final decision can be classified

according to the votes of the r trees. We defined the test genes as

the original training set D = f(Gj, S
l
j)jj = 1,⋯, n; l = 1,⋯mg,

where G represents a gene in the test genes and Sl represents a

score on the l-th layer. That is, the original training set D

contains n genes, and there are m scores in each gene. The

procedures of the NPRF prioritization algorithm (please see the

‘Non-Parameter RF Prioritization’ panel in Figure 3) are

elaborated as follows.

Step 1. Generating r bootstrap samples. We randomly

generated r (10,000 times, say) bootstrap samples (denoted as Dbt
t

, t=1,⋯,r ) of the same size of n from the original training set D (i.e.

test genes) with replacement. We defined Dbt = fDbt
1 ,D

bt
2 ,⋯,Dbt

r g
as a collection of r bootstrap samples for training tree models. The

top h genes were determined by selecting the top h with the

highest combined scores. We denoted Dbt
t,top = f(Gbt

tj 0 , S
bt
tj 0 )jj 0 =

1,⋯, hg   (t = 1,⋯, r) as the top set for bootstrap sample.

Step 2. Generating q permutation samples. To compare with a

certain bootstrap sample, a null model was used to randomly shuffle

scores in order to break the structure inherent in the original

training set D. As a result, q (10,000 times, say) permutation

samples (denoted as Dperm
t 0 , t'=1,⋯,q ) were constructed, and here

we defined Dperm = fDperm
1 ,Dperm

2 ,⋯,Dperm
q g as a collection of q
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permutation samples. For each Dperm
t 0 (t'=1,⋯,q ), we selected the

top h genes with the highest combined scores. Similarly, we denoted

Dperm
t 0 ,top = f(Gperm

t 0 j 0 , S
perm
t 0 j 0 )jj 0 = 1,⋯, hg   (t 0 = 1,⋯, q) as the top set

for q permutation samples.

Step 3. Constructing r decision tree models. For each bootstrap

sample, the combined scores of the top bootstrap genes

(Sbt = fSbtj 0 jj 0 = 1,⋯, hg) were compared with those of q sets of the

top permutation genes (Sperm = fSperm1j 0 , Sperm2j 0 ,⋯, Spermqj 0 jj0 = 1,⋯, hg)
using the Wilcoxon rank-sum test to construct a decision tree

model. A decision tree model was built only if the combined

scores of the top bootstrap genes were significantly distributed

higher than those of the top permutation genes. Otherwise, we

discarded the decision tree, and regenerated a bootstrap sample

followed by the permutation process to construct a new decision

tree model until a total of r decision tree models were collected.

Step 4. Ranking r decision trees to build a final model. We

pooled all the r decisions trees (the top bootstrap genes), and

ranked them by the frequency of counts for each gene. The final

decision tree model was identified by selecting the top h with the

highest counts (this is the well-established CTgenes).
Validation studies of the CTgenes

The whole RNA-seq database of cold-treated leaves of

soybean seedlings (Yamasaki and Randall, 2016) was used as

an independent sample to validate the reliability and robustness

of the CTgenes. Cold experiments on 2-week-old soybean (c.v.

Williams 82) seedlings were treated at 4 °C for 2 days after the
FIGURE 3

An overview of the integrated OnO data and breeding for superior lines in soybean. There are four primary steps: systems biology, non-
parameter random forest prioritization, prediction and validation (pathway enrichment, module discovery, and validation study). GSEA represents
gene-set enrichment analysis; GO represents gene ontology; R represents resistant varieties; S represents susceptible varieties.
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light was operated for 4 hours on day 10, and maintained at 4 °C

under the light-dark cycles till harvest time (0, 1, and 24 hours).

All experiments were performed in triplicate. Because of the

comprehensive and large-scale of databases, their results were

frequently used to confirm soybean’s physiological experiments

(Robison et al., 2019; Li et al., 2022). Robison et al. (2019)

reviewed Yamasaki and Randall's results (2016) and conducted

RNA-seq analysis to confirm the ethylene-mediated signaling

pathway has negative impacts on CBF/DREB-regulated cold

responses in soybean underlying different scenarios of cold

treatments. Li et al. (2022) later conducted genome-wide

analysis of homologs using proteins sequences to identify

mitochondrial calcium uniporter family genes, and validated

by RT-PCR assays under cold treatment (harvested and

measured gene expression after 0, 1, and 24 hr cold treatment

at 4°C), which echo Yamasaki and Randall's results (2016)

results . These evidenced that the whole genome RNA-seq

databases can be a basis of cold-tolerant responses in soybean

for further validation, evaluation, and experiments. We

employed the ‘edgeR’ package in R to quantify the relative

expression level of transcripts from RNA-seq data (https://

bioconductor.org/packages/release/bioc/html/edgeR.html). In

total, 49,778 gene expression data from RNA-seq were

generated for validation studies.

Three approaches were applied to validate the CTgenes

using the RNA-seq data. Statistical methods and sampling

techniques were devised as follows. First, we compared our

CTgenes with the remaining genes. The Wilcoxon rank-sum

test was used to verify whether the CTgenes had smaller p-values

than the remaining genes. Second, we compared our CTgenes

with random gene sets. For simplicity, the process of the

sampling approach is described below. (1) Sampling: we

randomly sampled a set of genes (same size as the CTgenes)

without replacement from the gene pool of the expression data.

(2) Statistical testing: the CTgenes were compared to the random

set using the Wilcoxon rank-sum test. (3) Loop: we repeated the

above steps until 10,000 random sets were obtained. (4)

Calculating an empirical p-value: we counted the frequency of

random sets that outperformed the CTgenes divided by 10,000

to obtain an empirical p-value. Third, we performed the

Wilcoxon rank-sum test and the hypergeometric test to

compare our CTgenes with other candidate genes identified

from other methods, including the RF prioritization on Rafsee

(Zhai et al., 2016), the step-function adjusted factor-based

(SFAF) prioritization (Lai et al., 2021), the network-based

prioritization on SoyNet (Kim et al., 2017), candidate genes

selection on SoyBase (https://www.soybase.org/), and the QTLs

mapping approach (Jiang et al., 2009; Qiu et al., 2011; Zhang

et al., 2012). All statistical resampling and analyses were

implemented via Python 3.8 version. For detailed framework

of validation, please refer to Figure 3 (please see the ‘Prediction

& Validation’ panel).
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Pathway enrichment and crosstalk
network analysis

To better understand the whole map of the molecular

mechanisms underlying cold stress in soybeans, we introduced

systems biology approaches to computationally examine the

CTgenes in the manner of comprehensive framework and

systematical thinking. The GO is a comprehensive database for

soybeans, which integrates abundant terms (13,292 GO terms)

on the functions of genes. The GO annotations provide links

between genes and biological processes, cellular components, or

molecular functions. In this study, we conducted pathway

enrichment analysis to investigate physiological and biological

pathways that are overrepresented in cold tolerance or response

to cold stress. The hypergeometric test was applied to test

enrichment for genes in a specific pathway (i.e. GO term)

against genes outside the pathway, using the CTgenes and the

GO terms. Pathways whose gene numbers were greater than

2,500 or smaller than 5 were excluded from the analysis to

prevent overly limited information or excessively large

pathways. All p-values were adjusted by Bonferroni correction

to account for false positive results.

To visualize module discovery, we conducted network

analysis through a pathway crosstalk to understand alternative

information between biological functions of complex systems

underlying cold tolerance in soybean. To explore the pathway

crosstalk, we calculated the degree to describe the connections of

a node in the crosstalk network. A pathway crosstalk network

consists of nodes (i.e. biological pathways) and edges (i.e.

overlapping genes between pathways), which is widely used to

describe communications or interactions between functional

pathways. Here we defined the node color, node size, and edge

width to present the complicated relations between biological

functions in an information-enriched way. The node size was

defined as the significance level of a certain pathway from the

hypergeometric test. The edge width was defined as the

overlapping genes between pathways. The node color was used

to distinguish short- (purple), mid- (yellow), and long-term

(purple) cold tolerance. Edges in pink, gold, and blue connect

short-, mid-, and long-term pathways, respectively. Edges in

gray represent connections between mid- and long-

term pathways.
Validation in soybean samples

A total of 56 soybean samples were used to conduct cold

tolerance experiments (unpublished data) to evaluate cold

resistant and susceptible varieties. We investigated soybeans

response to cold stress at the V3 stage by recording brown

spots, curl, wrinkled on leaves and plant development after low

temperature occurrence (the minimum air temperature below
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10°C). All samples were genotyped using the Axiom® 180K

SoyaSNP array. Fifty-five SNPs located in the CTgenes were

selected for cluster analysis. SNPs were used as genotypic data

for assessing relationships among soybean germplasms. A

distance matrix was calculated as identity-by-state dissimilarity

using PLINK software (Purcell et al., 2007), and a phylogenetic

tree was constructed using the neighbor-joining tree method in

MEGA X (Kumar et al., 2018). The neighbor joining tree was

visualized by Interactive Tree of Life available at https://itol.

embl.de/. We performed a cluster analysis on soybean samples to

investigate whether the CTgenes are able to distinguish cold

tolerance and susceptible varieties in soybean.
Implementation environment

All the analyses were implemented on the Dell PowerEdge

R930 4-socket 4U rack server model that supports four

processors based on the Intel® Xeon® CPU E7-4830-V3

2.10GHz. This server consists of 64-core CPUs, 512G RAM,

and 110TB SAS HD memory. All the analyses were operated in

both Python v3.8 and R Linux 64-bit v4.2.1. The gene network

analyses of the selected CTgenes were employed on the SoyNet

(https://www.inetbio.org/soynet/) to obtain a network edge

information, followed by the Cytoscape (https://cytoscape.org/)

to create and visualize the functional modules.
Results

Literature study

We found three articles using the linkage mapping approach

to identify the candidate QTLs relevant to cold tolerance in

soybean (Jiang et al., 2009; Qiu et al., 2011; Zhang et al., 2012).

These QTLs were collected in the DNA layer. In total, 11 articles

conducted the expression profiles on targeted genes in soybean

under low temperature, including genes encoding GmFLC-like

protein (Lyu et al., 2020), CBF/DREB1 transcription factors

(Robison et al., 2019), GmIRCHS genes (Ohnishi et al., 2011),

heat shock transcription factors (Chung et al., 2013), genes

encoding CCA1-like proteins (Bian et al., 2017), HSP20 gene

family (Lopes-Caitar et al., 2013), RCC1 gene family (Dong et al.,

2021), 14-3-3 gene family (Wang et al., 2019), carboxylase gene

family (Wang et al., 2016), histone deacetylases gene family

(Yang et al., 2018), and genes encoding NIMA-related kinase 1

(GmNEK1) (Pan et al., 2017). In addition, five articles were

collected on the basis of a non-coding RNA molecular approach,

including circRNA (Wang et al., 2020b) and miRNA

(Maruyama et al., 2012; Zhang et al., 2014; Xu et al., 2016; Sun

et al., 2020), to uncover their impact to other transcriptional

RNA under cold stress in soybean. These genes were collected in

the RNA layer. The PPIN database demonstrates the functional
Frontiers in Plant Science 09
relationships between gene pairs, which was downloaded from

the PlantRegMap (http://plantregmap.cbi.pku.edu.cn/). These

gene pairs were collected in the protein layer. Three articles

using the pathway regulation methods were collected, of which

two were classified into the RNA layer (Yamasaki et al., 2013; Yu

et al., 2014) and the other was in the function layer (Tian et al.,

2015a). The genetic data were involved with several pathways

that are relevant to cold-tolerant mechanisms in soybean.
OnO data mining and collection

We developed a systems biology pipeline, including data

input (iterative OnO data wrangling and data-ensemble), data

processing (OnO data integration and gene prioritization),

output (CTgenes discovery, enriched pathways, and module

discovery), and validation in soybean samples (cold tolerance

experiments) to achieve the robustness and reliability of the

CTgenes (Figure 1). We applied keyword search to screen

relevant OnO data related to cold tolerance or response to

cold stress in soybean (Figure 2). A total of 65 publications

and 5 databases were collected initially. After being carefully

examined by well-trained and experienced experts, 22 articles

and 3 databases were relevant to this study and hence collected

in the OnO data integration. As a result, 54 QTLs were curated

from 3 articles in the DNA layer. There is no any data from

pathway analysis in the DNA layer. Nine QTLs (features of

mRNA) and 12,441 genes (features of circRNA and miRNA)

were collected from 16 articles and 1 database in the RNA layer.

Among them, only one omics data set (containing 12,343 genes)

was included in the cold experiments on 2-week-old soybean

seedlings (cv. Nourin No. 2) at 4 °C for 1 day. 47,931 protein

pairs were mined from 717,676 PPIN of the PlantRegMap

(http://plantregmap.cbi.pku.edu.cn/download.php#networks)

database in the protein layer. In addition, 74 genes were

extracted from 2 pathways (ABA biosynthetic process and

ABA catabolic process) that related to cold tolerance in the

GENEONTOLOGY (GO; http://geneontology.org/) pathway

regulation database. We excavated 992 genes in pathway

regulations (features of metabolites) from one article in the

metabolome layer. In the homologs layer, a total of 1,800

(Arabidopsis) and 317 (Medicago) journal articles related to

cold treatment were initially collected from NCBI PubMed.

Articles that involved irrelevant or not applicable to the

present study (i.e. non-significant results, lack of experimental

validation, not focused on cold tolerance experiments, and genes

validated in other plants) were discarded. As a result, 395 and 11

articles were retained, resulting in 608 Arabidopsis genes and 45

Medicago genes, respectively. These Arabidopsis and Medicago

genes were separately mapped to 3929 and 31 gene homologous

in soybean. In total, 65,452 genetic data were obtained from the

OnO data. For detailed information on OnO data collection,

please refer to Tables 1A, B. Supplementary Material 1 provides
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TABLE 1A The summary of the collected genetic data. (A) The number of non-omics and omics (OnO) data collected from articles and databases.
(B) Summary information of collected OnO data from different molecular approach.

OnO data Layer/
Feature

Approach No. of articles/databases mined initially No. of articles/data-
bases after quality

check

No. of genetic data
(SNP, gene, SSR, QTL)

collected

Genome DNA/QTLs Linkage
mapping

9/0 3/0 54

Pathway
analysis

3/0 0/0 0

Transcriptome RNA/mRNA Gene
expression

35/1 11/0 9

RNA/circRNA Noncoding
RNA

1/0 1/0 26

RNA/miRNA Noncoding
RNA

4/1 4/1 12,415

RNA/mixed Pathway
regulation

8/2 2/1 74

Proteome Protein/Protein PPIN 0/1 0/1 47,931

Metabolome Metabolome/
Metabolites

Pathway
regulation

5/0 1/0 992

Total 65/5 22/3 61,492
Frontiers in Pl
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SNP, single nucleotide polymorphism; QTL, quantitative trait locus; mRNA, messenger RNA; circRNA, circular RNA; miRNA, micro RNA; PPIN, protein-protein interaction network.
TABLE 1B

OnO data Layer / Feature/ Approach Growing stage Cold treatment Reference Duration of cold tolerance

Omics data:

Transcriptome RNA / miRNA /
Noncoding RNA

2-weeks-old 4 °C for 1 day Maruyama et al.
(2012)

Mid-term

Non-omics data:

Genome DNA / QTL / Linkage
mapping

Started at 2 days after
sowing

6 °C treatment for 8 days Qiu et al. (2011) Long-term

DNA / QTL / Linkage
mapping

Germination stage 6 °C treatment for 1 week Zhang et al.
(2012)

Long-term

DNA / QTL / Linkage
mapping

Started at 5 days after
sowing

6 °C treatment for 1 week Jiang et al. (2009) Long-term

Transcriptome RNA / mRNA / Gene
Expression

In second trifoliate 15 in daytime and 13 °C at night for 10 days Lyu et al. (2020) Long-term

RNA / mRNA / Gene
Expression

1-week-old 18 in daytime and 13 °C at night for 14 days Ohnishi et al.
(2011)

Long-term

RNA / mRNA / Gene
Expression

10-days-old 4 °C for 12 hr Yang et al. (2018) Mid-term

RNA / mRNA / Gene
Expression

3~4-weeks-old 4 °C for 0, 3, 6, 24 hr Chung et al.
(2013)

Long- & short-term

RNA / mRNA / Gene
Expression

4-weeks-old 4 °C for 1, 6, 12 hr Wang et al.
(2019)

Short-term

RNA / mRNA / Gene
Expression

10-days-old 4 °C for 24 hr Bian et al. (2017) Mid-term

RNA / mRNA / Gene
Expression

Growing stage V3 4 °C for 3 hr Lopes-Caitar et al.
(2013)

Short-term

RNA / mRNA / Gene
Expression

10-days-old 4 °C for 0, 1, 24 hr Robison et al.
(2019)

Mid- & short-term

RNA / mRNA / Gene
Expression

3-weeks-old 4 °C for 6, 12 hr Dong et al. (2021) Short- & mid-term

(Continued)
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an overview of collected OnO data. Each genetic data was

classified into different biological layers according to the types

of features and the analytic approaches available in each OnO

data layer.
Integrated feature selection and
feature extraction

As described in the “MATERIALS AND METHODS”

section, many steps are executed in the OnO data-ensemble

processes to minimize potential noise and biases (Figure 3).

There were 44 articles and 2 databases of unwanted data (i.e.

irrelevant to this study). Hence, we removed them from OnO

data integration in the data cleaning step (Table 1). In order to

unify distinct data sources, all collected OnO data were

correspondingly transformed into limited scores ranging from

0 to 10 (Figure 4A) to account for data heterogeneity in the data

harmonization step (Supplementary Table 1). Finally, 64 QTLs

and 47,931 protein pairs were respectively mapped into 449 and

46,770 genes in the identifiers mapping step. Taken together,

60,726 genes with combined scores were extracted from

integrated OnO data. Most of these scores were bounded

between 0 to 7, and skewed to the right in each of all layers

(Figures 4B, C). It is clear to note that many genes played no role

in the cold tolerance or response to cold stress (that is, scored 0

across all layers); thus, they were excluded from the analyses. As

a result, a total of 4,014 (short-term), 14,607 (mid-term), and

4,069 (long-term) genes were retained for gene prioritization

algorithm. Here, we denoted these genes as the test genes for

short-, mid-, and long-term cold tolerance.
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The NPRF prioritization

To determine the number of CTgenes, we carefully selected

ten core genes (Figure 5A), which met one of the three scenarios

(Figure 5B) (see the “MATERIALS AND METHODS” section),

and compared them with the test genes. The overlapping genes

among these test genes are demonstrated in Figure 6A. A clear

separation at a cut-off score of 8 (Figure 6B), 10 (Figure 6C), and

7 (Figure 6D) was observed between the core genes and the test

genes, determining the number of CTgenes to prioritize from the

test genes for short-, mid-, and long-term cold tolerance was 44,

143, and 45, respectively. The feature fitness of the integrated

OnO data was implemented through the NPRF prioritization

algorithm. We performed bootstrapping to create a bootstrap

sample, and tested it on 10,000 permutation samples using the

Wilcoxon rank-sum test. This procedure was repeated until

10,000 sets of CTgenes were identified. We then counted the

number of times each gene was selected as the prioritized

CTgenes. For each gene, the gene count was divided by 10,000

to obtain the gene probability. After removing genes with zero

counts, the gene probabilities for short-, mid-, and long-term

were ranged between 0.0404-1.0 (101 genes), 0.0001-1.0 (190

genes), and 0.0411-1.0 (102 genes), respectively (Supplementary

material 2). We prioritized them and found a dramatically drop

at the 45th (declines from 0.8974 to 0.0525), 144th (declines from

0.5077 to 0.2575), and 46th (declines from 0.5215 to 0.0531) gene

in gene probabilities for short-, mid-, and long-term gene set,

respectively. As a result, a total of 44, 143, and 45 prioritized

CTgenes were identified for short- (Figure 7A), mid-

(Figure 7B), and long-term (Figure 7C) cold tolerance,

respectively. Of which, one major module was found in short-
TABLE 1B Continued

RNA / mRNA / Gene
Expression

2-weeks-old 4 °C for 3, 6, 12 hr Pan et al. (2017) Short- & mid-term

RNA / mRNA / Gene
Expression

4-weeks-old 4 °C for 3, 6, 12, 24 hr Wang et al.
(2016)

Short- & mid-term

RNA / circRNA /
Noncoding

Under trifoliate fully
expanded

4 °C for 0, 4, 8 hr Wang et al.
(2020b)

Short-term

RNA / miRNA /
Noncoding

One true-leaf stage 4 °C for 24 hr Xu et al. (2016) Mid-term

RNA / miRNA /
Noncoding

20-days-old 0 °C for 2, 12 hr Sun et al. (2020) Short- & mid-term

RNA / miRNA /
Noncoding

4-week-old 4 °C for 24 hr Zhang et al.
(2014)

Mid-term

RNA / mixed / Pathway
regulation

10-days-old 4 °C for 2 days Yamasaki et al.
(2013)

Long-term

RNA / mixed / Pathway
regulation

10-days-old 4 °C for 0, 12, 24, 48 hr Yu et al. (2014) Mid-term

Proteome Protein / Protein / PPIN Database from PlantRegMap (http://plantregmap.cbi.pku.edu.cn/)

Metabolome Function / Metabolites /
Pathway regulation

Complete expansion of
the first trifoliate

5 °C for 0, 12, 24 hr Tian et al.
(2015a)

Mid-term
PPIN, protein-protein interaction networks.
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(15 CTgenes), mid- (44 CTgenes), and long-term (15 CTgenes)

cold tolerance CTgenes. The Manhattan plots of the test genes

for short- (Figure 8A), mid- (Figure 8B), and long-term

(Figure 8C) cold tolerance were demonstrated, where the

CTgenes were colored in red dots. Seventeen and twenty-three

CTgenes overlapped among the three terms and among short

and long term, respectively (Figure 8D). The most clustering of

the CTgenes on chromosome 10 (6, 12, and 6 genes in short-,

mid-, and long-term, respectively) and 13 (5, 15, and 5 genes in

short-, mid-, and long-term, respectively) were identified;

however, no any CTgenes on chromosome 2 and 6 were

noticed for both short- and long-term cold tolerance in soybean.
Validation studies of the CTgenes

The independent RNA-seq data (Yamasaki and Randall,

2016) was applied to examine the reliability of the CTgenes.

Data of 1-hour and 24-hour cold exposure; were applied to test

for short- and mid-term respectively. First, we compared the

CTgenes with the remaining genes (excluding the CTgenes).

Our CTgenes had significantly smaller p-values than the

remaining genes for short (p-value =1.3×10-3) and mid-term
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(p-value<1.0×10-5) cold tolerance, respectively (Figures 9A, B).

Second, we compared the CTgenes with 10,000 sets of random

genes (some of the CTgenes may be included by chance)

sampled from the test genes set. Similarly, our CTgenes

outperformed the random genes for short- (Figure 9C) and

mid-term (Figure 9D) cold tolerance (p-values ranged from

0.0013 to<1.0×10-4).

To evaluate the robustness of our CTgenes identified

through the OnO integration and the NPRF prioritization

algorithm, we further compared them with other cold tolerant

candidate genes selected by other methods (e.g. the RF

prioritization on Rafsee, the SFAF prioritization, the network-

based prioritization on SoyNet, candidate genes selection on

SoyBase, and the QTLs mapping approach). First, we compared

our NPRF results with the results of the RF prioritization on

Rafsee, and found that both methods produced identical short-

(Figure 10A), mid- (Figure 10F), and long-term CTgenes (p-

values =1). Second, we conducted the SFAF weighting scheme to

evaluate all collected genes, and observed that 24 (54.5%), 118

(82.5%), and 23 (51.1%) overlapped short-, mid-, and long-term

CTgenes between the SFAF prioritization and the NPRF

prioritization, respectively. Although non-significant

differences were observed among two prioritized top genes in
A B

C

FIGURE 4

The distribution of scores in six layers. (A) Distribution of categorized scores in six layers. (B) Distribution of categorized scores (excluding 0
scores) in six layers. (C) The pattern of categorized scores (excluding 0 scores) in six layers. The symbol ‘V’ represents the existence of genes in
the score range.
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short- (p-values =0.79) (Figure 10B) and mid-term (p-values

=0.37) (Figure 10G) cold tolerance, the joint effect analyses of the

hypergeometric test were quite different. Only four enriched

pathways, including JA biosynthetic process, response to fungus,

response to JA stimulus, and response to wounding (p-values

<1.0×10-16), were reported in the mid-term cold tolerance in

both approaches. The difference of the prioritized top genes in

the SFAF prioritization from our CTgenes was significantly

enriched in several pathways, including 2 pathways (cold

acclimation and regulation of GA biosynthesis) in the short-

term, 4 pathways (JA biosynthetic process, response to fungus,

root meristem growth, and root system development) in mid-

term, and 1 pathway (cold acclimation) in long-term cold

tolerance; however, the difference of our CTgenes from the
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prioritized top genes in the SFAF prioritization were found

only 2 enriched pathways (JA biosynthetic process and

vitamin metabolic process) relevant to the mid-term cold

tolerance. Third, we compared our CTgenes to 221 candidate

genes identified by network-based prioritization in SoyNet

(https://www.inetbio.org/soynet/search.php), and found our

CTgenes significantly performed better (p-values ranged from

0.05 to <1.0×10-5) than prioritized genes in SoyNet for short-

(Figure 10C), and mid-term (Figure 10H) cold tolerance. Fourth,

a total of 272 genes mapped from 66 SSRs were reported to be

related to soybean cold stress in SoyBase (https://www.soybase.

org/). We compared our CTgenes with the 272 genes, and found

our CTgenes performed significantly better (p-values ranged

from 0.014 to <1.0×10-5) than the 272 genes discovered in
A

B

FIGURE 5

Ten selected core genes. (A) The sunburst chart of the selection of the core genes. (B) The selection criteria of the core genes. Only genes that
meet at least one of the three scenarios were selected as the core genes. Scenario 1: the most significantly reported genes that were associated
with cold tolerance or response to cold stress. Scenario 2: the most frequently reported genes with significant characteristics. Scenario 3: only
genes that performed transcriptome measurement were further validated by the quantitative polymerase chain reaction (q-PCR) with significant
p-value less than 0.0001.
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SoyBase, for short- (Figure 10D) and mid-term (Figure 10I).

Finally, our short- (Figure 10E), and mid-term (Figure 10J)

CTgenes outperformed 134 candidate genes identified in QTLs

(Jiang et al., 2009; Qiu et al., 2011; Zhang et al., 2012) from the

linkage mapping approach (p-values ranged from 0.004 to

<1.0×10-5). The results further elucidate that our CTgenes

performed equally well with the RF prioritization and

outperformed other approaches. This suggests that the

CTgenes identified by our systematic pipelines are reliable and

robust, and have the potential to uncover novel biological

pathways and physiological mechanisms underlying cold

tolerance in soybean.
Pathway enrichment analysis

Overall, our CTgenes were significantly enriched in 12 GO

pathways (3 in short-term, 9 in mid-term, and 3 in long-term).

Among them, three pathways (regulation of gibberellin (GA)

biosynthetic process, positive regulation of transcription, DNA-

dependent, and cold acclimation) were found in both short- and

long-term. Nine pathways were solely identified in the mid-term,
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where the top four pathways were JA biosynthetic process,

response to fungus, response to JA stimulus, and response to

wounding. Detailed information on enriched pathways of the

CTgenes for short-, mid-, and long-term, please refer to

Figure 11 and Supplementary Table 3.
Module discovery

To deeply understand how the enriched pathways are related

to cold tolerance, we constructed the crosstalk network to

uncover the phenomenon of interaction or cooperation

between pathways. The average (median) degree of the

pathways for the short-, mid-, and long-term cold tolerance

was 6.33 (5), 7 (7), and 6.33 (5), respectively. Non-significant

differences in degree values were observed between the three

terms (p-values >0.05), indicating the complex interactions

among the CTgenes and the pathways were similar in the

three terms. Figure 12 demonstrates the pathways crosstalk

and functional map of the CTgenes. In the short-term cold

tolerance, three enriched pathways formed a module (pink

nodes), which was dominated by response to stimulus (e.g.
A B

DC

FIGURE 6

A cut-off score between the core genes and the test genes. (A) The Venn diagram of test genes among short-, mid-, and long-term. (B) A cut-
off score between the core genes and the test genes for short-term CTgenes. (C) A cut-off score between the core genes and the test genes
for mid-term CTgenes. (D) A cut-off score between the core genes and the test genes for long-term CTgenes.
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cold acclimation) and primary metabolic process (e.g. regulation

of GA biosynthetic process and positive regulation of

transcription, DNA-dependent). In the mid-term cold

tolerance, nine pathways formed a module (gold nodes), which

were relevant to the primary metabolic process (e.g. JA

biosynthetic process), response to stimulus (e.g. ABA-mediated

signaling pathway, JA-mediated signaling pathway, response to
Frontiers in Plant Science 15
JA stimulus, response to L-glutamate, response to wounding,

and response to fungus), and system development (e.g., root

meristem growth and root system development). The long-term

cold tolerance showed an identical module to the short-term.

Taken together, these 12 enriched pathways formed one self-

clustered module dominated by hormone-related and defense-

related pathways.
A

B

C

FIGURE 7

The CTgenes discovery for short-, mid-, and long-term cold tolerance. A total of 44, 143, and 45 prioritized CTgenes were identified for (A)
short-term, (B) mid-term, and (C) long-term cold tolerance.
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Validation in soybean samples

We selected 56 soybean varieties to validate the effectiveness

of the CTgenes selection. Of which 28 varieties are resistant to

low temperature, and the remaining are susceptible, based on

soybean cold-treatment experiments. All samples were

genotyped using the SoyaSNP180K chip array. We pooled all

the CTgenes across all three terms, and obtained 91 CTgenes

after discarded genes with no SNPs information. Furthermore,

we conducted SNP-gene mapping and removed SNPs only when

all samples received the same genotype. As a result, 39 CTgenes

(including 55 SNPs) were retained for sample classification in

cluster analysis. Figure 13 demonstrated a clear separation

between soybean samples, suggesting our CTgenes can

distinguish 56 soybean varieties into 28 cold-resistant (colored

in blue) and 28 cold-susceptible (colored in red) varieties.
Discussion

Cold tolerance in plants is a complex abiotic trait, requiring a

good understanding of the mechanisms behind the complex

biological system. It is also important to take into account the

interactions (i.e. joint effects) with other factors like
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environmental, ecological, and other plant hormones (e.g.

auxins) (Ishibashi et al., 2013). There are numerous studies

investigating genetic information on cold tolerance or cold

response from the level of DNA, RNA, and protein to

function. In this regard, great efforts in systematically

analyzing these multi-dimensional data are needed to uncover

insight into biologically meaningful contexts. In the present, we

developed a comprehensive framework through systematic

strategies on OnO data mining, data-ensemble, gene

prioritization, and external independent validation to select the

prioritized CTgenes from the collected gene pool that are

relevant to cold tolerance or response to cold stress. This study

proposes a systems biology framework to bridge the knowledge

gap between genetic information about cold tolerance or cold

response and the OnO data.

To the best of our knowledge, this is the first work on the

OnO data integration from different molecular layers and gene

prioritization for the discovery of soybean cold-tolerant genes

(i.e. CTgenes), followed by enriched pathways, module discovery

(i.e. a combination of similar functions regarding the underlying

cold tolerance), validation in soybean samples (i.e. cold tolerance

experiments), and sample classification (i.e. resistant vs.

susceptible varieties) to address the robustness and

effectiveness of the CTgenes selection. This work’s challenges
A

B

D

C

FIGURE 8

The Manhattan plot of the test genes for (A) short-term, (B) mid-term, and (C) long-term. Dots colored in red are the CTgenes. (D) The Venn
diagram of CTgenes among short-, mid-, and long-term.
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involved interconnections, heterogeneity, noise, and high-

dimensional feature profiles across different layers of the OnO

data. There have been several attempts to eliminate or minimize

the impact of these issues by the data-ensemble step on

improving data quality.

Rapid progress in high-throughput technologies has

booted advances in plant omics. Several collections of omics,

including genomics, transcriptomics, proteomics, and

metabolomics, have become available for crop improvement.

Unfortunately, deriving biological insights from a single layer

of omics data is often limited, although it may explain some
Frontiers in Plant Science 17
specific phenomena biologically (Cao et al., 2022). In this case,

it may be difficult to gain knowledge from the results of single

omics to apply directly to plant breeding. Recently, several

reviews have emphasized the importance of multi-omics data

integration for obtaining a comprehensive view underlying a

complex trait to provide reliable biological insight (Pazhamala

et al., 2021). In soybeans, genomics and transcriptomics have

developed as expected, but the progress of proteomics and

metabolomics still dropped behind (Deshmukh et al., 2014).

Initially, we found four collections of transcriptomics databases

related to cold-treated experiments in soybeans, including 3
A B

DC

FIGURE 9

Validation studies of the CTgenes compared to the remaining genes and random genes using an independent omics data. (A) Comparing short-
term CTgenes with the remaining genes (1hr cold treatment). (B) Comparing mid-term CTgenes with the remaining genes (24hr cold
treatment). (C) Comparing short-term CTgenes with the random genes (1hr cold treatment). (D) Comparing mid-term CTgenes with the
random genes (24hr cold treatment).
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RNA-seq databases and one microarray database. Among

them, two RNA-seq databases were discarded due to being

genetically-modified and irrelevant to the target of this study.

Only two omics data were relevant to soybean cold tolerance

(Maruyama et al., 2012; Yamasaki and Randall, 2016), pointing

out the situation and bottleneck of current plant omics

integration. To cope with such a situation, we extend the

idea of multi-omics techniques to integrate omics and non-

omics data in the same models, as proposed by López De

Maturana et al. (2019), to complete the whole contour of the

cold-tolerant mechanism to a large extent.
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In the present study, we combined different types of the

OnO features in different molecular layers through DNA, RNA,

protein, function, and homologs (Table 1B). Typically, different

layers have distinct features, with potential interactions between

and within them. In addition, each of the OnO data was

generated from different experimental designs, analytic

methods, environmental factors, and cultivars, bringing much

more challenges to integrative analysis. To systematically

analyze the OnO data, we proposed the systems biology

strategy to effectively pool, integrate, and analyze diverse data

formats and varying data types (p-value, LOD, FC, degree,
A B D

E F G

I

H

J

C

FIGURE 10

Validation study of the CTgenes compared to the candidate genes identified by other methods using an independent omics data. Comparing
short-term (1 hr cold treatment) CTgenes with candidate genes identified by (A) the RF prioritization, (B) the SFAF prioritization, (C) the network-
based prioritization on SoyNet, (D) candidate genes selection on SoyBase, and (E) the QTLs mapping approach. Comparing mid-term (24hr cold
treatment) CTgenes with candidate genes identified by (F) the RF prioritization, (G) the SFAF prioritization, (H) the network-based prioritization
on SoyNet, (I) candidate genes selection on SoyBase, and (J) the QTLs mapping approach.
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cluster coefficient, and score) underlying different statistical

approaches and biological objectives. Data heterogeneity is

typically a challenging task in the OnO data integration. In

this study, the association-based scoring system was developed

to unify distinct data types generated by varied technologies in

different layers. Most of the genes were scored between 0 to 6
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(more than half of gene scores were ranged between 0-2) in each

layer to prevent overestimation of scoring. Furthermore, a

rigorously multi-staged data quality control process was also

implemented in the data-ensemble step (containing data clean,

data harmonization, data heterogeneity, and data mapping) to

remove unwanted data, false positives, and noise, so that the risk
FIGURE 11

Pathway enrichment analysis of the CTgenes for short-, mid-, and long-term cold tolerance.
FIGURE 12

Module discovery underlying the crosstalk of enriched pathways and functional network of the CTgenes for short-, mid-, and long-term cold
tolerance. This crosstalk consists of 12 enriched pathways (3 from short-term, 9 from mid-term, and 3 from long-term cold tolerance) and
edges (i.e. overlapping genes between 2 linked pathways, or pathway crosstalk). The node size was defined as the significance level of a certain
pathway from the hypergeometric test. The edge width was defined as the overlapping genes between pathways. The node color was used to
distinguish short- (purple), mid- (yellow), and long-term (purple) cold tolerance. Edges in pink, gold, and blue connect short-, mid-, and long-
term pathways, respectively. Edges in gray represent connections between mid- and long-term pathways.
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of overestimation, uncertainties, and false positive results can be

effectively minimized. This can provide accurate, valid, and

reliable results, in a comprehensive and consistent manner.

The degree of injury caused by low-temperature in plants

varies from different cold-treated spans. Considering global

climate changes in soybean-producing areas, soybean cold

tolerance can be categorized into short-, mid-, and long-term

according to periods of cold exposure and damages to soybean

plants. Radiative cooling leads to rapid temperature drops at

midnight is typically the scenario for a short-term chilling

environment. A sudden period of chilling or brief exposure to

low-temperature will not pose a serious threat to plant

physiological mechanisms, and plants still survive. Consecutive

low temperature lasting 2 days in winter’s subtropical area

belongs to the mid-term cold stress. Long-lasting (more than 2

days) cold spell and unusual cold extreme climate represents the

long-term cold stress. Prolonged low-temperature stress,

however, may increase the accumulation of toxic substances in

plant tissue, which not only seriously influences the

photosynthesis and other metabolic pathways, but also results

in some unfavorable phenomena, such as chlorosis, necrosis,

wilting, and even death (Lukatkin et al., 2012; Adam and

Murthy, 2014). The longer in cold environments, the more

damaging to the plants’ physiology. Hence, to precisely define

the CTgenes, information on cold-treated span, and temperature

were included in the models to classify these OnO data into

short-, mid-, and long-term cold tolerance groups.

The selection of the CTgenes is a challenging task, as we first

need to know how many genes are in the collection. To
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determine the number of CTgenes, ten core genes (Figure 5)

were selected to compare to the test genes (i.e. the training set) to

determine the required number of CTgenes. The central idea is

to use combined-scores skewness to determine the optimal cut-

off point in separating two score distributions between the core

genes (skewed to the left) and the test genes (skewed to the

right). Eight core genes (Glyma.20g155100, Glyma.09g147200,

Glyma.13g279900, Glyma.10g239400, Glyma.16g199000,

Glyma.05g049900, Glyma.17g131900, and Glyma.01g216000)

and two core genes (Glyma.05g007100 and Glyma.03g262900)

were ranked within the top 0.5% and 1.7-10% of the test genes,

respectively. Among them, Glyma.20g155100 (GmDREB1B;1),

Glyma.09g147200 (GmDREB1A;1), Glyma.10g239400

(GmDREB1B;2) , Glyma.16g199000 (GmDREB1A;2) ,

Glyma.05g049900 (GmDREB1D;1), Glyma.17g131900

(GmDREB1D;2), and Glyma.01g216000 (GmDREB1C;1) are

the CBF/DREB1s genes. Several studies mentioned that

GmDREB proteins in soybean play a central role in cold

tolerance mechanisms (Yamasaki and Randall, 2016; Robison

et al., 2019). Furthermore, some studies claimed that CBF/

DREB1s genes acted as transcription factors in Arabidopsis

resistance to cold stress (Fowler and Thomashow, 2002; Zhao

et al., 2016). Therefore, in this study, we evidenced that precisely

selecting the core genes can improve the discovery of biomarkers

(i.e. CTgenes).

The distributions of combined scores of the core genes and

the test genes differed (please refer to Figure 6). A gene-threshold

for the combined score was chosen to obtain good

discriminability in separating the core gene set from the total
FIGURE 13

Sample classification using the CTgenes. A total of 39 CTgenes were used to conduct cluster analysis. The neighbor-joining algorithm was
performed to construct phylogenetic trees. As a result, 56 soybean varieties were classified into two groups (resistant lines vs. susceptible lines)
according to their genotype patterns. The blue color represents cold tolerant varieties. The red color represents cold susceptible varieties.
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test genes to select final CTgenes. We conducted the

hypergeometric test to identify enriched pathways for assessing

the gene-threshold selection in the systems biology framework.

We selected three different gene-thresholds (the lower bound,

the middle point, and the upper bound) from a cut-off bin. For

instance, a cut-off score of 6 (the lower bound), 7 (the middle

point), and 8 (the upper bound) was used to select the 200, 100,

and 44 CTgenes in short-term cold tolerance, which resulted in

23, 9, and 3 enriched pathways that relevant to cold-tolerant

responses, respectively. Among them, 2 pathways (“positive

regulation of transcription, DNA-dependent” and “cold

acclimation”) were reported in three scenarios. Similar

situations can be found in the long-term CTgenes. For the

mid-term CTgenes, a cut-off score of 8 (the lower bound), 9

(the middle point), and 10 (the upper bound) were used to select

the 331, 205, and 143 CTgenes, resulting in 36, 29, and 9

enriched pathways that relevant to cold-tolerant responses,

respectively. Among them, all 9 pathways (“root system

development” , “root meristem growth” , “response to

wounding”, “response to L-glutamate”, “response to jasmonic

acid stimulus”, “response to fungus”, “jasmonic acid mediated

signaling pathway”, “jasmonic acid biosynthetic process”, and

“abscisic acid mediated signaling pathway”) were overlapped in

the three gene-threshold scenarios. It is not surprising that the

more CTgenes resulted in the more enriched pathways, where

the more false-positive results might be included. This suggests

that the CTgenes selected through a rigorous gene-threshold

using the upper bound in the cut-off bin demonstrated power to

uncover enriched pathways. Hence, the upper bounded gene-

threshold in the cut-off bin can be regarded as the optimal gene-

threshold for CTgenes selection. It can be used as a reference for

the physiological effects and biological mechanisms of important

crop traits by comparing multiple cut points in the same bin to

screen out important biological pathways.

Gene prioritization is often challenging given the large-sized

and high-dimensional OnO data in the analytical space and the

complex trait of cold tolerance in nature. Another challenge is

efficiently dealing with uncertainties, false positives, and noisy

data and accurately select valuable characteristics and

meaningful information from such massive amounts of big

data. The NPRF prioritization algorithm has been proposed to

address these issues for the integrated OnO data. For a specific

marker, we hypothesized that it is less likely to include noisy data

and false positive results in each of all layers. The more

molecular layers included in integrated OnO data, the smaller

the chance of resulting in false positive results. In our

prioritization algorithm, the features in each layer were scored

separately, and then all distinctive features across different

molecular layers were merged to a reduced space (i.e. a single

combined score) for dimensionality reduction without losing the

algorithm’s accuracy. This NPRF prioritization algorithm

constructed a decision tree through selecting the most

important features from the test genes set to account for
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uncertainties at each bootstrap iteration. The feature stability

was assessed by gene-probability of the selected features over

10,000 bootstrap iterations. As a result, a small collection of

prioritized genes was respectively selected as the CTgenes for

short-, mid- and long-term cold tolerance in soybean

(Figures 7-9). The short- (Figure 7A), mid- (Figure 7B), and

long-term (Figure 7C) CTgenes all revealed one primary module

based on topological characteristics (i.e. degree), which was

involved with response to cold, cold acclimation, and response

to freezing. These CTgenes were related to plant hormones (JA,

GA, ABA, and ethylene) and defense-related pathways. In

addition, several gene groups related to plant hormones were

identified in mid-term CTgenes. The group containing LOX7,

LOX9, LOX1.5, and CYP74A2 was also related to the defense

response pathways. The group of Glyma.06g007500 ,

Glyma.03g246300, and Glyma.04g007700 were related to the

defense system and cold-related response (Figure 7B).

Our CTgenes were compared to the remaining genes (i.e.

non-CTgenes), random selected genes (Figure 10), and other

candidate genes identified by other existing methods (i.e., the

RF-Rafsee, the SFAF prioritization, the network-based

prioritization on SoyNet, candidate genes selection on

SoyBase, and the QTLs mapping approach) (Figure 11), and

validated in an independent RNA-seq database to prove the

effectiveness, stability, and reliability of the selected features

following the schema illustrated in Figure 3. Overall, our

results indicated that the CTgenes selected from integrated

OnO data and the NPRF prioritization had superior

performance to the ones identified from a single or a few

layers and most other existing methods. The NPRF

prioritization and the RF-Rafsee both produced the same top

genes and performed equally well (Figures 10A, F).

Supplementary material 2 provided detailed information about

the gene-probabilities of the top genes identified by the RF-

Rafsee method. No statistically significant difference typically

refers to the difference not exceeding a particular threshold

value. In the validation study, we observed a non-significance

difference between the NPRF prioritization and the SFAF

prioritization (Figures 10B, G); however, this did not mean

there is no biological meaning. Therefore, we further

conducted the hypergeometric test to systematically examine

the joint effect of the difference among two top genes identified

from both methods. Most interestingly, the different sets of

prioritized top genes identified by the SFAF prioritization

from our CTgenes (denoted as CTgenesNPRF\SFAF) had the

power to uncover enriched pathways relevant to the cold-

tolerant responses in all three cold treatments (Supplementary

Table 4). However, the different sets of our CTgenes from

prioritized top genes identified in the SFAF prioritization

(denoted as CTgenesSFAF\NPRF) only found enriched pathways

in mid-term (Supplementary Table 4). This indicates that our

CTgenes selected by the NPRF prioritization had more power to

uncover the mechanisms underlying the cold-tolerant responses
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in soybean. To further validate the robustness of our CTgenes,

we compared our CTgenes to a range of the top genes (70, 90,

125, 150, 185, 220, 250) identified from network-based

prioritization in SoyNet. Figure 14 demonstrated that our

CTgenes significantly outperformed all ranges of the SoyNet

top genes in an independent RNA-seq database, suggesting the

robustness and the reliability of the CTgenes selected through

our comprehensive systems biology-based framework.

Our CTgenes were significantly enriched in 12 GO pathways

(Figure 12). Cold acclimation is a natural mechanism for the

plants of temperate origins. However some subtropical or tropical

species, such as soybean, may also have excellent mechanisms to

acclimate to cold (Cabané et al., 1993), which may enhance

tolerance to cold treatment. The levels of phenolic acids in

soybean seedlings will decrease significantly during cold

acclimation, which modifies cell wall extensibility to adapt to a

chilling environment. GA can facilitate soybean seedlings’

emergence and increase the shoot height under cold stress

(Wang et al., 1996), which plays a key role in regulating

soybean seed germination under low temperature. Moreover,

GA is an important regulator in other species (e.g., Arabidopsis

and cotton) to cope with low temperatures (Achard et al., 2008).

JA is one of the main plant growth regulators, acting

antagonistically in regulating of plant immune and

development, and acts as a pivotal role in many abiotic stresses

(Wang et al., 2020a). JA can prevent reactive oxygen species (ROS)

formation by enhancing chilling tolerance (Sharma and Laxmi,

2016). Studies relevant to the interaction between JA and cold
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tolerance were reported in some species such as sweet orange

(Habibi et al., 2019), but not in soybean. In Arabidopsis, JA

regulates the CBF/DREB1 factors and activates the CBF/DREB1-

independent pathway to enhance cold tolerance (Hu et al., 2013).

In this study, three JA related pathways (response to JA, JA

mediated signaling pathway, and JA biosynthetic process) were

found to be significantly enriched with cold tolerance or response

to cold stress. To date, this is the first work to address the

interaction between JA and cold tolerance in soybean. Fungi

play an important role in conferring abiotic stress tolerance in

plants, for instance, cold resistance in soybean (Begum et al.,

2019). Some particular bacteria and fungi can facilitate the

physiological mechanism in plants under environmental stress

(Levy et al., 1983). Arbuscular mycorrhizal fungi (AMF) is the

common symbiotic fungus, forming a symbiosis with 80% of plant

species (Smith and Read, 2008), which can improve cold

resistance under low temperatures in maize. In soybean, AMF-

inoculated commercial cultivar showed better shape with higher

leaf area and yield without stress treatment, than non-inoculated

one (Adeyemi et al., 2020). Thus, soybean cold tolerance under

cold stress may benefit from AMF symbiosis. More work is

remained to physiologically evaluate their connections in

soybean. ABA is also one of the key hormones to react to

abiotic stress in plants. The application of ABA enhances the

cold resistance in crop species, such as rice (Tian et al., 2015b). A

recent study verified that the exogenous ABA could induce the

GmABI3 (ABSCISIC ACID INSENSITIVE 3), and further

activate the ABA-dependent protein to confront the cold stress
FIGURE 14

Validation study of the CTgenes compared to the candidate genes identified by SoyNet using an independent omics data. A range of different numbers (70,
90, 125, 150, 185, 220, and 250) of top genes were used to evaluate the robustness and the reliability of the CTgenes selected through our comprehensive
and systematic framework. The horizontal line above the bar chart is the threshold of statistical significance level (* < 0.05, ** < 0.01, *** < 0.001).
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in soybean (Manan and Zhao, 2020). Interaction between ABA

and JA signaling pathways can synergistically enhance the

resistance to abiotic stress (Manan and Zhao, 2020). It is worth

noting that our CTgenes prioritized from the integrated OnO data

boost the power of their potential roles in uncovering meaningful

results, some with biological novelties, for studying the molecular

mechanisms of cold tolerance in soybean through pathway

enrichment analysis.

To better understand the CTgenes pattern, a total of 40

CTgenes were selected from 12 enriched GO pathways. We

analyzed these genes in the SoyBase ‘Gene Model Data Mining

and Analysis’ tool, and found that they were related to response to

cold (21 genes), cold acclimation (3 genes), response to freezing (2

genes), response to temperature stimulus (1 gene), response to

osmotic stress (3 genes), response to stress (5 genes), immune-

related (7 genes), and defense response (27 genes) related

pathways (Supplementary Table 2). Interestingly, both cold

acclimation and response to osmotic stress pathways shared the

same CTgenes having major role in response to cold stress, of

which Glyma.15g048600 (homologs of At4g08500 in Arabidopsis)

was enriched in response to cold, cold acclimation, response to

osmotic stress, immune-related, and defense response-related

pathways, indicating this novel gene may play an important role

in the complex mechanisms underlying cold-tolerant in soybean.

Multiple mechanisms involved in cold-tolerant or response to

cold stress were revealed across various plant species (Lukatkin

et al., 2012). However, understanding of the molecular

mechanisms underlying cold tolerance in soybean still remains

limited and unclear. Pathway crosstalk networks provide in-depth

knowledge of the whole picture of cold-tolerant mechanisms in

soybean. Our pathway crosstalk network (Figure 12) revealed two

clustered modules, both of which had important implications for

cold tolerance. In soybean, GA- and ABA-mediated pathways are

found to be involved with cold tolerance (Wang et al., 1996;

Manan and Zhao, 2020); however, both JA- and fungi response

pathways have not been reported to be involved with the cold-

tolerant mechanisms previously. Evidence showed that

acclimation to low temperature (Cabané et al., 1993), activating

plant hormones biosynthesis to alleviate the negative impact of

chilling environment and the growth induction of roots (Janas

et al., 2000) were the primary strategies in soybeans at low

temperatures. Our pathway crosstalk network (Figure 12)

demonstrated the whole map of cold-tolerant soybean, which

were classified into 3 modules, including response to stimulus,

metabolic process, and system development, showing interactions

between hormones- and defense-related pathways underlying

cold environment. More specifically, cold acclimation shared

several genes with JA-mediated signaling pathway, and JA- and

ABA-mediated signaling pathways involved with many

overlapping genes. These results were accorded with the

previous studies (Hu et al., 2013; Wang et al., 2020a).

The selected CTgenes were used for sample classification. A

total of 56 varieties (28 cold resistant varieties and 28 susceptible
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varieties) were used to evaluate the effectiveness and reliability of

the CTgenes. Phenotypic information was collected from soybean

cold tolerance experiments during the spring crop season in 2020

and 2022. A completely randomized design with ten replicates was

performed in field experiments. We investigated soybeans’

response to cold stress (minimum air temperature below 10°C

at the V3 stage) by recording brown spots, curl, wrinkled on

leaves, and plant development after low temperature occurrence.

The resistance and susceptibility of the whole panel were used in

cold tolerance experiments as the test results. The result of sample

classification (Figure 13) suggested that our CTgenes have the

power to distinguish resistant and susceptible lines, which strongly

supported the effectiveness and reliability of the CTgenes.

This study developed the novel concept of integrating

multiple OnO data systematically and comprehensively way to

assess insight into the physiological mechanisms in soybean cold

tolerance. Additionally, the proposed NPRF gene prioritization

method can evaluate the importance of each gene based on the

physiological knowledge, offering more informative results.

Nonetheless, there were three limitations in the present study.

First, the reliability of our CTgenes was based on the OnO data

integrity. Although we integrated nearly all articles about soybean

cold tolerance, some uncertainties still existed, including noise,

biases, and outdated data. Fortunately, we not only do prudent

data quality control, but also fully employ data clean, data

harmonization, data heterogeneity, and data mapping across the

data-ensemble step to deal with such problems nicely. Second, the

progress in the soybean omics field has developed as expected only

for genomics and transcriptomics. However, the progress of

proteomics and metabolomics still drops behind (Deshmukh

et al., 2014). To date, we only found 2 omics data. One omics

data was integrated into the OnO data, and the other served

as independent omics data for the validation sample. Therefore,

it may get caught into difficulty to demonstrate the

comprehensiveness of omics data in soybean. To cope with it,

during OnO data integration process, we also took the non-omics

data into account to increase the precision of biomarkers

discovery and the phenotype prediction. Third, the process of

data integration is inevitable to face the risk of false positives. As

known, false positive results often exist in many previously

reported results. We hypothesized that false positives would not

occur in all different layers by chance. In the present study, we

employed the high dimensional OnO data integration and gene

mapping approach to scoring genes across different layers to

efficiently minimize false positives. By overcoming such

limitations, we can successfully present the complete contour of

the cold-tolerant mechanism in soybean to the extent.
Conclusion

This study shed new light on the effectiveness of the CTgenes

prioritized from integrated OnO data and provided a systems
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biology pipeline for uncovering the mechanisms behind cold

tolerance in soybean. We developed a computational systems

biology framework to eliminate the impact of uncertainties and

false positives, so that the CTgenes can be precisely selected

without loss of information. The CTgenes demonstrated great

power to uncover enriched pathways and the mechanisms, and

module discovery. Our framework exhibited the powerful

potential to identify novel biomarkers and their underlying

molecular pathways or mechanisms, providing novel insights

into the response to cold stress. Most importantly, our CTgenes

were validated in cold tolerance field trials, suggesting the

reliability and effectiveness of the selection of the CTgenes.

With an increasing severity and frequency of cold

extremes, the growth, quality, and yield of soybean are

negatively affected by biotic and abiotic stresses, usually in

combination. Hence, there is an urgent need to discover key

genes to enhance cold tolerance in soybeans. The CTgenes and

relevant biological analysis results provide some molecular

insights and future application directions. First, our CTgenes

have demonstrated good discriminability in separating the

resistant varieties from the susceptible ones, which can be

widely applied to be the basis of further soybean molecular

biology research, such as cold-related or cross-resistant

experiments. Second, the systems biology pipelines proposed

in this study offer great potential in crop research to boost the

breeding program of new resistant soybean cultivars with

durable resistance to cold stress, bringing forward the new

cultivars to overcome the direr climate change. Third, the

proposed framework in the present study could be applied to

other important traits of interest in soybean and extended to

other model plant species to adapt to changing environments

for improvements in agricultural productivity.
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Gonçalves, S. L., Farias, J. R. B., and Sibaldelli, R. N. R. (2021). Soybean
production and yield in the context of global climatic changes. CABI Rev. 2021,
1–10 doi: 10.1079/PAVSNNR20211601

Grant, D., Nelson, R. T., Cannon, S. B., and Shoemaker, R. C. (2010). SoyBase,
the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res. 38,
D843–D846. doi: 10.1093/nar/gkp798

Habibi, F., Ramezanian, A., Rahemi, M., Eshghi, S., Guillén, F., Serrano, M., et al.
(2019). Postharvest treatments with g-aminobutyric acid, methyl jasmonate, or
methyl salicylate enhance chilling tolerance of blood orange fruit at prolonged cold
storage. J. Sci. Food Agric. 99, 6408–6417. doi: 10.1002/jsfa.9920

Hannah, M. A., Heyer, A. G., and Hincha, D. K. (2005). A global survey of gene
regulation during cold acclimation in arabidopsis thaliana. PloS Genet. 1, e26.
doi: 10.1371/journal.pgen.0010026

Hu, Y., Jiang, L., Wang, F., and Yu, D. (2013). Jasmonate regulates the inducer
of CBF expression–c-repeat binding factor/DRE binding factor1 cascade and
freezing tolerance in arabidopsis. Plant Cell 25, 2907–2924. doi: 10.1105/
tpc.113.112631

Ishibashi, Y., Koda, Y., Zheng, S.-H., Yuasa, T., and Iwaya-Inoue, M. (2013).
Regulation of soybean seed germination through ethylene production in response
to reactive oxygen species. Ann. Bot. 111, 95–102. doi: 10.1093/aob/mcs240
Frontiers in Plant Science 25
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