AUTHOR=Zulfiqar Faisal , Moosa Anam , Nazir Muhammad Mudassir , Ferrante Antonio , Ashraf Muhammad , Nafees Muhammad , Chen Jianjun , Darras Anastasios , Siddique Kadambot H.M. TITLE=Biochar: An emerging recipe for designing sustainable horticulture under climate change scenarios JOURNAL=Frontiers in Plant Science VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2022.1018646 DOI=10.3389/fpls.2022.1018646 ISSN=1664-462X ABSTRACT=
The interest in sustainable horticulture has recently increased, given anthropogenic climate change. The increasing global population will exacerbate the climate change situation induced by human activities. This will elevate global food demands and the vulnerability of horticultural systems, with severe concerns related to natural resource availability and usage. Sustainable horticulture involves adopting eco-friendly strategies to boost yields while maintaining environmental conservation. Biochar (BC), a carbon-rich material, is widely used in farming to improve soil physical and chemical properties and as an organic substitute for peat in growing media. BC amendments to soil or growing media improve seedling growth, increase photosynthetic pigments, and enhances photosynthesis, thus improving crop productivity. Soil BC incorporation improves abiotic and biotic stress tolerance, which are significant constraints in horticulture. BC application also improves disease control to an acceptable level or enhance plant resistance to pathogens. Moreover, BC amendments in contaminated soil decrease the uptake of potentially hazardous metals, thus minimizing their harmful effects on humans. This review summarizes the most recent knowledge related to BC use in sustainable horticulture. This includes the effect of BC on enhancing horticultural crop production and inducing resistance to major abiotic and biotic stresses. It also discuss major gaps and future directions for exploiting BC technology.