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Accuracy of mutual predictions
of plant and microbial
communities vary along a
successional gradient in an
alpine glacier forefield

Xie He1, Maximilian Hanusch1, Victoria Ruiz-Hernández1

and Robert R. Junker1,2*

1Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Salzburg, Austria,
2Evolutionary Ecology of Plants, Department of Biology, Philipps University of Marburg,
Marburg, Germany
Receding glaciers create virtually uninhabited substrates waiting for initial

colonization of bacteria, fungi and plants. These glacier forefields serve as an

ideal ecosystem for studying transformations in community composition and

diversity over time and the interactions between taxonomic groups in a

dynamic landscape. In this study, we investigated the relationships between

the composition and diversity of bacteria, fungi, and plant communities as well

as environmental factors along a successional gradient. We used random forest

analysis assessing how well the composition and diversity of taxonomic groups

and environmental factors mutually predict each other. We did not identify a

single best indicator for all taxonomic and environmental properties, but found

specific predictors to be most accurate for each taxon and environmental

factor. The accuracy of prediction varied considerably along the successional

gradient, highlighting the dynamic environmental conditions along the

successional gradient that may also affect biotic interactions across taxa. This

was also reflected by the high accuracy of predictions of plot age by all taxa.

Next to plot age, our results indicate a strong importance of pH and

temperature in structuring microbial and plant community composition. In

addition, taxonomic groups predicted the community composition of each

other more accurately than environmental factors, which may either suggest

that these groups similarly respond to other not measured environmental

factors or that direct interactions between taxa shape the composition of

their communities. In contrast, diversity of taxa was not well predicted,

suggesting that community composition of one taxonomic group is not a

strong driver of the diversity of another group. Our study provides insights into

the successional development of multidiverse communities shaped by

complex interactions between taxonomic groups and the environment.
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1 Introduction

Local microclimatic conditions, soil properties as well as the

tight interactions between plants and belowground microbes

shape the communities in natural ecosystems (Zak et al., 2003;

Mouhamadou et al., 2013; Navratilova et al., 2019; Harrison

et al., 2020; Ohler et al., 2020). pH, temperature and soil

chemical properties have been shown to affect the plant and

microbial composition by defining the niches available in a given

location (Darcy et al., 2018; Dastogeer et al., 2020; Harrison

et al., 2020; Davison et al., 2021; Junker et al., 2021).

Additionally, the interactions between bacteria, fungi and

plants strongly affect local communities. The interactions

between plants and microbes, for instance, are mediated

through plant root exudates and litter input that offer the

carbon sources and provide various niches for microbes

(Knelman et al., 2012; Lopez-Angulo et al., 2020). Likewise,

microbes decompose the carbon and affect plants through the

supply of available soil nutrients to plants such as nitrogen

fixation (Schmidt et al., 2008; van der Putten et al., 2013) and the

interplay of mutualistic and antagonistic effects determine if they

will maintain plant community diversity or cause community

convergence (Wardle et al., 2004; Bever et al., 2012; van der

Putten et al., 2013; Teste et al., 2017; van der Putten, 2017). The

outcome of pairwise interactions between bacterial, fungal and

plant species is highly context dependent and may be modulated

by the presence of other taxa as well as environmental conditions

(David et al., 2020; Raza et al., 2020). For instance,

environmental conditions such as temperature and soil

moisture affect plant and microbes and can regulate plant-

microbe associations (Rasmussen et al., 2019; Rudgers et al.,

2020; Robroek et al., 2021), and increasing environmental stress

alters microbial facilitation of plant germination or biomass

production (David et al., 2020). This may complicate predictions

on the composition and diversity of communities based on the

knowledge of other taxa or environmental factors in natural

ecosystems where environmental conditions strongly vary and

thus may modulate the interactions between taxonomic groups.

Nonetheless, the interdependencies between plants, bacteria and

fungi may leave a signal in community composition and

diversity within the taxonomic groups and thus these

properties may be mutually predictable (Horn et al., 2017; Leff

et al., 2018).

Successional gradients with considerable variation in soil

properties and climatic conditions are an ideal study system to

reveal how the interdependences between taxonomic groups

change along a temporal and environmental gradient

(Cannone et al., 2008; Walker et al., 2010; Chang &

HilleRisLambers, 2016). Glacier forefields are prime examples

of primary successions and for studies on the assembly of

multidiverse communities (Ficetola et al., 2021; Hanusch et al.,

2022). Receding glaciers provides barren substrates waiting for

the successive colonization of organisms such as plants and soil
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biota (Bernasconi et al., 2011; Burga et al., 2010; Ficetola et al.,

2021). The time for space substitution of chronosequences

allows to track soil development and the processes that shape

biotic communities (Walker et al . , 2010; Chang &

HilleRisLambers, 2016). Multiple studies described the

successional trajectories of plant, bacteria and fungi

communities and the development of soil conditions along

glacier forefields (Bernasconi et al., 2011; Zumsteg et al., 2012;

Buma et al., 2017; Buma et al., 2019; De Vries et al., 2021).

However, these studies usually focus on one or rarely two

specific taxonomic groups (Ficetola et al., 2021), thus a full

consideration of multidiverse communities and environmental

conditions may facilitate a general evaluation of associations

between different biotic and abiotic parts. In this context, we

applied random forest analysis to evaluate the interdependences

between taxonomic groups and with environmental conditions

to reveal the strength of mutual influences along a successional

gradient. Machine learning algorithms have been increasingly

applied for predictions using complex ecological data. For

instance, random forest analysis has been used to explore the

links between soil bacterial community composition and

environmental factors (Hermans et al., 2020) and in

predictions of species interactions based on traits for

understanding interaction networks (Pichler et al., 2019). The

high performance of machine learning algorithms and especially

random forest is obtained by their ability to model non-linear

combinations of numerical and categorial data without complex

transformations resulting in estimates of the accuracy of

predictions (Breiman, 2001; Ghannam & Techtmann, 2021;

Goodswen et al., 2021).

Empirical studies have shown that plants and abiotic factors

affect microbial communities at the same time but in different

ways: they explain different parts of variation in soil microbial

communities and different studies have shown contrasting

results with either plants or environmental factors being more

important in shaping microbial communities (Mitchell et al.,

2011; Kruger et al., 2017; Leff et al., 2018; Reese et al., 2018;

Cheng et al., 2020). In addition, plant species composition,

functional identity, Shannon and phylogenetic diversity have

been reported to show different associations with microbial

communities (Dassen et al., 2017; Chen et al., 2018; Leff et al.,

2018) and the relationships may change at different successional

stages (Porazinska et al., 2018; Hanusch et al., 2022). Along the

successional gradient of Ödenwinkel glacier forefields in the

Austrian Alps, we considered a range of taxonomic groups

(bacteria, fungi and plants) and environmental variables (plot

age, temperature, and soil pH) to determine how well bacteria,

fungi, and plant communities as well as environmental

conditions serve as indicator for the composition and diversity

of other taxonomic groups as well as environmental factors at

different successional stages. We used multivariate datasets on

plant species, bacterial operational taxonomic units (OTU), and

fungi OTU composition as well as several environmental factors
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as explanatory variables. These variables were used to predict

univariate data informing about the composition, functional

composition and Shannon diversity of plant, bacteria, fungi,

plant phylogenetic diversity, plant functional diversity and

environmental factors. We aim to address the following three

questions: 1) Are bacterial, fungal, and plant communities as

well as environmental conditions good predictors for the

composition and diversity of the other taxonomic groups or

environmental factors? 2) Is the accuracy of prediction variable

along the successional gradient? 3) Are there single most

important predictors for all taxonomic groups? Our study will

reveal the relative importance of interactions across taxa and

abiotic factors in shaping the diversity and composition of

multidiverse communities along a successional gradient and

will thus motivate future studies on the mechanisms

underlying community assembly.
2 Materials and methods

2.1 Data collection

Plots set up - Our study site is located at the forefield of the

Ödenwinkelkees glacier (Stubachtal valley, Hohe Tauern

National Park, Austria; Dynamic Ecological Information

Management System – site and dataset registry: https://deims.

org/activity/fefd07db-2f16-46eb-8883-f10fbc9d13a3, last access:

August 2021) (Junker et al., 2020). The Ödenwinkelkees glacier

was covered by ice at the latest glacial maximum in the Little Ice

Age (LIA; around 1850) but the glacier retreat released a transect

of around 1.7 km long with the elevation between 2070 and

2170 m. In summer 2019 (26 June - 16 September), we

established 135 permanent plots that were evenly distributed

between the LIA glacier maximum and the current extent of the

glacier (glacier tongue) within the glacier forefield, representing

a chronosequence of succession with high temporal resolution.

Each plot is a square with 1 m side length (resulting in an area of

1 m2) and a ground anchor is marking the center of the plot. Plot

age was estimated according to its relative position compared

with historical records of eight deglaciating periods (year 1850,

1890, 1929, 1969, 1977, 1985, 1998, 2013) (Junker et al., 2020).

Plant survey and functional traits - We identified all vascular

plant species (n = 99) occurring at every plot and recorded the

coverage of every species. We measured the plant height, leaf

area, leaf weight and calculated the specific leaf area (SLA) for

those 48 plant species that occurred in 10 or more plots. For

three focus species we phenotyped up to three individuals on

every plot where they occurred: Oxyria digyna as representative

of early succession, Trifolium badium as representative of late

succession, and Campanula scheuchzeri which occurred all along

the successional gradient. For the other n = 45 species, up to five

individuals per plot were phenotyped on the youngest, the

oldest, and the intermediate plot where they occurred.
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Additionally, we obtained the functional traits of the plant

species from Biolflor database (https://www.ufz.de/biolflor/

index.jsp) for 92 species out of 99 plant species occurring in

the field. We used nine functional traits which have been shown

to be response traits to environmental changes at the community

level (Kahmen & Poschlod, 2004; Bernhardt-Römermann et al.,

2008; Aguiar et al., 2013; Hintze et al., 2013), including

reproduction, diaspore type, leaf persistence, life form, life

span, pollen vector, strategy type, type of reproduction,

dispersal of diaspores.

Soil bacteria and fungi sampling and sequencing - We also

characterized the soil microbiome (bacteria and fungi) of each of

the plots. We sampled soil from each plot at two locations at a

depth of 3cm, soil from two locations per plot were pooled to

one sample for further analysis. We extracted microbial DNA

from soil samples following the protocol of the ZymoBIOMICS

DNA Miniprep Kit (Zymo Research, D4300). Microbiome

analysis was performed by Eurofins Genomics (Ebersberg,

Germany) using the company ’s standard procedure.

Sequencing was done using Illumina MiSeq and the sequenced

regions were V3-V4 region of the 16S rRNA gene to identify

bacterial OTUs and the ITS2 region for fungal OTUs following

the standard procedure “InView - Microbiome Profiling 3.0 with

MiSeq” (for detailed methods see Junker et al., 2020).

Abundances of bacterial and fungal taxonomic units were

normalized using lineage-specific copy numbers of the relevant

marker genes to improve estimates (Angly et al., 2014). Prior to

the random forest analysis of microbial communities, we

performed a cumulative sum scaling (CSS) normalization (R

package metagenomeSeq v1.28.2) on the count data to account

for differences in sequencing depth among samples.

Soil temperature and pH - To record the seasonal mean

temperature, we buried temperature loggers with a resolution of

0.5°C (MF1921G iButton, Fuchs Elektronik, Weinheim,

Germany) 10 cm north of each plot center, at a depth of 3 cm

below ground (Junker et al., 2020; Ohler et al., 2020) during field

work in 2019. The thermo loggers were set to start on 13th

August 2019 and were stopped on 9th August 2020 with a total

of 2048 measurements recorded on 362 days. Seasonal mean

temperature was calculated on the basis of the recordings

between 13th August to 16th of September 2019 and 26th

June to 9th August 2020 representing the period in which the

plots were free of permanent snow cover before and after the

winter 2019/2020. In 2020 (25 July - 21 August), we took

additional soil samples from all plots to measure soil pH.

Samples were sent to AGROLAB Agrar und Umwelt GmbH

(Sarstedt, Germany) for analysis.
2.2 Data analysis

To test the predictability of the diversity and composition of

each of the taxonomic group by the composition of other
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taxonomic groups as well as by environmental parameters, we

used the machine learning algorithm random forest with R

package randomForest (Liaw and Wiener, 2002). We used the

4 sets of variables as explanatory variables: community tables of

plants, bacteria, and fungi with plots as rows and the abundance

of the species or OTUs as columns (Supplementary Table S1, S2,

S3), and environmental conditions of each plot with plots as

rows and environmental variables as columns (Supplementary

Table S4). As dependent variables we used univariate variables

including the composition (principal components PCs),

functional composition (PCs) and Shannon diversity of plant,

bacteria, fungi, plant phylogenetic diversity, plant functional

diversity as well as soil seasonal mean temperature, pH, plot

age, resulting in 20 variables in total (Supplementary Table S5;

Supplementary Figure S1, S2). Each set of explanatory variables

were used separately to predict the variables related with other

taxonomic groups or environmental factors. As random forest

analysis can only deal with univariate dependent variables, we

conducted the principal component analysis (PCA) using R

package vegan (Oksanen et al., 2013) and used the first two

PC axis which carry most information of the composition to

refer to plant species composition (15.3% + 11.2%), bacteria

composition (6.4% + 4.6%) and fungi composition (4.1% +

3.2%). Plant functional composition matrix includes the

categorical functional traits obtained from BiolFlor database

and the community weighted means of filed measured traits

(plant height, leaf area, leaf weight and SLA) (Supplementary

Table S6). For each category of each categorical trait, we

calculated the total coverage of species belonging to the

category, and this was done for all the 9 traits and all 9 traits

were merged to a single table, thus generating the functional

composition table with plots name as rows and 39 trait

categories as columns, i.e. each categorial trait had two or

more categories resulting in a total of 39 categories. Plant

functional composition was represented by the first two PCAs,

too (63.1% + 12.1%). Plant Shannon diversity was calculated

from the compositional dataset using the R package vegan. Plant

phylogenetic diversity was calculated using the R package

picante (Kembel et al., 2010). We extracted a phylogenetic tree

using the R package pez (Pearse et al., 2015) for species existing

in our field site from a dated molecular phylogeny tree (32,223

species) for land plants (Zanne et al., 2014). In cases

where species were not included in the tree, it was substituted

by species from the same genus. Among 99 species existing in

our plots, we were able to match and build a tree with 96 species

and we used it for the calculation of phylogenetic diversity. We

used ‘Functional dispersion’ calculated from the R package FD

(Laliberte & Legendre, 2010) as the index for plant functional

diversity. The BiolFlor traits and field measured traits of every

species were used for the trait table identically for every plot, and

for the community table the species with a low occurring

frequency along the successional gradient (not included in the

48 species with traits measured) were ignored in the calculation
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of functional diversity. For bacteria and fungi, the Shannon

diversity was calculated based on the OTU composition (without

CSS normalization) after rarefying the data to the minimum

number of reads (bacteria: 2117; fungi: 1420) available in the

samples (repeats = 999). Additionally, we obtained bacteria

functional composition represented by MetaCyc pathway

abundances with PICRUSt2 (Langille et al., 2013), and fungi

functional composition with FUNGuild to assign fungal OTU to

different functional groups (Nguyen et al., 2016). Bacteria

functional composition (Supplementary Table S7) was

represented by the first two PCAs (78.0% + 7.2%), and fungi

functional composition (Supplementary Table S8) was

represented by the first two PCAs (33.2% + 17.0%), too.

Using all combinations of explanatory and dependent

variables, we performed random forest analyses with 10-fold

cross validations to quantify the performance of the predictive

model, a total of 60 models. Specifically, for each prediction,

80% of the plots were randomly selected as the training dataset

and the remaining 20% of the plots were used as test dataset.

The predictive model resulting from the training dataset was

applied to the test data and the predicted values of the plots in

the test dataset were correlated with the observed values of

these plots. This process was repeated for ten times, and then

we defined the mean Pearson’s r-value of ten correlations as

‘accuracy of prediction’ and used the proportion of statistically

significant correlations (p-value < 0.05) out of the 10

correlations as ‘significance frequency’. Additional to random

forest analysis using all the plots for a global impression on the

predictability of dependent variables, we also employed a

moving frame approach to detect how the predictabilities

change along the successional gradient. With the 135 plots,

we grouped every 45 plots into one frame and used the median

plot as identifier of the frame. Thus, the first frame included

plots 1 to 45, the second 2 to 46, and so forth. This approach led

to a set of 91 moving frames whose identifiers ranged from plot

23 to plot 113. Using the same proportion of training and test

dataset, for every 45 plots in each frame, data of 36 (80%)

randomly selected plots was used as training dataset, and the

other 9 (20%) plots were used as test dataset. The accuracy of

prediction and significance frequency were calculated for every

frame as stated before. We fitted a linear or quadratic

regression with the accuracy of prediction of every variable

along the successional gradient as independent variable and the

frame number as explanatory variable. The model with a

higher r2 value was chosen and the statistically significant

relationships were shown as a regression line. We compared

for each group how well they predicted every variable as well as

for each variable how well they were predicted by every

other taxonomic group or environmental factors along the

successional gradient (except for the group that was considered

in the dependent variable) using the Tukey Test. Note that our

results do not imply a direction of effects in the sense that the

dependent variable is affected by the explanatory variable. For
frontiersin.org
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instance, if bacterial communities statistically predict soil

temperature it does not mean bacterial communities affect

the soil temperature but rather are affected by this

environmental parameter.
3 Results

In total we obtained soil bacteria and fungi composition data

from n = 127 and 130 plots after excluding the plots with missing

data, respectively; n = 4986 bacteria OTUs and n = 5701 fungi

OTUs were detected in all the soil samples. A total of 99 plant

species were identified from 133 plots as plot 1 and plot 6 were

unvegetated. Raw sequences of next-generation 16S rRNA gene

amplicon sequencing are available at the NCBI Sequence Read

Archive (SRA) under the BioProject accession PRJNA701884

and PRJNA701890. The mean accuracy of prediction of each

pair of explanatory variables and dependent variables did usually

not strongly differ between the global analysis considering all

plots and the mean values of the frame-wise analyses, indicating

the validity of using moving frames for random forest

predictions. Most of the predictions fit a quadratic regression,

indicating a non-monotonic change of the accuracy of

prediction along the successional gradient (Figures 1–4).
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Bacterial communities as predictors (Figures 1, 5A) – Bacterial

communities (quantitative OTU tables) most accurately predicted

the taxonomic composition of fungal communities (PC1 and PC2),

followed by plant functional composition. Among the

environmental parameters, plot age was most accurately predicted

by bacterial communities, followed by pH and temperature. Fungi

Shannon diversity and plant functional diversity were least

accurately predicted among all the variables. Accuracy of

prediction by bacterial communities of target variables associated

with plant communities mostly decreased with plot age, whereas

accuracy of prediction of fungi and most environmental target

variables were less variable along the successional gradient or even

increased along the age gradient in most cases.

Fungal communities as predictors (Figures 2, 5B) – Fungal

communities (quantitative OTU tables) most accurately predicted

the functional composition of bacterial communities (PC2),

followed by bacterial taxonomic composition (PC1 and PC2) and

plant functional composition (PC1). Plot age was the

environmental factor most accurately predicted by fungal

communities, followed by pH and temperature. Bacteria Shannon

diversity was least accurately predicted among all the variables.

Accuracy of prediction of target variables associated with plant

communities mostly decreased with plot age, and variables

associated with bacterial communities mostly remained constant
FIGURE 1

Random forest predictions using the community table of soil bacterial communities (OTU table) as explanatory variable to predict seven
variables of plant (green), five variables of fungi (orange) as well as three variables of environmental factors (blue) as dependent variables. The
prediction was done both using all the 135 plots and using a moving frame approach. For the moving frame approach, every 45 plots were
grouped into one frame and the median plot was used as identifier of the frame. Thus, the first frame included plots 1 to 45, the second 2 to 46,
and so forth. The x axis represents the median plot of every frame whose identifiers ranged from plot 23 to plot 113 (i.e. from young
successional plots to old plots). The colored circles at the left of each plot denote the mean ± standard deviation of the accuracy of prediction
(Pearson’s r) using the full dataset (results of 10-fold cross validation), and the black circles denote the mean ± standard deviation of the
accuracy of prediction for all the frames. Each grey to black circle on the right of each plot represents the mean accuracy of prediction of each
frame and the color gradient is showing how many correlations of the 10-fold cross-validation were significant with lighter colors indicating less
frequent significant predictions. A quadratic or linear regression (the model with higher adjusted r2 value) is fit for the gradient if it is significant,
showing a change of the accuracy of prediction along the successional gradient.
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FIGURE 3

Random forest predictions using the community table of plant communities as explanatory variable to predict five variables of bacteria (red), five
variables of fungi (orange) as well as three variables of environmental factors (blue) as dependent variables. The prediction was done both using
all the 135 plots and using a moving frame approach. For the moving frame approach, every 45 plots were grouped into one frame and the
median plot was used as identifier of the frame. Thus, the first frame included plots 1 to 45, the second 2 to 46, and so forth. The x axis
represents the median plot of every frame whose identifiers ranged from plot 23 to plot 113 (i.e. from young successional plots to old plots). The
colored circles at the left of each plot denote the mean ± standard deviation of the accuracy of prediction (Pearson’s r) using the full dataset
(results of 10-fold cross validation), and the black circles denote the mean ± standard deviation of the accuracy of prediction for all the frames.
Each grey to black circle on the right of each plot represents the mean accuracy of prediction of each frame and the color gradient is showing
how many correlations of the 10-fold cross-validation were significant with lighter colors indicating less frequent significant predictions. A
quadratic or linear regression (the model with higher adjusted r2 value) is fit for the gradient if it is significant, showing a change of the accuracy
of prediction along the successional gradient.
FIGURE 2

Random forest predictions using the community table of soil fungal communities (OUT table) as explanatory variable to predict seven variables
of plant (green), five variables of bacteria (red) as well as three variables of environmental factors (blue) as dependent variables. The prediction
was done both using all the 135 plots and using a moving frame approach. For the moving frame approach, every 45 plots were grouped into
one frame and the median plot was used as identifier of the frame. Thus, the first frame included plots 1 to 45, the second 2 to 46, and so forth.
The x axis represents the median plot of every frame whose identifiers ranged from plot 23 to plot 113 (i.e. from young successional plots to old
plots). The colored circles at the left of each plot denote the mean ± standard deviation of the accuracy of prediction (Pearson’s r) using the full
dataset (results of 10-fold cross validation), and the black circles denote the mean ± standard deviation of the accuracy of prediction for all the
frames. Each grey to black circle on the right of each plot represents the mean accuracy of prediction of each frame and the color gradient is
showing how many correlations of the 10-fold cross-validation were significant with lighter colors indicating less frequent significant
predictions. A quadratic or linear regression (the model with higher adjusted r2 value) is fit for the gradient if it is significant, showing a change of
the accuracy of prediction along the successional gradient.
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or decreased, whereas accuracy of prediction of environmental

target variables increased along the age gradient in most cases.

Plant communities as predictors (Figures 3, 5C) – Plant

communities (quantitative plant community table) predicted

fungi composition (PC1) most accurately, followed by plot

age, bacteria functional composition (PC2) and bacteria

composition (PC1). Bacteria and fungi Shannon diversity were

least accurately predicted among all the variables. The

predictions of variables concerning bacteria and fungi were

mostly decreasing with increasing plot age. For environmental

variables, the accuracy of prediction for temperature and pH

increased and for plot age slightly decreased along the

successional gradient.

Environmental factors as predictors (Figures 4, 5D) –

Environmental factors (multivariate table of environmental

parameters) predicted the fungi composition PC1 and bacteria

composition PC1 with the highest accuracy, followed by bacteria

functional composition (PC2) and plant species composition

(PC2). Fungi Shannon diversity and fungi functional

composition (PC1) was least accurately predicted among all

the variables. Accuracy of prediction for plant and bacterial

variables were often decreasing along the gradient, and for

fungal variables they mostly increased with plot age.
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Our results showed that the composition and diversity of

plant, bacteria, and fungi is overall well predicted by the

composition of the respective other taxonomic groups as well

as by environmental factors. The accuracy of prediction,

however, varied along the successional gradient of the forefield

of the Ödenwinkelkees glacier.

Taxonomic groups and environmental factors differed in the

ability to accurately predict the composition of the respectively

other taxonomic groups. Bacterial and fungal community

compositions was the best predictor for each other’s

composition, while plant community composition was well

predicted both by microbial community composition and

environmental factors. In addition, plot age was best

associated with plant community composition, followed by

fungal and bacterial composition (Supplementary Figure S3).

This confirms that plant communities represent an ecological

succession with age-specific composition, while microbial

communities may be predominantly shaped by biotic

interactions that are modulated by community age to a lesser

extent. In addition, although the PC axes of community

composition do not represent the full composition of a
B

C D

A

FIGURE 4

Summary of the accuracy of prediction using taxonomic groups (bacteria (A), fungi (B), plant (C)) and environmental factors (D) to predict
variables from the other three groups along the successional gradient. Variables from each group are color-coded (red: bacteria, orange: fungi,
green: plant, blue: environment) and ranked by the mean accuracy of prediction.
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taxonomic group, the successful mutual prediction between

bacteria and fungi does show that the PC axes are containing

a signal of the effects of other taxonomic groups. As stated above,

our approach is not implying a direction of effects, which means

that it is more likely that the environmental factors affect the

composition and diversity of the taxonomic groups and not vice

versa. Our predictive models may either indicate direct

interactions between taxa or common other effects on taxa, as

statistical associations between taxa may also suggest that both

taxa respond similarly to a third taxonomic group or an

environmental factor (Blanchet et al., 2020). In our case, the

two environmental factors pH and temperature both have strong

associations with all the taxonomic groups after plot age,

suggesting their role as important environmental factors

defining the community composition of all the taxonomic

groups. In addition, temperature was equally well associated

with all the taxa and pH had better association with bacterial

and fungal composition than with plant composition

(Supplementary Figure S3), indicating that pH is affecting soil

microbes more than plants, which coincides with previous

studies illustrating the importance of pH in affecting microbial

communities (Knelman et al., 2012; Glassman et al., 2017; Shen

et al., 2020). The decrease in soil pH with increasing successional

age at our study site confirms similar patterns in other earlier

deglaciation chronosequences, where this soil acidification
Frontiers in Plant Science 08
mainly results from increased soil organic matter degradation

and the associated leaching of organic acids in late succession

(Bernasconi et al., 2011). Compared with the studies conducted

in other similar glacier forefields such as Morteratsch glacier and

Damma glacier in Switzerland (Burga et al., 2010; Bernasconi

et al., 2011), Rotmoosferner glacier in Austria (De Vries et al.,

2021), or Hailuogou glacier in China (Jiang et al., 2018), our

study aimed at considering the interplay between plants,

bacteria, and fungi as well as environmental factors to detect

mutual influences in the assembly of multidiverse communities.

Despite the strong associations between pH and temperature

with all the taxonomic groups, predictions between the

composition of taxonomic groups usually showed better

performance than environmental factors. This suggests that

apart from the common influence of abiotic factors in affecting

the occurrence of different organisms, there is a strong effect of

direct interactions between bacteria, fungi and plants which leads

to high mutual predictabilities between the taxonomic groups.

The importance of biotic interactions in the successional assembly

of multidiverse communities is confirmed by previous findings

where soil microbial composition was more closely associated to

plant communities than to environmental factors (Knelman et al.,

2012; Junker et al., 2021). In addition, we found that bacterial and

fungal composition serve as better predictors for plant functional

composition than for plant species composition, which supports
FIGURE 5

Random forest predictions using all the environmental factors as explanatory variable to predict seven variables of plant (green), five variables of
bacteria (red) as well as five variables of fungi (orange) as dependent variables. The prediction was done both using all the 135 plots and using a
moving frame approach. For the moving frame approach, every 45 plots were grouped into one frame and the median plot was used as
identifier of the frame. Thus, the first frame included plots 1 to 45, the second 2 to 46, and so forth. The x axis represents the median plot of
every frame whose identifiers ranged from plot 23 to plot 113 (i.e. from young successional plots to old plots). The colored circles at the left of
each plot denote the mean ± standard deviation of the accuracy of prediction (Pearson’s r) using the full dataset (results of 10-fold cross
validation), and the black circles denote the mean ± standard deviation of the accuracy of prediction for all the frames. Each grey to black circle
on the right of each plot represents the mean accuracy of prediction of each frame and the color gradient is showing how many correlations of
the 10-fold cross-validation were significant with lighter colors indicating less frequent significant predictions. A quadratic or linear regression
(the model with higher adjusted r2 value) is fit for the gradient if it is significant, showing a change of the accuracy of prediction along the
successional gradient.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1017847
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


He et al. 10.3389/fpls.2022.1017847
the notion that the functional composition of plant communities

strongly impacts its biotic environment (Dassen et al., 2017).

Meanwhile, bacterial functional composition was also well

predicted by plant and fungi composition, and these together

suggest the important role of functional properties for both plant

and microbial community.

Predictabilities for biotic and environmental variables varied

with successional age. Among all the environmental factors, the

associations between pH and temperature with bacterial, fungal and

plant community composition changed in a consistent pattern

along the successional gradient (Supplementary Figure S3). This

suggests that in the successional stages where these environmental

factors were accurately predicted by all the taxonomic groups, they

may have strong positive or negative effects on the occurrence of

species of different taxonomic groups, while at the stages where they

are not important predictors, other factors may act as the main

drivers shaping the communities. Under the dynamic

environmental conditions, the mutual predictabilities between

plant and microbes at early and late successional stages clearly

differed. Plant taxonomic and functional composition were well

predicted by bacteria and fungi at early while not at late succession.

The change of predictive signal may be caused by the increasing

complexity of late successional communities, which may prevent

the detection of predictabilities between plants and microbes as

noise increases in the data. In our previous study at the same site we

found a stronger interdependence between taxonomic groups at late

succession (Hanusch et al., 2022), in accordance with an earlier

study showing that microbial communities utilize mainly ancient

carbon in the first decades after deglaciation while plant-derived

carbon becomes a major source for microbes after 50 years of

succession (Bardgett et al., 2007). These results suggest that in early

successional stages, plants may directly leave a signal of bacterial

communities that consume plant derived carbon next to those

consuming ancient carbon, which infers the importance of species

interactions (Ficetola et al., 2021). In later successional stages,

further carbon sources such as decomposed soil organic matters

may accumulate, which sustains microbial communities not directly

related to plant species diversity and composition, resulting in a

decreasing signal of interactions between plants and microbial

species pairs with a poor prediction, and this is consistent with

the results of glacier succession of Green Lakes Valley in Colorado,

USA (Porazinska et al., 2018). Finally, age (inferred from distance to

glacier) is not the only factor that is affecting the successional age of

plots in glacier forefields, instead allogenic factors may reset

successions or at least slow down successional progress in

community development (Wojcik et al., 2021). These allogenic

factors, such as geomorphic events, accumulate over time and thus

may lead to outliers in community composition. If these outlier

plots are part of test dataset but not the training dataset, they cannot

be predicted on models as predictions are only possible in the range

of the training dataset.

Variables describing the composition of taxonomic groups

(e.g. PC axis of community composition) were mostly more
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precisely predicted by other taxonomic groups than diversity

indices. Particularly, the community composition of bacteria

and fungi mutually predicted each other most precisely, which

confirms previous studies demonstrating the interdependences

between bacteria and fungi (Miransari, 2011; Deveau et al., 2018).

Fungal composition was better predicted by plant composition

than bacterial composition, which may reflect the tight interaction

between plants and fungi, especially mycorrhiza (Millard & Singh,

2009; Horn et al., 2017; Sweeney et al., 2021). In contrast to the

high mutual predictabilities of the composition between the

taxonomic groups, the Shannon diversity of all the taxa and the

phylogenetic and functional diversity of plants were not well

predicted by the composition of other taxonomic groups,

suggesting that diversity is not a direct function of community

composition. Though plants or microbes may affect the diversity

of each other by facilitative or antagonistic effects, the interactions

may be regulated by environment and the existence of other taxa

as was shown in previous studies (Bennett et al., 2017; Teste et al.,

2017; van der Putten, 2017; Raza et al., 2020). In the soil

environment multiple bacterial, fungal and plant species interact

at the same time with different environmental conditions, and the

interplay of these interactions may lead to a hardly predictable

complexity of interdependencies and influences between the

diversity and composition of different organisms.

Our results demonstrate the concerted development of

plants and microbial communities regulated by environmental

factors along an alpine glacier chronosequence. We identified

how environmental factors define the niches of the organisms at

different successional stages and the strongest biotic

relationships between taxa in primary succession, revealing the

strong interdependencies between taxonomic groups and the

dynamic importance of biotic and abiotic factors in shaping

natural communities. Our approaches to identify indicators and

environmental variables that inform best about the diversity and

composition of ecosystems may stimulate the exploration of

mechanisms underlying community assembly in future studies,

generate hypothesis that can be tested in lab experiments and

facilitate monitoring and conservation efforts.
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