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YOLOX-based blue laser
weeding robot in corn field

Huibin Zhu1, Yuanyuan Zhang1, Danlei Mu1, Lizhen Bai1*,
Hao Zhuang1 and Hui Li2

1College of Modern Agricultural Engineering, Kunming University of Science and Technology,
Kunming, China, 2Shandong Academy of Agricultural Machinery Science, Jinan, China
A YOLOX convolutional neural network-based weeding robot was designed for

weed removal in corn seedling fields, while verifying the feasibility of a blue light

laser as a non-contact weeding tool. The robot includes a tracked mobile

platformmodule, a weed identification module, and a robotic arm laser emitter

module. Five-degree-of-freedom robotic arm designed according to the

actual weeding operation requirements to achieve precise alignment of the

laser. When the robot is in operation, it uses the texture and shape of the plants

to differentiate between weeds and corn seedlings. The robot then uses

monocular ranging to calculate the coordinates of the weeds using the

triangle similarity principle, and it controls the end actuator of the robotic

arm to emit the laser to kill the weeds. At a driving speed of 0.2 m·s-1 on flat

ground, the weed robot’s average detection rate for corn seedlings and weeds

was 92.45% and 88.94%, respectively. The average weed dry weight prevention

efficacy was 85%, and the average seedling injury rate was 4.68%. The results

show that the robot can accurately detect weeds in corn fields, and the robotic

arm can precisely align the weed position and the blue light laser is effective in

removing weeds.

KEYWORDS

deep learning, laser weeding, weed recognition, weeding robot, Yolo algorithm
1 Introduction

Weeds are an important factor affecting maize yield, limiting yield and quality by

competing for nutrients, sunlight, and space (Rajcan and Swanton, 2001; Ab Rahman

et al., 2018; Westwood et al., 2018), and the main methods of weed control in maize fields

are currently biological control, chemical weed control, mechanical weed control, and

physical weed control. The advantage of biological control is that it is less disruptive to

agroecosystems (Barratt et al., 2018), however, the small scope of action of biological

control does not allow for large-scale replication (Motitsoe et al., 2020; Stenberg et al.,

2021). Chemical weed control is inexpensive and widely adapted, but chemical herbicides

are poorly utilized during use and pollute soil and water quality (Heap and Duke, 2018;
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Gould et al., 2018; Peterson et al., 2018; Mennan et al., 2020).

Mechanical weeding is less contaminated and more efficient, but

intercrop weeds are difficult to remove and have high seedling

injury rates, a single weed knife is difficult to meet the weeding

requirements of different crops between plants and rows, and

mechanical weeding is usually applied at early crop growth

stages, which may cause irreversible crop damage (Perez-Ruiz

et al., 2012; Zhou et al., 2018; Raja et al., 2020). In recent years,

laser weeding has been extended to complex weeding operations.

As a precision non-contact physical weeding method, laser

weeding has the characteristics of high weeding efficiency,

precise positioning, low seedling injury rate and environmental

friendliness, so laser weeding was selected for this study.

With the continuous development of weed control research,

although several weed control methods have been developed

(Teasdale, 1996; Rasmussen, 2004; Harker and O’ Donovan,

2013; Kunz et al., 2018; Alba et al., 2020; Monteiro and Santos,

2022), but still requires a lot of human involvement, low weed

control efficiency and cannot do accurate weeding. The

application of robots in the field of weed control has improved

the efficiency of weeding, it has greatly reduced the labor

intensity, reduced the amount of herbicides and to some

extent avoided the waste of resources (Perez-Ruiz et al., 2014;

Chen et al., 2015; Li et al., 2016; McAllister et al., 2019;

Kanagasingham et al., 2020). At present, in agricultural fields,

weeding is usually performed by robots carrying chemical

herbicides or weed knives. The disadvantages of this method

are that there is no recognition of ground weed targets, uniform

application when robots carry chemical herbicides, which leads

to pesticide contamination, and indiscriminate weeding when

they carry weed knives, which leads to crop damage. The

introduction of machine vision in the field of weeding has

compensated for this shortcoming, and weeding robots with

online weed recognition and classification are key contributors

to the improvement of correct weeding rates. The use of machine

vision to distinguish crop weeds and extract weed coordinates

makes weeding targeted and effectively reduces pesticide

contamination or crop damage rates.

Chen et al., (2005) studied a direct application weed control

robot for controlling weeds in agricultural fields, using end-

effectors to cut weeds to apply herbicides, reducing the amount

of herbicides used, but the long-term use of chemical herbicides

resulted in high weed resistance; Mao et al., (2007) used color

features to segment green plants and soil background, position

features to detect weeds between rows, and texture features to

classify weeds within rows; Zhang et al., (2012) used the

advantage of plant G-component values to remove

backgrounds such as soil interference, the coordinates of the

center of the seedling plant when the seedling hoeing robot

advances were determined, but the parameter combination
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method of image row pixel histogram could not effectively

identify small target weeds; Lavania et al., (2015) used the 3D-

Otsu method with double threshold processing and cropping

rows to classify weeds in corn fields, which is suitable for real-

time weed detection; Xiong et al., (2017) developed a static laser

weeding robot under fast path planning, which can identify

weeds in the laboratory, but the field environment is more

complex than the indoor environment, and the reliability of

this system for field weeding operations is reduced; Tang et al.,

(2017) studied k-means preprocessing instead of random

initialization of weights in traditional CNN to improve weed

identification accuracy; Reiser et al., (2019) developed a

motorized in-row rotating weeder where the robot was based

on 2D laser scanner data to achieve navigation, which is

narrowly applicable to elevated crops such as apple orchards

and vineyards; Kanagasingham et al., (2020) effectively enabled

the weeding robot to navigate on a prescribed route with

integrated GNSS, compass and visual guidance, but accuracy

decreases as weed concentration increases; Rakhmatulin and

Andreasen, (2020) used neural networks to identify weeds and

developed an algorithm to estimate laser dose for weed control,

but laser energy 1w requires long exposure time and laser energy

5w injures the crop and fails to estimate the optimal laser dose;

Xu et al., (2020) developed an algorithm based on absolute

characteristic corner point (AFCP) for identifying crop and

weed locations to calculate weed density; Ying et al., (2021)

used Lightweight Yolov4 was used to accurately detect weeds in

carrot fields with an average weed recognition rate of 88.4%.

YOLOX is more capable, faster, and more accurate in identifying

small targets than previous weed recognition neural networks.

YOLOX-L achieved 50.0% AP on the COCO dataset and 68.9

FPS on a single Tesla V100, which It is more in line with real-

time image recognition and data processing in the field, so

YOLOX was chosen as the god will network for identifying

weeds in this experiment.

In this paper, laser weeding is a physical weeding method,

which has the advantages of being environmentally friendly,

renewable, and harmful to organisms. As most of the previous

laser weed control studies have used CO2 laser, which is a red

laser with a wavelength of 650-660 mm, the shorter the

wavelength means higher energy among different types of

lasers. The wavelength of the blue laser selected in this paper

is 400-500 mm. The blue laser has been widely used in physics,

aviation and other fields because of its short wavelength, small

diffraction effect and high energy. Since the blue laser has not

been applied to weed control in current research, and the laser

weed control effect is related to laser type, laser dose, weed

species and growth period, it is necessary to design experiments

to find the optimal weed control laser dose according to the

above conditions (Mathiassen et al., 2006; Marx et al., 2012). In
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order to verify the feasibility of blue light laser weed control and

the optimal weed control laser dose for this experiment, a blue

light laser weed control experiment was designed. In this paper, a

YOLOX-based blue light laser weed control robot was designed.

Compared with previous laser weed control studies, the mobile

platform adopts a tracked chassis to enhance the stability of body

movement and rotation, a five-degree-of-freedom actuator was

designed to enable precise laser positioning, and the YOLOX

neural network was used to identify small targets with significant

effect and improve the outdoor weed identification rate.
2 Design of robots

2.1 General robot description

The robotic arm laser transmitter, weed crop detection

system, communication control system, tracked mobile chassis,

and laser transmitter are all components of the laser weeding

robot. The robot system architecture is shown in Figure 1. A

centralized control strategy is adopted, where each subsystem is

controlled independently, centralizing management, operation

and display, while decentralizing functions, loads and hazards.

The central Python (3.7.1) program regulates and collaborates

with each subsystem to ensure better real-time control and

comprehensive information management in the field.

2.1.1 Design of robot structures
The overall hardware assembly of the laser weeding robot is

shown in Figure 2. The image acquisition device includes two

cameras, one in the center of the body forward to provide vision

navigation for the robot, The camera labeled 3 in Figure 2, for

example, uses monocular vision and odometer fusion to navigate

the robot. The odometer readings are used as auxiliary

information to calculate the coordinate position of the feature
Frontiers in Plant Science 03
point in the current robot coordinate system using triangulation.

The location of the camera in the real world, is estimated based

on the 3D coordinates of the feature point in the current camera

coordinate system and its coordinates in the real world, the other

in front of the laser emitting robot arm downward to provide

real-time images of the weed identification system in the field.

The tracked mobile chassis is driven by two stepper motors to

drive the symmetrical tracks, which support the whole machine

operation through the chassis structure, and the battery pack

supplies energy for each part of the robot while balancing the

overall weight distribution of the robot. With reference to

the planting area of corn field, corn planting row spacing and

the mechanical structure of the weeding robot, the robot is

designed to have an external dimension of 550×450×400mm

(length×width×height), The workable area of the robot arm is

400×400mm, weeding robot weight of 20kg.

2.1.2 Design of a robot’s walking mechanism
The mobile crawler chassis that powers the robot gives it

autonomous steering and speed control. In steep plowing and wet,

muddy fields, the crawler walking method offers greater stability

than the four-wheeled and four-legged walking methods.

As shown in Figure 3, to ensure the stability of the robot in

walking and weeding operations, five pairs of support wheels are

used at the bottom of the track to support the weight of the

robot, increase the force area and reduce damage to the

cultivated land. The track must be tensioned to maintain

transmission dependability in order to prevent the drive

wheels from slipping and derailing when connecting the drive

wheels to the track. The carrier wheel’s job is to pull the track’s

loose edge downward. The track tensioning mechanism supports

the track laterally by adjusting the distance between the

supporting wheel and the guide wheel.

The robot is automatically adjusted in the field based on a

dual closed-loop system of position and speed parameters to
FIGURE 1

System architecture of laser weeding robot.
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maintain the desired speed and deflection angle. Two servo

motors with independent speed and steering are equipped. The

track drive wheels transmit the transmission shaft’s torque to

the left and right rubber tracks through their protruding teeth,

and the rubber tracks’ winding motion propels the weeding

robot forward. The servo motors are connected to the track

drive wheels through the transmission mechanism to output

torque. Emitting pulse is a function of the servo motor itself. To

achieve automatic operation and regulation of the circuit,

relays are used to automatically regulate the servo motor

start, stop, forward, and reverse, as well as to issue control

commands and reflect the robot status by turning on and off

the circuit. The schematic diagram of the two-way motor drive

is shown in Figure 4.
Frontiers in Plant Science 04
2.2 Machine Vision

2.2.1 Image acquisition and coordinate
transformation

This study relies on a USB camera to collect field picture data

in real-time while weeding robots are at work. Ohya et al., 1998

studied A vision-based navigation method for autonomous

mobile robots in indoor environments, using monocular

cameras for obstacle avoidance navigation. Similar to the

previous study, this one employs a single camera to

distinguish between crops and weeds (Chen et al., 2021;

Sapkota et al., 2022). The weed and corn seedling images were

collected at the conservation tillage trial field of Kunming

University of Science and Technology. During the weeding
FIGURE 3

Crawler mobile chassis. 1. Track drive wheels; 2. Support weight running wheels; 3. Guide wheels; 4. Rubber tracks; 5. Carrier wheels; 6. Track
tensioning mechanism.
FIGURE 2

Laser weeding robot. 1. Mechanical arm adjustment mechanism; 2. Blue laser emitter; 3. Line road camera; 4. Identification camera; 5. Crawler
mobile chassis; 6. Battery pack.
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operation, the camera pose to the ground was ensured to be the

same as the calibrated pose, and the coordinates of the weed’s

center position were calculated. The image acquisition device is

Sony A6000 digital camera, with effective pixels of about 24.3

million, with Sony E16-50mm OSS lens, the camera aperture set

to F8.0. The initial image resolution is 6000×4000 pixels, the

initial image size S is 6.0M, the photo aspect ratio is 3:2, the

image quality is standard.

During weeding operation, the identification camera fixed in

the body obtains real-time image data, and the PC upper

computer communicates with the STM32F103 lower computer

through the HC-08 Bluetooth serial port to input the image into

the weed identification system. And the real coordinates of the

corresponding location of the weed plenum are determined

using a similar triangle ratio. This monocular camera-ranging
Frontiers in Plant Science 05
model is depicted in Figure 5 and assumes that the measured

weed plenum has an X-axis, Y-axis, and height component. The

known quantities are represented in the Figure 5 by the image

coordinate system, the robot camera coordinate system, and the

real coordinate system.

The real coordinates of the weed center of mass are

calculated in accordance with the triangle similarity theorem,

and the image coordinates of the lens centroid, focal length, and

pixel aspect are directly solved from the calibration.

Where H is the height of the camera H. y1 is the distance

between the image coordinate center corresponding to the real

coordinate point and the camera on the Y-axis. The lens

(ucenter, ucenter) is Image coordinates of the center point of.

P1(u,0) is Image coordinates of the measured pixel point. xpix is

actual pixel length. ypix is actual pixel width. f is camera focal
FIGURE 5

Single visual distance schematic diagram.
FIGURE 4

Two motor drives.
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length. The calculation formula is as follows:

a = arctan H
y2

� �
1ð Þ

g = arctan x1�ypix
f

� �
= u−ucenterð Þ�ypix

f 2ð Þ

b = a − g 3ð Þ

O2p = H
tanb 4ð Þ

The coordinate of the vertical direction in the real coordinate

system Y= O2P .

X-axis by Y-axis coordinate scale calculation.

O1P1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u − ucenterð Þ � xpixð Þ2+f 2� �q
5ð Þ

O1P = H
sinb 6ð Þ

PQ
O1P1

= O1P
u 7ð Þ

PQ = O1P�O1P1
u 8ð Þ

Realistic coordinate system vertical direction coordinates

X = PQ.

Since the camera is at a certain height from the ground, the

coordinates (X,Y) derived above are transformed by projection

to obtain the true coordinates ( _X, _Y).

_X, _Y
� �

= X,Yð Þ � 1 − h
H

� �
9ð Þ

The coordinates of the weed centroid can be obtained by

combining equation (4), equation (8) and equation (9).
2.2.2 YOLOX-based crop and weed detection
The foundation of the visual weed crop detection system is the

generation and collection of datasets (Quan et al., 2019; Zhong

et al., 2019; Li et al., 2021), as well as the construction of a YOLOX

network structure. The data of this study was collected from the

conservation tillage experimental field of Kunming University of

Science and Technology. 15,000 photos were collected by Lab

team, and photos of weeds and corn seedlings were collected in
Frontiers in Plant Science 06
different weather, time and angles to avoid the effects of light

changes, camera angles and crop growth stages on the detection

results. Because the pictures were gathered too quickly, there were

too many overlapping areas of adjacent pictures and some

pictures with poor imaging quality, and these pictures would

reduce the recognition effect of the model. Therefore, the dataset

was screened and finally 2000 images were selected as the final

dataset, and then the dataset was extended to 8400 images by

adopting data enhancement such as changing contrast, changing

brightness and increasing image noise, etc. The crop and weeds

were then calibrated using LabelImg and output in YOLO format.

After field survey, weeds in the test field mainly consisted of grass

weeds and broadleaf weeds.

The final dataset was divided into two groups: corn and

weeds, to reduce the difficulty of robotic arm operation and the

amount of time required to generate weed placenames. The

specific parameters of the dataset are shown in Table 1. 2000

photographs are first chosen as the starting dataset, and 8400

images are added to the enhanced dataset D following data

augmentation. In other words, D=S∪T , S∩T=∅ The former is

utilized as the training set S and the later as the test T. T is used

to assess the model’s test error as an estimate of the

generalization error after the model has been trained on S.

The current target detection networks are Faster ReCNN,

YOLO, SSD, DSSD, etc. (Zhao et al., 2018). The YOLO series

networks can predict multiple categories and locations at the

same time (Tian et al., 2019; Wu et al., 2020). YOLOX has the

benefits of real-time performance, accuracy, and minimal

processing effort while simultaneously recognizing both large

and tiny targets. YOLOX uses YOLOv3-Darknet53 as the

network benchmark model, which adds Decoupled Head,

SimOTA and other tricks to get YOLOX-Darknet. YOLOX

incorporates training methods as EMA weight update, Cosine

learning rate mechanism, RandomHorizontalFlip, ColorJitter,

and multi-scale data broadening additionally, increasing its

detection accuracy over yolov3 by 3%. The network detection

process of YOLOX for crops and weeds is shown in Figure 6.
2.2.3 Extraction of maize seedlings and
weed locations

The real-time field image is divided into a weeding operation

zone and a seedling protection zone prior to robot operation by
TABLE 1 Main parameters of YOLOX network dataset.

Number of species The number of objects in the dataset

maize weed

The original sample 2000 1049 951

Data enhancement 8400 3745 4646

Training set 6720 2996 3717

Test set 1680 749 909
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the weed identification system. The weeding operation zone and

seedling protection zone are originally established by the anchor

frame predicted by the target detection. As depicted in Figure 7, a

protected area and a target weeding area have been established.

YOLOX detects corn seedlings and weeds, extracts the location of

crop and weed centroids by similar triangle proportional

relationship based on the recognition results, and then divides

corn seedling protection zone and weeding operation zone (Tang

et al., 2017). To calculate the size of the maize protection zone

accurately, the maize seedlings’ leaf range must be taken into

consideration. In this thesis, maize was weeded at the three-leaf

stage, and seedlings from the test field were chosen at random to

have their leaf crown radii measured. The radius of the protected

area was determined to be 76 mm by taking several measurements

of the leaf crown radius, and the radius of the protected area was

finally increased to be 80 mm by increasing 4 mm due to human

measurement error. The weeding operation area is a circle

centered on the turntable of the robot arm with the radius of

400mm for the operation of the robot arm.

2.2.4 Control system and strategy
2.2.4.1 The hardware setup of the control system

The STMF103microcontroller serves as the primary control chip

and the YOLOX detecting network serves as the system’s core for the

laser weeding robot. The STMF103microcontroller provides many I/
Frontiers in Plant Science 07
O ports, strong functionality, and room for future function extension.

YOLOX detection is quick and computationally light, which satisfies

the technical requirements of real-time field image capture.

2.2.4.2 Methods for developing weed control zones in
various circumstances

In order to decrease the rate of seedling injury, the system

must decide on a weeding strategy and split the weeding

operation region according to the weed distribution position

in the actual corn field. Weed crossover with maize seedlings was

full shade, half shade and no shade, so the weed removal strategy

was no removal, partial removal and complete removal,

respectively as illustrated in Figure 8. The entire eradication

approach is used when the weeds are not obstructing the maize

seedlings, as shown in Figure 8A, and the weeding robot moves

on without halting. The partial removal approach is used when

the weed center point is outside the corn seedling protection

zone, but some of the weed leaves are at the boundary of the corn

seedling protection zone, as shown in Figure 8B. When the weed

is completely covered by the corn seedling, the robot stops to

control the laser emitter operation, as shown in Figure 8C.

2.2.4.3 Process control for weeding

The mechanical arm alignment to weed centroid duration

and real-time journey displacement control are combined in the
A B C

FIGURE 7

Determination of protected areas and weeding areas (A). Output the anchor box (B). Remove the background (C). Form protected areas and
weed areas.
FIGURE 6

YOLOX maize seedling and weed detection process.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1017803
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhu et al. 10.3389/fpls.2022.1017803
laser emitter control technique. As indicated in Figure 9, The

weeding approach is broken down into the following parts: (1)

corn seedling protection zone and weeding work area are

determined by YOLOX detection network; (2) weeding

strategy is determined according to corn seedling and weed

distribution; (3) weed center coordinates are sent from weed

recognition module to control center; (4) time difference t is

determined by trolley travel speed and recognition module

calculation speed, if the robot travel time required is faster

than the time required for robot arm movement then robot

decelerate, if the robot travels too slow then accelerate; (5) when

it reaches the target area, send the start command to the control

system together with the weed recognition system to control the

laser emitter to emit laser; (6) continue to travel into the next

target area. The flow chart of weeding process is shown

in Figure 9.
2.3 Robotic arm laser emitter

When designing the robot arm, the laser emitter is adjusted

in the horizontal plane after moving above the weed, and its
Frontiers in Plant Science 08
alignment to the center of the weed can meet the operational

requirements, so the rotation axis of the six-axis mechanical end

is removed. This is since when weeding, the laser emitter just

needs to be centered on the weeds, and the five-degree-of-

freedom robot arms are simpler to handle, quicker to execute

laser emitter modules, and have more precise laser positioning. It

also takes less time to calculate the position of the robot arm’s

end in the control center.

The spatial mechanism’s degree of freedom F is calculated as:

F = 6n − 5P5 − 4P4 − 3P3 − 2P2 − P1 10ð Þ
where n is the number of active members. P5 denotes a member

with one degree of freedom and five restrictions, P4 , P3 , P2 , P1 ,

and so on.

The robotic arms I to IV and the robotic arm turntable make

up the five movable members of the five-degree-of-freedom

robotic arm that was designed in this work. Each of the five

movable parts has five constraints and one degree of freedom.

The specific structure design of the five-degree-of-freedom robot

arm is shown in Figure 10.

The laser emitter is threaded to the end of the robotic arm I,

keeping the operating attitude perpendicular to the ground at all
FIGURE 9

Flow chart of weeding process 1. laser emitter 2. robot arm I 3. robot arm II 4. robot arm III 5. robot arm IV 6. robot arm turntable 7. servo motor.
A B C

FIGURE 8

Determine the weeding strategy, (A) complete weeding (B) partial weeding (C) no weeding.
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times. The swing is controlled by a servo motor, which is

articulated with robotic arm I. Servo motor control articulates

and rotates robotic arms II and III. Robotic arm IV is articulated

with robotic arm III and robotic arm turntable, and it is

controlled by a servo motor to swing with robotic arm III.

Two servo motors control the swing of robot arm IV and the

robot arm turntable, and the robot arm turntable is hinged on

the entire machine frame, with the servo motor controlling its

rotation relative to the frame. The robot arm turntable is in

charge of driving the entire robot arm. The servo motor model

HM-MS10 is selected according to the mechanical load and

characteristics of the robot arm. Its performance parameters are

operating voltage 5V, pulse width range 500~2500us,

mechanism limit angle 180°, response speed 0.7sec·60degree-1,

pull force 9.4kg·cm-1. The PWM pulse width of 2.5ms

corresponds to the servo motor’s angle range of 0° to 180°,

and the servo motor adjusts the angle with a duty cycle of 0.5ms,

the control accuracy can reach 0.3° in the range of 2000 pulse

widths. This motor can meet the operational requirements of

robotic arm weeding.

A movable platform-mounted robotic arm with five

degrees of freedom, a laser emitter, and an associated control

system make up the robotic arm laser emitter module. The

robotic arm is propelled by five servo motors and has five

degrees of freedom. The host computer issues control

commands to the controller, which moves the robotic arm as

directed. The STM32F103 microcontroller that powers the

robot arm can regulate the movement of the crawler moving

platform and transmit the angle values for each axis to the

robot arm’s top computer. HC-08 The STM32 microcontroller

of the robot arm controller and the higher computer of the

remote control communicate with each other via Bluetooth

serial connection. The working schematic diagram of the

controller is shown in Figure 11.
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2.4 Validation of blue light laser
weed control

Based on the study by Streibig et al. in 1993 on laser dose and

plant dry weight after laser action, the change in dry weight of

weeds after laser action can be described by equation (11).

DW = C + D−C

1+ lg DOSE+1ð Þ
lg ED50+1ð Þ

� �B + d 11ð Þ

Where DW is the dry weight of weed after laser action. Dose is

the laser dose. C is the minimum dry weight mass of the weed

after laser action. D is the maximum dry weight mass of weed

without laser action. 1 + ( lg (DOSE+1)lg (ED50+1)
)B is used to describe the

position and inclination angle of the laser dose and dry weight

curve when the dry weight of weed is reduced to 50% of D. s is

an error of approximately zero.

Streibig et al. showed that as the laser dose increased, the dry

weight DW of the plant body was an S-shaped decreasing curve

with a value of approximately 0 for the minimum dry weight

mass C. When the laser dose tended to infinity, the value of weed

dry weight DW was approximately equal to the minimum dry

weight mass C, indicating that the high dose of laser irradiation

killed the plant and caused the dry weight of the plant to tend to

0. When no laser irradiation was used and the value of laser dose

was 0, the value of weed dry weight DW was approximately

equal to the maximum dry weight mass D, indicating that the

plant grew normally without laser irradiation. Laser irradiation

and the value of laser dose was 0, the value of weed dry weight

DW was approximately equal to the maximum dry weight mass

D, indicating that the plants grew normally without

laser irradiation.

The efficiency of the blue laser on the dry weight of weeds

during this growth period was determined after a given amount

of time by calculating the difference between the dry weight of
FIGURE 10

Structural design of five-degree-of-freedom robotic arm. 1. Laser emitter; 2. robot arm I; 3. robot arm II; 4. robot arm III; 5. robot arm IV;
6. robot arm turntable; 7. servo motor.
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weeds in the test area and the dry weight of weeds in the blank

region without laser irradiation (Dudareva et al., 2020; Rani

et al., 2022).

Y = CK−E
CK � 100% 12ð Þ

where Y is the dry weight control effect. CK is the dry weight of

weeds in the blank control area without laser irradiation. E is the

dry weight of weeds in the laser-irradiated test area.

To determine the most effective weed control laser dose,

three common maize-associated weeds (Echinochloa colonum,

Amaranthus retroflexus, Plantago asiatica) were chosen for

laser weed control studies. The weeds were preserved in their

original growing habitat following the laser irradiation test

and continued to be grown in the conservation tillage test field
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at the Kunming University of Science and Technology. The

weeds were chopped off above the surface with scissors after ten

days, and they were then dried in an oven at a continuous

temperature of 85 degrees C for ten hours. Using an electronic

balance, the dry weight of the weeds above the surface was

calculated and recorded. The laser irradiation test is shown

in Figure 12.

Separate calculations of the three weeds’ dry weight control

effectiveness following laser studies at the two-leaf and four-leaf

phases are shown in Figure 13.

The expected dry weight control value was 85%. The average

values of the dry weight control efficiency of the three

experimental weeds at the two and four leaf stages were taken,

and then the curve was fitted. The fitted curve of Amaranthus
FIGURE 12

Effect drawing of laser irradiation.
FIGURE 11

Schematic of the controller working principle.
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retroflexus is obtained as:

y1 = −0:0002x3 + 0:0008x2 + 0:0946x − 0:0574  R2 = 0:9925

x1 = 13:9J · mm−1

Fitted curves of Echinochloa colonum:

y2= − 0:0006x3 + 0:0134x2 − 0:0072x + 0:0097  R2 = 0:9913

x2 = 14:5J · mm−1

Fitted curves of Plantago asiatica:

y3 = −0:00006x3 − 0:0049x2 + 0:1268x − 0:0652  R2 = 0:9919

x3 = 12:1J · mm−1

The test results showed that the blue laser could effectively

inhibit the regrowth of the three weeds in this test, and the dry

weight control efficiency of the blue laser at high doses

exceeded 90% for all three weeds. The blue light laser could

kill the seedlings of Echinochloa colonum in two growth

periods and effectively control the seedlings of Amaranthus

retroflexus and Plantago asiatica, which are narrow-leaved

weeds of the grass family, and both Amaranthus retroflexus

and Plantago asiatica are broad-leaved weeds. Based on the

curve fitting results of the weeding test, the laser emission doses

of the robotic weeding control system in this paper were set to

13 J/mm and 15 J/mm for grassy weeds and broadleaf

weeds, respectively.
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3 Field trials

The field trial was conducted in the conservation tillage

experimental field of Kunming University of Science and

Technology. The test subjects were maize seedlings and the weeds

that were present around 20 days after sowing. The test field’s maize

plants were spaced 30 cm apart, and its rows were 70 cm apart.
3.1 Robot vision system test

The recognition rate of weeds and corn seedlings was

assessed for weeding robot vision system individually. The

host computer compressed the data uploaded from the USB

camera into a video with a picture quality of 640 × 640 and a

frame rate of 10 frames per second, and the weeding robot was

manually controlled to move at a constant speed through the

field. Real-time item detection from the input video was

provided by the robot vision system, together with

categorization and coordinates for each thing found.

The target detection method is challenging because weeds

and corn seedlings are distributed differently. The tested model

was put to the test with various corn weed distributions. The

visual system test result diagram is shown in Figure 14.

The prototype was utilized in the test field to evaluate the

effectiveness of the robotic vision system in detecting weeds in real-

time at two travel speeds. The configuration of the top computer in

the experiment was identical to the hardware used in training the

algorithm model. The test results are shown in Tables 2, 3 below.
FIGURE 13

Effect diagram of laser irradiation dry weight.
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3.2 Robotic weeding trials

The “stop&go” weeding strategy was adopted in this field

trial, which can avoid the problem of the mechanical arm

adjusting mechanism and the walking mechanism having

relative displacement and failing to align with the weed

centercenter, and improve the weeding rate. In the field test,

when the robot vision system successfully detected the weeds
Frontiers in Plant Science 12
and met the weeding conditions, the robot slowed down and

stopped at the weed position. Then sent the weeding command

to the control center in the stationary state, and the robot arm

moved to the top of the weeds to complete the weeding

operation. Robot weeding operation site as shown in Figure 15.

The average weed dry weight control efficiency and the

average seedling injury rate served as the test indices. Surface

levelness was the test factor, and the test was conducted by first
TABLE 2 Detection results of maize seedlings by weeding robot prototype.

Robot speed Corn row serial number Actual number of corn
seedlings

Number of successful identifications Average detection rate

0.2m/s 1 67 61 92.45%

2 63 58

3 68 62

4 67 64

0.3m/s 1 63 56 89.15%

2 68 60

3 63 57

4 64 57

0.4m/s 1 61 53 88.35%

2 66 58

3 63 56

4 59 53
A B

DC

FIGURE 14

Visual system test result diagram.
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measuring the surface levelness. When the test is first measured

the surface flatness, take the horizontal reference line on the

highest point of the surface, divide it into 10 equal parts, and

measure the distance from each equal part to the highest

horizontal line of the surface. Calculate the average value and

standard deviation, and express the surface flatness of the

distance by standard deviation. In the test, two parts of the

maize planting field were chosen, each of which comprised three

rows of maize planting with a row length of roughly 6 m. The

first aliquot was taken at intervals of 60 cm, and the surface

flatness was estimated by measuring the distance between the

aliquot and the surface (GB/T5668-2008).

P =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=0
di−dð Þ2

n−1

q
13ð Þ
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Where P is ground levelness, di is vertical distance of the i-th

measurement point in the field from the fitted plane, d is

Average of vertical distance of all measurement points from

the surface.

The test results showed that the surface of the first,

second, and third operation rows was relatively flat,

measuring 3.9 cm, 4.7 cm, and 3.7 cm, respectively, and

being less than 5 cm; the surface gullies of the fourth, fifth,

and sixth operation rows were greater, measuring 8.3 cm,

9.6 cm, and 8.9 cm, respectively, and being between 5 cm and

10 cm. The results of the robot’s field weeding trials are shown

in Table 4.
FIGURE 15

Robot weeding operation site.
TABLE 3 Detection results of weeds by weeding robot prototype.

Robot speed Weed row serial number Actual number of weeds Number of successful identifications Average detection rate

0.2 m/s 1 52 45 88.94%

2 54 50

3 50 44

4 52 46

0.3m/s 1 52 43 84.6%

2 54 46

3 50 44

4 52 43

0.4m/s 1 52 43 84.13%

2 54 45

3 50 43

4 52 44
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4 Results and discussion

In the experiment of verifying the feasibility of blue light

laser weed control and determining the laser dose, the laser

emission doses of grass weeds and broadleaf weeds in this

experiment were set as 13J/mm and 15J/mm respectively

under the premise that the dry weight control effect of

weeds reached 85%. The laser dose required to remove

grass weeds was lower than that of broadleaf weeds. This is

due to the shallower roots and narrower leaves of grasses in

comparison, which inhibit growth to a higher degree after

laser irradiation.

Table 2 shows that the recognition rate of maize seedlings

reached 92.45%, 89.1% and 88.35% at 0.2m/s, 0.3m/s and

0.4m/s of the weeding robot speed, respectively, while Table 3

shows that the weed recognition rate was 88.94%, 84.6% and

84.13% at 0.2m/s, 0.3m/s and 0.4m/s of the weeding robot

speed, respectively. The high crop recognition rate is higher

than the weed recognition rate probably because there are

more types of weeds in the field, and the data set was

constructed with only common weeds and corn seedlings in

the corn field, and the algorithm was not sufficiently trained

for some types of weeds, while the shape characteristics of

corn seedlings are similar, and there are many types of weeds

with different shapes, and the detection difficulty of weeds is

higher than that of corn; with the increase of robot driving

speed, both corn seedling recognition rate and weed

recognition rate decreased, which may be due to the fact

that the image quality captured by the recognition camera at

high speed of the robot is lower than that of the image quality

at low speed.

Table 4 shows that the dry weight control efficiency of

weed control was 85%, 81.9%, 80.07%, and seedling injury

rate was 4.68%, 4.92%, and 5.08% in the field test under the

conditions of ≤5cm, ≤7.5cm, and ≤10cm respectively for the

slope of monopoly furrow, and 9 groups of different slope

tests showed that the dry weight control efficiency of weeds
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decreased and seedling injury rate increased with the increase

of slope of cultivated land. This may be due to the fact that the

laser emitter could not accurately aim at the weed center

when the robot passed through the uneven ground; the laser

beam emitted to the weed surface spot area became large

energy dispersion; the height of the recognition camera and

the ground changed when the body was tilted, and the image

weed center coordinates were mapped to the real world with

some deviation in the process.

Quan et al., (2021) used deep learning combined with

directional weeding tools in 2018, and the average rate of

sloppy removal was 85.91%. Cubero et al., (2020) used

machine vision to control the electrode discharge of the end-

effector of a 6-DOF robotic arm to kill weeds, and the accuracy

rate of weed localization reached 84%. The experimental results

show that the weeding effect of the weeding robot designed in

this paper is better than the above research, and the weeding

robot has achieved better maize seedling recognition rate and

weed recognition rate. The interference factors in the field

experiment were higher than those in the laboratory

experiment, but the weed recognition rate and crop

recognition rate were still 88.94% and 92.45%, respectively,

which were higher than those in the above experiment.
5 Conclusion

This study demonstrates the field weeding capability and

detection of corn seedlings and weeds (grass and broadleaf

weeds) of the blue laser weeding robot, with better detection

results of the YOLOX network for weed identification

compared to previous convolutional neural networks;

reduced control difficulty and robot positioning time of the

five-degree-of-freedom robot arm compared to the six-degree-

of-freedom robot arm; and compared to the traditional

weeding robot. Using machine vision to locate weeds has

stronger robustness, reliability and lower injury second rate
TABLE 4 Field weeding effect of weeding robot prototype.

Surface
flatness

Row
number

Number of
weeds

Number of corn
seedlings

Number of injured
seedlings

Average weed dry weight
control efficiency

Average injury rate of
seedlings

≤5cm 1 24 23 1 85% 4.68%

2 27 21 1

3 27 20 1

≤7.5cm 4 26 19 1 81.96% 4.92%

5 27 22 2

5 24 20 0

≤10cm 4 25 20 1 80.07% 5.08%

5 26 18 0

6 25 21 2
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than traditional weeding robots. The results show that the

weeding robot can effectively remove different kinds of weeds

from corn seedling fields.
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