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The invasive weed Ageratina adenophora can form a positive symbiotic

relationship with native arbuscular mycorrhizal fungi (AMF) to promote its

invasion ability. However, the function of AMF during the feeding of Aphis

gossypii in A. adenophora was poorly understand. This study aimed to

investigate the effects of two dominant AMF (Claroideoglomus etunicatum

and Septoglomus constrictum) on A. adenophora in response to the feeding of

the generalist herbivore A. gossypii. The results showed that A. gossypii

infestation could significantly reduce the biomass, nutrient and proline

contents of A. adenophora, and increase the antioxidant enzyme activities,

defense hormone and secondary metabolite contents of the weed. Compared

with the A. gossypii infested A. adenophora, inoculation C. etunicatum and S.

constrictum could significantly promote the growth ability and enhanced the

resistance of A. adenophora to A. gossypii infestation, and the aboveground

biomass of A. adenophora increased by 317.21% and 114.73%, the root biomass

increased by 347.33% and 120.58%, the polyphenol oxidase activity heightened

by 57.85% and 12.62%, the jasmonic acid content raised by 13.49% and 4.92%,

the flavonoid content increased by 27.29% and 11.92%, respectively. The

survival rate of A. gossypii and density of nymphs were significantly inhibited

by AMF inoculation, and the effect of C. etunicatum was significantly greater

than that of S. constrictum. This study provides clarified evidence that AMF in

the rhizosphere of A. adenophora are effective in the development of tolerance

and chemical defense under the feeding pressure of insect herbivory, and offer

references for the management of the A. adenophora from the perspective of

soil microorganisms.
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1 Introduction

Ageratina adenophora (Sprengel) originated in Central

America and is regarded as one of the most serious invasive

species in Asia, Africa, and Oceania (Poudel et al., 2019; Tang

et al., 2019). It was introduced into Yunnan Province in China,

from Myanmar in the 1940s and is now distributed in

southwestern and central China including Yunnan, Guizhou,

Sichuan, Guangxi, Tibet, and Chongqing (Wang and Wang,

2006; Gui et al., 2009). The weed may be expanding its

distribution due to adaptation to local climates in its

introduced ranges (Datta et al., 2019) or its stress tolerance

and phenotypic plasticity, allowing it to outcompete native

plants (Poudel et al., 2020). Most importantly, this weed

induces serious ecologica l damage by establ ishing

monocultures in places where native plants once flourished

(Gao et al., 2013). It has caused huge economic losses to

agriculture, forestry, and animal husbandry (Ren et al., 2021).

It is estimated to cause economic losses to animal husbandry and

grassland ecosystem services of RMB 0.99 and 2.63 billion per

year, respectively (Wang et al., 2017a), and effective control of

this species is urgently needed (Song et al., 2017).

With the invasion and expansion of A. adenophora, native

polyphagous insects gradually established ecological

relationships with the weed (Heystek et al., 2011). A

polyphagous insect, cotton aphids (Aphis gossypii Glover,

Homoptera, Aphididae) was found to have colonized A.

adenophora in our field investigation. Aphids can reproduce

rapidly within a few days, hiding on the lower surface of the

leaves and the core of the young leaves of A. adenophora, feeding

on the phloem sap of A. adenophora and causing a high degree

of damage to the leaf cells (Cheng et al., 2007). The honeydew

excreted by aphids during feeding can decrease plant

photosynthesis and lead to mold parasitism, which affects

plant growth (Kuśnierczyk et al., 2008). Previous study has

shown that A. adenophora damage caused by A. gossypii

increases significantly with increasing aphid density and

feeding time, which can reduce the growth of A. adenophora,

and thus inhibit the expansion of A. adenophora to some extent

(Lin et al., 2020).

Arbuscular mycorrhizal fungi (AMF) are essential ecological

components of soil communities and form obligate mutualistic

associations with 80% of terrestrial vascular plants (Smith, 2008;

Brundrett and Tedersoo, 2018). It has been widely recognized

that AMF can enhance host plant defense against pathogens and

insect herbivory (Cameron et al., 2013; Martinez-Medina et al.,

2016). The AM fungal-mediated mechanisms that increase plant

resistance against herbivores and pathogens are through the

alteration of both plant tolerance and chemical defense (Rivero

et al., 2021; Frew et al., 2022). Exotic plant can selectively

accumulate AM fungal communities in their rhizosphere that

are different from those of native plants, thus affecting their

invasion (Zhang et al., 2017; Zhang et al., 2018). A. adenophora
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invasion was reported to cause changes in the AM fungal

diversity of native plants, Septoglomus constrictum was one of

the dominant AMF on the roots and in the rhizosphere soil of A.

adenophora (Xiao et al., 2014). Our previous study on AMF in

the rhizosphere soil of A. adenophora found that S. constrictum

and Claroideoglomus etunicatum were the most abundant

species. The dominant AMF in the rhizosphere of invasive

plants, such as Flaveria bidentis (Chen et al., 2021), Solidago

canadensis (Qi et al., 2022), Ambrosia artemisiifolia (Zhang

et al., 2018), can induce positive feedback effects on invasive

plant. Several studies showed that the dominant AMF in the

rhizosphere of A. adenophora can improve photosynthesis,

increase nutrient content, and enhance its competitive

advantage over native plants (Li et al., 2016; Tan et al., 2021).

However, it was not clear whether the dominant AMF altered by

the invasion of A. adenophora could enhance the resistance of A.

adenophora to herbivorous insects. Therefore, this study aimed

to investigate the effects of different dominant AMF on the

invasive plant A. adenophora in response to the feeding of the

generalist herbivore Aphis gossypii and to provide a reference for

the management of the A. adenophora.
2 Materials and methods

2.1 Plants and soil preparation

The soil and seeds of A. adenophora were obtained from the

field near the campus of Yunnan Agricultural University (25°08′
30″N, 102°45′13″E, with an elevation of 1,940 m). The seeds were

sown in potting soil in seedling trays and placed in artificial

climate chambers with parameters set as follows: 25°C, 70%

relative humidity, a photoperiod of 16 h light/8 h dark, and an

illumination intensity of 20,000 LX supplied by 40 W fluorescent

lamps (OPPLE, Deyuansicheng Biotech Company, Beijing,

China). The soil was ground fine enough to pass through a 2

mm sieve and was mixed with vermiculite (v/v = 1:1) [(Mg,Fe,Al)3
[(Si,Al)4O10 (OH)2]. 4H2O] that was purchased from Dounan

Plant and Flower Co., Ltd., Kunming, China. The basic properties

of the soil were as follows: the pH (w/v water = 1:5) was 6.25,

the organic matter content was 15.502 g/kg, total nitrogen was

0.899 g/kg, total phosphorus was 0.351 g/kg, total potassium

was 40.03 g/kg, available nitrogen was 20.28 µg/g, available

phosphorus was 5.089 µg/g, and available potassium was

32.32 mg/kg. The mixtures were autoclaved at 121°C for 2 h.
2.2 AM fungal preparation and
insect rearing

The AMF used in the study were mycorrhizal inoculum S.

constrictum and C. etunicatum, which were the dominant AMF

in the rhizosphere soil of A. adenophora (Daniels and Skipper,
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1982; Morton, 1990). After expanding the culture with maize as

the host plant, the inoculum was a mixture of spores and

mycelia. The spore density was defined as the number of AM

fungal spores and sporocarps in 100 g of soil. Based on the spore

density in the rhizosphere soil of A. adenophora in the field, 20

spores/100 g soil were selected for the experiment.

Cotton aphids, A. gossypii, were collected from A.

adenophora plants in the suburb of Kunming and reared on A.

adenophora in the greenhouse for ten generations to make sure

the cotton aphids used in the experiment were from the

same population.
2.3 Experimental design

The pot experiment was carried out in the greenhouse at

Yunnan Agricultural University. Three treatments were used to

determine the effects of different AMF on A. adenophora in

response to the feeding by A. gossypii: (1) C, uninoculated

treatment; (2) SC, inoculation with S. constrictum; (3) CE,

inoculation with C. etunicatum. Each treatment was set with

two levels: with A. gossypii infestation and without A. gossypii

infestation. Before planting, a total of 40 g of inoculum (20 g

spores/100 g soil) was mixed with 1 kg of the growth substrate.

The control treatment was inoculated with the same amount of

sterile inoculum. One seedling was transplanted into a plastic

pot (17.8 cm diameter and 10.4 cm height) at 5 cm and

cultivated in the same artificial climate chamber. All pots were

watered every two days and re-randomized twice per week to

minimize the position effect. Each pot was placed individually in

a 100 mesh cage (45 cm length, 30 cm width). After the plants

had grown for 2 months, 60 1st-instar aphid nymphs were

released on the top of two tender leaves of each plant in the cages

(Lin et al., 2020). Until all the aphid inoculated died, the infested

leaves were picked to measure the contents of plant nutrients,

stress resistance substances, secondary metabolites, defense

hormone contents, and antioxidant enzyme activities. The

experiment has five replicates for each treatment.
2.4 Measurements

2.4.1 Plant aboveground and belowground
biomass

The aboveground and belowground parts of A. adenophora

were harvested separately. The first three pairs of leaves (six

leaves, about 1-1.2g fresh weight) from the top of each treatment

of five plants were removed and combined for physiological

measurements. The belowground parts were washed free from

the soil, and a quantitative part (0.2g) of the roots was taken

from each treatment to determine the mycorrhizal colonization

rate. After measuring the root growth characteristics, the

aboveground and belowground parts of A. adenophora were
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oven-dried at 80°C for 72 h, and the aboveground and root

biomass were measured respectively.

2.4.2 Root growth characteristics
After being carefully washed, the roots were scanned using a

root scanner (Epson Expression 10000XL; Epson, Long Beach,

CA, USA). The root growth characteristics (root length, root

surface area, root diameter and root volume) were determined

using WinRhizo Software (Regent Instruments Inc., Québec

City, QC, Canada).
2.4.3 Nutrients contents, malondialdehyde and
free proline content

Nutrients (soluble sugar, protein, and starch) were

quantified in potassium phosphate buffer (KPB) (50 mM, pH=

7.5) using extracts of fresh leaves (0.1 g). These extracts were

filtered through four cheese cloth layers and centrifuged at

15,500 rpm for 15 min at 4°C. The supernatant was collected

and stored at 4°C for soluble protein and sugar determinations.

The contents of soluble sugar and protein were measured

following the instructions of the kits (A045-4-2 for soluble

protein, A145-1-1 for soluble sugar; Nanjing Jiancheng

Bioengineering Institute, Nanjing, China). The pellet was

homogenized in 2 mL distilled water and mixed with 2mL

perchloric acid (9.2 mol/L) (Jarvis and Walker, 1993). After

centrifugation at 4000 rpm for 10 min, the 2 mL supernatant was

mixed with 5mL anthrone-sulfuric acid reagent and incubated

for 10 min at 100°C. Their absorbance at 620 nm was measured

using a microplate reader (Varioskan LUX, Thermofisher, USA),

the soluble starch content was calculated. The fresh leaves (0.1g)

were homogenized in 4mL 10% trichloroacetic acid (w/v) at 4°C

and were centrifuged at 4000 rpm for10 min. The supernatant

was used to measure leaf malondialdehyde (MDA) content by

kit (A003-1-2, Nanjing Jiancheng Bioengineering Institute,

Nanjing, China). For the leaf proline, the 0.1g fresh leaves

were weighed to extract proline using 10mL solution of 3%

sulfosalicylic acid and then centrifuged at 10,000g for 5 min. The

supernatant was used to measure proline content by kit (A107-

1-1, Nanjing Jiancheng Bioengineering Institute, Nanjing,

China). The total chlorophyll was estimated using the

spectrophotometric method (Lichtenthaler, 1987) and was

calculated as mg/g fresh weight.

2.4.4 Antioxidant enzyme activities, defense
hormones, and secondary metabolite contents

About 0.2g of the leaf samples were homogenized in 1.8mL of

0.1 M phosphate buffer (pH 7.0) on ice, followed by centrifugation

at 10,000rpm for 10 min. The supernatant was collected to analyze

antioxidant enzymatic activities. Superoxide dismutase (SOD),

polyphenol oxidase (POD), catalase (CAT), and polyphenol

oxidase (PPO) of leaf tissues were analyzed using the detection

kits (A001-1-2 for SOD, A084-3-1 for POD, A007-1-1 for CAT,
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and A136-1-1 for PPO; Nanjing Jiangcheng Bioengineering

Institute, Nanjing, China) according to the manufacturer’s

instruction. Weigh 0.2g of young leaves, add 1 mL of methanol

to fully grind, and add 9mL phosphate buffer to homogenize. After

centrifugation at 4000 rpm for 10 min, JA and SA were determined

using ELISA kits (Jiangsu Boshen Biotechnology Co., Ltd., Nanjing,

China), following the manufacturer’s protocol. Weigh 0.1g of fresh

leaves in 2 mL of 60% ethanol solution and homogenize at 4°C.

Extraction was performed at 60°C for 1 h and centrifuged at

10,000rpm for 10 min. The total phenolic and flavonoid content

of plants was detected using a kit (A143-1-1 for total phenols, A142-

1-1 for flavonoids; Nanjing Jiangcheng Bioengineering Institute,

Nanjing, China). The tannic acid content was measured referring to

Pang et al. (2006) and Lin et al. (2020). The optical density (OD)

values of each reaction mixture were measured by a microplate

reader (Varioskan LUX, Thermofisher, USA).

2.4.5 Mycorrhizal colonization rate
Root samples of A. adenophora were collected about 3

months after the plants were inoculated with AMF. The

percentage colonization of AMF in roots of A. adenophora was

observed using the magnified intersection method (Biermann

and Linderman, 1981; Zhang et al., 2018). Specifically, the roots

were cut into 1–2 cm segments, cleared with 10% KOH at 90°C

for 15 min and acidified with 2% HCl at 30°C for 10 min. The

treated root materials were stained with 0.1% acid fuchsin

solution (0.1 g acid fuchsin dissolved in 63 ml sterile dH2O,

with the addition of 63 ml glycerin, and 875 ml lactic acid stored

at room temperature) at 90°C for 30 min. A total of 200 root

segments were measured for each replicate, and the percentage

colonization of each segment was determined by the

colonization in that region if any hyphae, vesicles, or

arbuscules were visible.

2.4.6 Aphid survival rate and fecundity
After the A. gossypii infestation, the number of A. gossypii

was observed and recorded once a day, and the aphid survival

rate was calculated.

Aphid survival rate = number of aphids recorded per day/

number of aphids initially inoculated

When the nymphs grew to the adult aphid and began to

reproduce, the number of nymphs produced by aphids was

observed and recorded every day, and the 1st-instar aphid

nymphs were removed in time until all the aphid inoculated died.
2.5 Statistical analysis

Before analyses, all data were tested for normality using the

Shapiro–Wilk test. All data met the normality assumption. Data

are mean ± SE of five replicates in each treatment. Differences in

the effect of different insect feeding (with or without A. gossypii
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activity in protective enzymes, defensive substances, hormones,

and secondary metabolite contents in A. adenophora were

analyzed using two-way analysis of variance (ANOVA).

Different in the effect of different AM fungal treatments on the

rate of surviving A. gossypii and nymphal production were

analyzed using a one-way analysis of variance. Differences

between the two groups were compared using independent

samples t-tests. Significant differences between treatments were

based on the LSD test. Statistical significance was set at P < 0.05.

All analyses were conducted using SPSS 21.0 (SPSS Inc.,

Chicago, IL, United States).
3 Results

3.1 Effects of inoculation with AMF
and A. gossypii herbivory on the
aboveground and belowground
biomass of A. adenophora

Inoculation of two kinds of AMF (S. constrictum and C.

etunicatum) increased the aboveground and belowground

biomass of A. adenophora (aboveground: SC: F (2,24) = 75.750,

P < 0.001, CE: F (2,24) = 446.210, P < 0.001; belowground: SC: F

(2,24) = 119.971, P < 0.001, CE: F (2,24) = 508.661, P < 0.001,

Table 1). Feeding of A. gossypii significantly reduced the biomass

of A. adenophora (aboveground: F (2,24) = 278.644, P < 0.001;

belowground: F (2,24) = 302.028, P < 0.001, Table 1), the

aboveground and root biomass of A. gossypii infestation

decreased by 57.70% and 55.74% compared with the

uninoculated treatment (Figure 1). However, the symbiotic

effect of AMF could significantly increase the growth of A.

adenophora in A. gossypii infestation (P < 0.001, Figure 1).

The aboveground biomass of A. adenophora inoculated with S.

constrictum (SC) and C. etunicatum (CE) increased by 114.73%

and 317.21%, and the root biomass increased by 120.58% and

347.33% compared with the uninoculated treatment. The effect

of CE treatment on the aboveground biomass of A. adenophora

with infestation A. gossypii was greater than that of SC treatment

(SC*A. gossypii: F (2,24) = 11.580, P = 0.002, CE*A. gossypii: F

(2,24) = 40.776, P < 0.001, Table 1).
3.2 Effects of inoculation with AMF and
A. gossypii herbivory on the nutrient
contents of A. adenophora

Inoculation with AMF (SC or CE) significantly enhanced the

soluble sugar, protein, starch, and total chlorophyll contents of

A. adenophora without A. gossypii infestation (soluble sugar: SC:

F (2,24) = 35.862, P < 0.001, CE: F (2,24) = 329.338, P < 0.001;
frontiersin.org

https://doi.org/10.3389/fpls.2022.1015947
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Du et al. 10.3389/fpls.2022.1015947
soluble protein: SC: F (2,24) = 135.392, P < 0.001, CE: F (2,24) =

373.113, P < 0.001; soluble starch: SC: F (2,24) = 62.166, P < 0.001,

CE: F (2,24) = 521.569, P < 0.001; total chlorophyll: SC: F (2,24) =

33.182, P < 0.001, CE: F (2,24) = 363.707, P < 0.001, Table 1).

Feeding of A. gossypii significantly reduced the nutrient contents

of A. adenophora (soluble sugar: F (2,24) = 135.764, P = 0.001;

soluble protein: F (2,24) = 632.614, P < 0.001; soluble starch:
Frontiers in Plant Science 05
F (2,24) = 39.087, P < 0.001; total chlorophyll: F (2,24) = 44.717,

P < 0.001; Table 1). However, AM fungal inoculation could

increase the nutrient content of A. adenophora with A. gossypii

infestation, and the nutrient content was significantly higher

among treatments ranked CE > SC > C (P < 0.05, Table 2). The

effect of CE treatment on the soluble sugar and soluble protein

of A. adenophora with infestation A. gossypii was greater than
FIGURE 1

Effect of inoculation with AMF and A. gossypii herbivory on the aboveground and root biomass of A. adenophora. The three treatments were (1)
C, inoculation with sterilized AMF, (2) SC, inoculation with S. constrictum, (3) CE, inoculation with C. etunicatum. Different lowercase letters
above the bars indicate significant differences among the three inoculation treatments (Duncan’s test, P < 0.05). Different uppercase letters
above the bars indicate significant differences between treatments with or without A. gossypii infestation (t-test, P < 0.05) Error bars represent ±
1SE of the mean (n = 5).
TABLE 1 Two-way ANOVAs of the effects of inoculation with AMF and Aphis gossypii herbivory on the growth indicators of A. adenophora.

Parameters S. constrictum
treatment

C. etunicatum
treatment

A. gossypii
treatment

S. constrictum*A. gossypii
treatment

C. etunicatum*A.
gossypii treatment

F P F P F P F P F P

Aboveground biomass 75.750 <0.001*** 446.210 <0.001*** 278.644 <0.001*** 11.508 0.002** 40.776 <0.001***

Root biomass 119.971 <0.001*** 508.661 <0.001*** 302.028 <0.001*** 25.956 <0.001*** 32.274 <0.001***

Soluble sugar 35.862 <0.001*** 329.338 <0.001*** 135.764 <0.001*** 0.014 0.907 7.893 0.010*

Soluble protein 135.392 <0.001*** 373.113 <0.001*** 632.614 <0.001*** 17.534 <0.001*** 84.996 <0.001***

Soluble starch 62.166 <0.001*** 521.569 <0.001*** 39.087 <0.001*** 0.827 0.372 2.270 0.145

Total chlorophyll 33.182 <0.001*** 363.707 <0.001*** 44.717 <0.001*** 0.101 0.753 0.383 0.542

Root length 54.824 <0.001*** 267.718 <0.001*** 87.144 <0.001*** 1.431 0.243 0.356 0.556

Root surface area 103.215 <0.001*** 333.091 <0.001*** 70.327 <0.001*** 0.597 0.447 0.010 0.992

Root diameter 163.612 <0.001*** 373.405 <0.001*** 79.517 <0.001*** 1.208 0.283 21.954 <0.001***

Root volume 94.201 <0.001*** 259.651 <0.001*** 50.556 <0.001*** 0.126 0.726 0.438 0.515

Proline 623.135 <0.001*** 1338.820 <0.001*** 708.966 <0.001*** 59.861 <0.001*** 151.005 <0.001***

MDA 52.863 <0.001*** 159.984 <0.001*** 156.637 <0.001*** 0.026 0.874 1.969 0.173

SOD 201.193 <0.001*** 640.474 <0.001*** 232.061 <0.001*** 5.522 0.027* 13.702 0.001**

PPO 35.823 <0.001*** 349.397 <0.001*** 166.498 <0.001*** 0.640 0.432 30.807 <0.001***

POD 67.416 <0.001*** 111.517 <0.001*** 91.877 <0.001*** 15.872 0.001** 20.124 <0.001***

CAT 234.239 <0.001*** 481.680 <0.001*** 9.434 0.005 23.627 <0.001*** 0.676 0.419

JA 31.773 <0.001*** 656.791 <0.001*** 846.362 <0.001*** 4.823 0.038* 226.047 <0.001***

SA 68.411 <0.001*** 521.844 <0.001*** 631.001 <0.001*** 23.447 <0.001*** 0.019 0.891

Total phenols 53.009 <0.001*** 441.461 <0.001*** 103.605 <0.001*** 0.001 0.993 2.393 0.135

Flavonoids 26.624 <0.001*** 117.333 <0.001*** 147.262 <0.001*** 0.301 0.588 2.913 0.101

Tannic acid 0.089 0.769 0.353 0.558 629.541 <0.001*** 0.002 0.998 0.173 0.682
*P < 0.05; **P < 0.01; ***P < 0.001.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1015947
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Du et al. 10.3389/fpls.2022.1015947
that of SC treatment (soluble sugar: SC*A. gossypii: F (2,24) =

0.014, P = 0.907, CE*A. gossypii: F (2,24) = 7.893, P = 0.010;

soluble protein: SC*A. gossypii: F (2,24) = 17.534, P < 0.001, CE*A.

gossypii: F (2,24) = 84.996, P < 0.001, Table 1).
3.3 Effects of inoculation with AMF and
A. gossypii herbivory on the root
growth parameters

The root growth parameters (root length, root surface, root

diameter, and root volume) were significantly increased by two

kinds of AM fungal inoculation (Root length: SC: F (2,24) = 54.824, P

< 0.001, CE: F (2,24) = 267.718, P < 0.001; Root surface area: SC: F

(2,24) = 103.215, P < 0.001, CE: F (2,24) = 333.091, P < 0.001; Root

diameter: SC: F (2,24) = 163.612, P < 0.001, CE: F (2,24) = 373.405, P <

0.001; Root volume: SC: F (2,24) = 94.201, P < 0.001, CE: F (2,24) =

259.651, P < 0.001, Table 1). Feeding of A. gossypii significant

decreased the root growth parameters of A. adenophora with A.

gossypii infested (Root length: F (2,24) = 87.144, P < 0.001; Root
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surface area: F (2,24) = 70.327, P < 0.001; Root diameter: F (2,24) =

79.517, P < 0.001; Root volume: F (2,24) = 50.556, P < 0.001, Table 1).

AM fungal inoculation could increase the root growth of A.

adenophora with A. gossypii infestation, the root growth

parameters with SC treatment increased by 29.86%, 90.99%,

45.91%, 161.37, and CE treatment increased by 75.88%, 177.86%,

117.01% and 289.42%, respectively, compared with uninoculated

treatment (P < 0.001, Table 3). The effect of CE treatment on the

root diameter of A. adenophora with infestation A. gossypii was

greater than that of SC treatment (SC*A. gossypii: F (2,24) = 1.208, P

= 0.283, CE*A. gossypii: F (2,24) = 21.954, P < 0.001, Table 1).
3.4 Effects of inoculation with AMF and
A. gossypii herbivory on the proline and
MDA contents of A. adenophora

Inoculation of two kinds of AMF significantly increased the

proline content but decreased the MDA content (Pro: SC: F (2,24) =

623.135, P < 0.001, CE: F (2,24) = 1338.820, P < 0.001; MDA: SC:
TABLE 3 Effect of inoculation with AMF and A. gossypii herbivory on the root growth characteristics of A. adenophora.

Inoculation
treatment

A. gossypii treatments Root length (m) Root surface area (cm2) Root diameter (mm) Root volume (cm3)

C without A. gossypii
infestation

81.179 ± 3.115Ac 524.384 ± 58.501Ac 0.433 ± 0.017Ab 3.052 ± 0.387Ac

with A. gossypii infestation 61.879 ± 5.111Bc 320.241 ± 59.525Bc 0.342 ± 0.041Bc 1.4654 ± 0.419Bc

SC without A. gossypii
infestation

106.811 ± 8.642Ab 863.735 ± 59.502Ab 0.775 ± 0.053Aa 5.596 ± 0.670Ab

with A. gossypii infestation 80.349 ± 6.247Bb 611.622 ± 50.318Bb 0.499 ± 0.027Bb 3.829 ± 0.435Bb

CE without A. gossypii
infestation

131.721 ± 7.799Aa 1087.864 ± 108.679Aa 0.789 ± 0.053Aa 6.958 ± 0.839Aa

with A. gossypii infestation 108.832 ± 7.489Ba 889.827 ± 63.705Ba 0.740 ± 0.043Ba 5.706 ± 0.495Ba
C, inoculation with sterilized AMF, SC, inoculation with S. constrictum, CE, inoculation with C. etunicatum. Different lowercase letters in the same column indicate significant differences
among the four treatments (P < 0.05). Different uppercase letters indicate significant differences between the treatments with or without A. gossypii infestation (P < 0.05).
TABLE 2 Effect of inoculation with AMF and A. gossypii herbivory on the nutrient composition of A. adenophora..

Inoculation
treatment

A. gossypii
treatments

Soluble sugar
(mg/mL)

Soluble protein
(mg/mL)

Soluble starch
(mg/mL)

Total chlorophyll
(mg/g)

C without A. gossypii
infestation

9.213 ± 0.248Ac 3.283 ± 0.452Ac 7.231 ± 0.214Ac 3.645 ± 0.205Ac

with A. gossypii infestation 8.179 ± 0.369Bc 1.609 ± 0.229Bc 6.416 ± 0.378Bc 2.935 ± 0.179Bc

SC without A. gossypii
infestation

9.999 ± 0.317Ab 5.777 ± 0.125Ab 8.410 ± 0.357Ab 4.541 ± 0.370Ab

with A. gossypii infestation 8.996 ± 0.329Bb 2.783 ± 0.103Bb 7.902 ± 0.238Bb 3.729 ± 0.201Bb

CE without A. gossypii
infestation

12.017 ± 0.304Aa 7.780 ± 0.669Aa 11.345 ± 0.448Aa 6.527 ± 0.461Aa

with A. gossypii infestation 10.231 ± 0.194Ba 3.201 ± 0.122Ba 10.020 ± 0.533Ba 5.628 ± 0.419Ba
C, inoculation with sterilized AMF, SC, inoculation with S. constrictum, CE, inoculation with C. etunicatum. Different lowercase letters in the same column indicate significant differences
among the four treatments (P < 0.05). Different uppercase letters indicate significant differences between the treatments with or without A. gossypii infestation (P < 0.05).
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F(2,24) = 52.863, P < 0.001, CE: F (2,24) = 159.984, P < 0.001,

Table 1). Feeding of A. gossypii significantly increased proline and

MDA contents ofA. adenophora (Pro: F (1,24) = 708.966, P < 0.001;

MDA: F (1,24) = 156.637, P < 0.001, Table 1), the proline content

increased by 63.84% and the MDA content increased by 64.93%

(Figure 2). Compared with non-inoculated treatment with A.

gossypii infestation, the proline content of A. adenophora

inoculated with SC and CE increased by 210.60% and 314.88%

(P < 0.001, Figure 2), while the MDA content in the SC and CE

treatment decreased by 24.62% and 46.58% (P < 0.001, Figure 2),

respectively. The effect of CE treatment on the proline content of

A. adenophora with infestation A. gossypii was greater than that of

SC treatment (SC*A. gossypii: F (2,24) = 59.861, P < 0.001, CE*A.

gossypii: F (2,24) =151.005, P < 0.001, Table 1).
3.5 Effects of inoculation with AMF and
A. gossypii herbivory on the antioxidant
enzyme activities of A. adenophora

The activities of SOD and PPO were significantly increased,

but the activities of POD and CAT were significantly decreased

by two kinds of AM fungal inoculation (SOD: SC: F (2,24) =

201.193, P < 0.001, CE: F (2,24) = 640.474, P < 0.001; PPO: SC: F

(2,24) = 35.823, P < 0.001, CE: F (2,24) = 349.397, P < 0.001; POD:

SC: F (2,24) = 67.416, P < 0.001, CE: F (2,24) = 111.517, P < 0.001;

CAT: SC: F (2,24) = 234.239, P < 0.001, CE: F (2,24) = 481.680, P <

0.001, Table 1). Feeding of A. gossypii significantly increased the

activities of all antioxidant enzyme in A. adenophora (SOD: F

(1,24) = 232.061, P < 0.001; PPO: F (1,24) = 166.498, P < 0.001;

POD: F (1,24) = 91.877, P < 0.001; CAT: F (1,24) = 9.434, P = 0.005,

Table 1). The activities of SOD, PPO, POD, and CAT were

increased by 72.18%, 21.27%, 140.02%, and 18.78% in the A.

gossypii infestation treatment compared with the treatment

without A. gossypii infestation. With A. gossypii infestation, the

SOD activity in A. adenophora in the SC and CE inoculation
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treatments increased by 86.93% and 148.53% compared with the

uninoculated treatment, and the PPO activity increased by

12.62% and 57.85% (P < 0.05, Figure 3), respectively. The

POD activity in A. adenophora in the SC and CE inoculation

treatments decreased by 46.31% and 57.52% compared with the

uninoculated treatment with A. gossypii infestation, and the

CAT activity decreased by 42.70% and 57.07% (P < 0.05,

Figure 3), respectively. The effect of CE treatment on the SOD,

PPO, POD activity of A. adenophora with infestation A. gossypii

was greater than that of SC treatment (SOD: SC*A. gossypii: F

(2,24) = 5.522, P = 0.027, CE*A. gossypii: F (2,24) =13.702, P <

0.001; PPO: SC*A. gossypii: F (2,24) = 0.640, P = 0.432, CE*A.

gossypii: F (2,24) =30.807, P < 0.001; POD: SC*A. gossypii: F (2,24) =

15.872, P = 0.001, CE*A. gossypii: F (2,24) =20.124, P <

0.001, Table 1).
3.6 Effects of inoculation with AMF and
A. gossypii herbivory on the defense
hormones contents of A. adenophora

The defensive hormones contents of A. adenophora with the

two kinds of AM fungal treatments were significantly increased

(JA: SC: F (2,24) = 31.773, P < 0.001, CE: F (2,24) = 656.791,

P < 0.001; SA: SC: F (2,24) = 68.411, P < 0.001, CE: F (2,24) =

521.844, P < 0.001, Table 1). Feeding of A. gossypii significantly

increased the JA and SA contents of A. adenophora (JA: F (1,24) =

846.352, P < 0.001; SA: F (1,24) = 631.001, P = 0.001, Table 1). The

JA and SA content increased by 87.62% and 52.58% in the

A. gossypii infestation treatment (Figure 4). The JA contents in

the SC- and CE-inoculated treatments increased by 4.92%

and 13.49%, and the SA contents in the SC- and CE-

inoculated treatments increased by 25.07% and 43.29% with A.

gossypii infestation (P < 0.001, Figure 4), respectively. The effect

of CE treatment on the JA of A. adenophora with infestation A.

gossypii was greater than that of SC treatment (SC*A. gossypii:
FIGURE 2

Effect of inoculation with AMF and A. gossypii herbivory on the proline and MDA contents of A. adenophora. The three treatments were (1) C,
inoculation with sterilized AMF, (2) SC, inoculation with S. constrictum, (3) CE, inoculation with C. etunicatum. Different lowercase letters above
the bars indicate significant differences among the three inoculation treatments (Duncan’s test, P < 0.05). Different uppercase letters above the
bars indicate significant differences between treatments with or without A. gossypii infestation (t-test, P < 0.05) Error bars represent ± 1SE of the
mean (n = 5).
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F(2,24) = 4.823, P = 0.038, CE*A. gossypii: F (2,24) =226.047,

P < 0.001, Table 1).
3.7 Effects of inoculation with AMF and
A. gossypii herbivory on the secondary
metabolite contents of A. adenophora

Inoculation with two kinds of AMF significantly increased

the total phenolic and flavonoids contents of A. adenophora

(total phenols: SC: F (2,24) = 53.009, P < 0.001, CE: F (2,24) =

441.461, P < 0.001; flavonoids: SC: F (2,24) = 26.624, P < 0.001,

CE: F (2,24) = 117.333, P < 0.001) but had no significant effect on

the tannic acid content (Table 1). Feeding of A. gossypii

significantly increased all secondary metabolite contents of A.

adenophora (total phenols: F (1,24) = 117.332, P < 0.001;

flavonoids: F (1,24) = 149.888, P = 0.001; tannic acid: F (1,24) =

683.468, P < 0.001, Table 1). The content of total phenols,

flavonoids and tannic acid were increased by 45.66%, 34.09%,

and 15.36% in the A. gossypii infestation treatment compared

with the treatment without A. gossypii infestation (Figure 5).
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With A. gossypii infestation, the total phenols content of A.

adenophora in the SC- and CE-inoculated treatments increased

by 46.31% and 57.52% compared with the uninoculated

treatment (Figure 5), and the flavonoid content increased by

11.92% and 27.79% (P < 0.05, Figure 5), respectively.
3.8 Effects of different AMF and A.
gossypii herbivory on the colonization
rate of AMF in the roots of A.
adenophora

No AM fungal colonization, mycelium fragments, or AM

spores were found in the non-inoculation treatment both with

and without A. gossypii treatments (Figure 6). The colonization of

SC and CE treatments was 59.38% and 71.25% without A. gossypii

infestation and were 49.95% and 61.12% with A. gossypii infestation

(Figure 6), respectively. The results showed that A. gossypii

infestation significantly reduced the AM fungal colonization of A.

adenophora (P < 0.001), and different AMF had different

colonization levels in A. adenophora.
FIGURE 3

Effect of inoculation with AMF and A. gossypii herbivory on the antioxidant enzyme activity (SOD, PPO, POD and CAT) in A. adenophora. The
three treatments were (1) C, inoculation with sterilized AMF, (2) SC, inoculation with S. constrictum, (3) CE, inoculation with C. etunicatum.
Different lowercase letters above the bars indicate significant differences among the three inoculation treatments (Duncan’s test, P < 0.05).
Different uppercase letters above the bars indicate significant differences between treatments with or without A. gossypii infestation (t-test, P <
0.05) Error bars represent ± 1SE of the mean (n = 5).
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3.9 Effects of different AM fungal
inoculation on the A. gossypii survival
rate and fecundity

On the first day after inoculation of A. gossypii, many aphids

had died in SC and CE treatment, and the survival rates were

72.33% and 63%, respectively, and the survival rate of non-

inoculation treatment was 84.33% (Figure 7). The A. gossypii

survival rate both in the AM fungal inoculation treatment was

significantly lower than that in the non-inoculation treatment (P <
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0.001). All the aphids on the plants inoculated with CE were dead

on the 9th day, and the aphids that of inoculated with SC were

dead on the 10th day, while the aphids that of non-inoculated were

dead on the 11th day (Figure 7). For the densities of nymphs, the

production of nymphs was found in both three inoculation

treatments on the 4th day (Figure 7). On the 5th day, the

densities of nymphs increased significantly in all three treatments,

but the densities of aphid production in the SC and CE treatment

was significantly lower than that in the non-inoculated treatment

(P < 0.001). On the 9th day, no nymphs were found in CE
FIGURE 5

Effect of inoculation with AMF and A. gossypii herbivory on the secondary metabolite (total phenols, flavonoid and tannic acid) contents of A.
adenophora. The three treatments were (1) C, inoculation with sterilized AMF, (2) SC, inoculation with S. constrictum, (3) CE, inoculation with C.
etunicatum. Different lowercase letters above the bars indicate significant differences among the three inoculation treatments (Duncan’s test, P
< 0.05). Different uppercase letters above the bars indicate significant differences between treatments with or without A. gossypii infestation (t-
test, P < 0.05) Error bars represent ± 1SE of the mean (n = 5).
FIGURE 4

Effect of inoculation with AMF and A. gossypii herbivory on the jasmonic acid (JA) and salicylic acid (SA) contents of A. adenophora. The three
treatments were (1) C, inoculation with sterilized AMF, (2) SC, inoculation with S. constrictum, (3) CE, inoculation with C. etunicatum. Different
lowercase letters above the bars indicate significant differences among the three inoculation treatments (Duncan’s test, P < 0.05). Different
uppercase letters above the bars indicate significant differences between treatments with or without A. gossypii infestation (t-test, P < 0.05)
Error bars represent ± 1SE of the mean (n = 5).
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inoculated treatment and aphid reproduction stopped, aphid

reproduction stopped on the 10th day and 11th day in SC

inoculated treatment and non-inoculated treatment, respectively

(Figure 7). The results showed that inoculation with AMF had an

inhibitory effect on the growth of A. gossypii on A. adenophora.
Discussion

Our study investigated the effect of the dominant AMF in the

roots of A. adenophora on the response of this species to A.
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gossypii feeding. Our results showed that the A. gossypii feeding

affects the growth of A. adenophora and resulted in the plant

response to stress. However, the inoculation of two kinds of

AMF (S. constrictum and C. etunicatum) not only significantly

promoted the growth of A. adenophora (Figure 1; Tables 2, 3)

but also induced plant defenses, resulting in quicker or stronger

stress responses to herbivores (Figures 2–5). Plants with different

AM fungal species differed in their resistance to herbivores

depending on the species of AMF with which they were

associated (Delavaux et al., 2017; Frew and Wilson, 2021).

Bennett et al. (2009) found that AM fungal species’ identity
FIGURE 7

Effect of different AMF inoculation on the A. gossypii survival rate and the densities of nymphs. The three treatments were (1) C, inoculation with
sterilized AMF, (2) SC, inoculation with S. constrictum, (3) CE, inoculation with C. etunicatum. Different lowercase letters above the bars indicate
significant differences among the three inoculation treatments (one-way ANOVA followed by Duncan’s test, P < 0.05). Values are means and
bars indicate SE.
B C

D E
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FIGURE 6

(A) Effect of inoculation with AMF and A. gossypii herbivory on the AM colonization of A. adenophora. The three treatments were (1) C,
inoculation with sterilized AMF, (2) SC, inoculation with S. constrictum, (3) CE, inoculation with C. etunicatum. Different lowercase letters above
the bars indicate significant differences among the three inoculation treatments (one-way ANOVA followed by Duncan’s test, P < 0.05). Different
uppercase letters above the bars indicate significant differences between treatments with or without A. gossypii infestation (t-test, P < 0.05)
Error bars represent ± 1SE of the mean (n = 5). (B–E). Representative light micrographs (images) of colonization patterns by indigenous
arbuscular mycorrhizal fungi in acid fuchsin stained roots of: (B) A. adenophora in C. etunicatum inoculated treatment without A. gossypii
infestation; (C) A. adenophora in C. etunicatum inoculated treatment with A. gossypii infestation; (D) A. adenophora in S. constrictum inoculated
treatment without A. gossypii infestation; (E) A. adenophora in S. constrictum inoculated treatment with A. gossypii infestation.
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and composition can strongly affect the plant defensive

phenotype. We found that the effects of inoculation with C.

etunicatum on the growth and defense against insect herbivory

of A. adenophora were significantly higher than those of

inoculation with S. constrictum, and the colonization of C.

etunicatum was significantly higher than that of S. constrictum

(Figure 6), indicating that C. etunicatum had stronger

adaptability for herbivory resistance of A. adenophora.

The plant-AM fungal interaction improves plant nutrition,

thereby increasing biomass and enhancing the tolerance of the

plant to herbivory (Heijden et al., 2015; Sharma et al., 2017). In

our study, inoculation with both two AMF increased the

biomass, soluble sugar, soluble protein, soluble starch, and

chlorophyll contents of A. adenophora (Figure 1 and Table 2).

Hempel et al. (2009) found that inoculation with AMF (Glomus

intraradices and G. mosseae) generally increased plant biomass

and reduced aphid population growth. Our results showed that

A. gossypii feeding decreased root growth of A. adenophora,

while the root biomass, root surface area, and root diameter were

significantly increased when inoculated with AM fungi (Figure 1

and Table 3). AMF can directly promote root growth which

could increase the absorption and delivery of nutrients,

especially nitrogen and phosphorus (Wang et al., 2017b; Wipf

et al., 2019). Tao et al. (2016) showed that the tolerance of

different milkweed plants to herbivory increased with the foliar P

concentration when colonized by AMF. Insect herbivory reduces

plant biomass, damages leaves, and reduces photosynthesis,

leading to plant wilting and death (Chen et al., 2017). The

chlorophyll content is higher in mycorrhizal plants, which is

mainly due to the higher nitrogen content of the plants, and the

high nutrient content can improve the stress resistance of the

plants (Mathur et al., 2018). Odebode and Salami (2004)

reported that increased levels of sugars and free amino acids in

pepper seedlings inoculated with AMF increased plant defense.

The oxidative shift is indicated by increasing levels of

oxidative enzymes, reactive oxygen species, and proline

content, as well as decreasing MDA and nutritional

antioxidants such as ascorbate (Vannini et al., 2016). Plants

defend themselves through oxidative shifts to produce oxidative

and nutritional stress in herbivores (Cao et al., 2016). We found

that inoculation with AMF increased the proline content of A.

adenophora and decreased the MDA content, thus maintaining

the normal growth of the A. adenophora in response to the

damage on A. gossypii feeding (Figure 2). Sun et al. (2020) also

found that when Procecidochares utilis parasitizes A.

adenophora, the MDA content of A. adenophora decreases and

the proline content increases, which increases the free radical

scavenging activity. Such changes in the activities of oxidative

enzymes in the plant cause a decrease in herbivory and provide

induced resistance to the plant in response to pest infestation

(Zhang et al., 2008). Our study also found that inoculation with

AMF significantly increased the activity levels of SOD and PPO

of A. adenophora (Figure 3). SOD of plants can exert its unique
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effect to remove a serious of reactive oxide species (ROS) caused

by insect herbivory to maintain plant’s ordinary (Khan et al.,

2021). PPO is thought to be an effective defense enzyme against

insects (War et al., 2012). Higher activity of PPO could lead to a

higher production of quinones and the formation of lignin,

which affects the synthesis of cell wall (Kaur et al., 2015). Balog

et al. (2017) found that AMF can enhance PPO activity in

peppers and decrease infestation by arthropod pests. Thus, we

infer that AMF may be able to defend against herbivory of A.

gossypii by increasing PPO activity in A. adenophora to produce

quinones and lignin from phenolics through oxidation.

Through interaction with phytophagous insects, plants have

evolved defense mechanisms to reduce herbivore damage, and the

induced resistance has broad-spectrum and rapid action, which can

enhance plant defense against insect attacks (Kawazu et al., 2013;

Mauch-Mani et al., 2017). Several studies have revealed that plant

hormones mediate the induced resistance of plants to biological

attack, among which jasmonic acid and salicylic acid are the most

critical (Pozo et al., 2015; Kadam et al., 2020). Our study found that

AM fungal inoculation significantly increased the contents of JA

and SA that prime plant-inducible defense (Figure 4). Jiang et al.

(2021) showed that three JA biosynthesis-related genes

(lipoxygenase LOX, hydroperoxide dehydratase AOS, allene oxide

cyclase AOC) and two JA signal transduction-related genes

(jasmonate-ZIM domain JAZ, transcription factor MYC2) were

upregulated in mycorrhizal P. alba ×P. berolinensis seedlings

compared with nonmycorrhizal seedlings, resulting in a high JA

content in plant tissues. The increase in the JA content induces

chemical defense in plants, regulates the expression of plant

secondary metabolite genes, and promotes the synthesis and

accumulation of secondary metabolites, thus reducing herbivore

preference, performance and abundance (Zhang et al., 2022). We

found that the content of total phenols and flavonoids in A.

adenophora was significantly increased after inoculation with

AMF (Figure 5). Several studies have demonstrated that AMF

inoculation increase the insecticidal metabolites in plants, with

phenolic compounds being the most abundant class of all

identified metabolites, including flavonoids and tannins. These

substances can directly affect the growth, survival and

reproduction of feeding insects (Züst and Agrawal, 2017; Wang

et al., 2019; Frew et al., 2022). Our results showed that the survival

and reproduction of A. gossypii on A. adenophora inoculated with

AM fungi were inhibited (Figure 7), which may be due to the

increased content of total phenolic and flavonoid substances in the

leaves, and thus causing toxic effect on A. gossypii. AMF can drive

insect herbivore performance by affecting phenolic-based resistance

mechanisms, which are mainly manifested by increasing foliar

phenolic compounds and reducing the relative growth rate of

herbivorous insects (Jiang et al., 2021; Frew and Wilson, 2021).

In summary, the symbiosis of the two dominant AMF in the

rhizosphere of A. adenophora not only improved the tolerance of

A. adenophora by increasing the biomass and nutrient contents,

but also maintain the plant’s ordinary by increasing the proline
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content and SOD activity, and inhibited the feeding of A. gossypii

by increasing the PPO activity. It can also induce the production

and accumulation of secondary metabolites (jasmonic acid and

salicylic acid), which reduced the survival rate and reproductive

ability of A. gpssypii. Moreover, the effect on insect resistance of

A. adenophora by C. etunicatum inoculation higher than that by

S. constrictum. In the invasion process of A. adenophora, the

community structure of AMF could change to improve its

competitive ability and defense against generalist herbivores in

the introduced ranges, and the AM fungal colonization rate of

native plants and resistance to insects could be reduced, leading

to the rapid expansion and outbreak of A. adenophora in the

introduced area (Inderjit, 2012). This laid a foundation for us to

enhance the biological control effect of A. gossypii on A.

adenophora by controlling the abundance of dominant AMF

in the rhizosphere or changing the community structure of AMF

in the rhizosphere of A. adenophora.
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