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Chemical hybridization and genic male sterility systems are two main methods

of hybrid wheat production; however, complete sterility of female wheat plants

cannot be guaranteed owing to the influence of the growth stage and weather.

Consequently, hybrid wheat seeds are inevitably mixed with few parent seeds,

especially female seeds. Therefore, seed purity is a key factor in the

popularization of hybrid wheat. However, traditional seed purity detection

and variety identification methods are time-consuming, laborious, and

destructive. Therefore, to establish a non-destructive classification method

for hybrid and female parent seeds, three hybrid wheat varieties (Jingmai 9,

Jingmai 11, and Jingmai 183) and their parent seeds were sampled. The

transmittance and reflectance spectra of all seeds were collected via

hyperspectral imaging technology, and a classification model was established

using partial least squares-discriminant analysis (PLS-DA) combined with

various preprocessing methods. The transmittance spectrum significantly

improved the classification of hybrids and female parents compared to that

obtained using reflectance spectrum. Specifically, using transmittance

spectrum combined with a characteristic wavelength-screening algorithm,

the Detrend-CARS-PLS-DA model was established, and the accuracy rates in

the testing sets of Jingmai 9, Jingmai 11, and Jingmai 183 were 95.69%, 98.25%,

and 97.25%, respectively. In conclusion, transmittance hyperspectral imaging

combined with a machine learning algorithm can effectively distinguish female

parent seeds from hybrid seeds. These results provide a reference for rapid

seed purity detection in the hybrid production process. Owing to the non-

destructive and rapid nature of hyperspectral imaging, the detection of hybrid

wheat seed purity can be improved by online sorting in the future.
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1 Introduction

Wheat is one of the top three global staple crops and

contributes to approximately 20% of the global dietary energy

(Singh et al., 2014; Boeven et al., 2016). The application of wheat

heterosis can improve yield potential and stability, which is

considered an important approach to overcome food shortage

(Boeven et al., 2018). Currently, the chemical hybridizing agent

(CHA) and genic male sterility (GMS) systems are widely used

as a two-line hybrid system in hybrid wheat production because

they do not require maintenance or any pre-propagation (Zhao,

2010; Murai et al., 2016; Li et al., 2020). However, CHA and

GMS are highly dependent on the crop growth stage and

weather, and the female parent is often not completely sterile

(Singh et al., 2010). Even in certain promoted varieties, the

fertility of the female parent under sterile conditions is still as

high as 5%, which can affect the purity of hybrid seeds (Singh

et al., 2021). Therefore, methods for accurate classification of

hybrid seeds are required to ensure high seed purity.

Traditional methods for detecting the genuineness of seed

varieties include seedling morphology detection, morphological

detection, isozyme gel electrophoresis, and simple sequence

repeat (SSR) analysis (Perry and Lee, 2015; Liu et al., 2022).

These methods are limited by their destructiveness, complicated

operation, high cost, and slow process, and thus cannot be used

for rapid online detection in the seed processing industry (Tu

et al., 2021).

Hyperspectral imaging (HSI) is a new detection technology

that integrates spectroscopy and machine learning and can

simultaneously obtain spectral and spatial information of

samples. Owing to its non-destructive and rapid process, HSI

has been widely used in food, medical, agricultural testing, and

many other fields in recent years (Xing et al., 2019; Yoon et al.,

2019; Feng et al., 2020; Wang et al., 2022). HSI can analyze the

sample composition and characteristics at the molecular level

(Yin et al., 2017). Spectral information obtained varies owing to
Frontiers in Plant Science 02
phenotypic differences between seeds of different varieties.

Therefore, researchers have used HSI techniques to detect and

classify different seed varieties. Near-infrared HSI (NIR-HSI) has

been used to identify different wheat populations (Choudhary

et al., 2009). Visible-near-infrared (VIS/NIR) hyperspectroscopy

has been used to identify wheat gluten (Zhu et al., 2012). In

addition, hyperspectral detection technology has also been used

to identify different varieties and contaminants of einkorn wheat

(Ravikanth et al., 2016; Bao et al., 2019). Classification of seeds

based on hyperspectral data has been widely performed, and

reliable results have been obtained in the identification of seeds

of different varieties. These studies have demonstrated the

potential of HSI applications in seed variety classification.

The seed coat is developed from the ovary wall and

integument of the female parent (Matzke and Riederer, 1990).

Seeds of different varieties develop in different mother plants,

and the composition of the seed coat varies. However, the hybrid

is developed from the female parent and its seed coat

composition is similar to that of the female parent seed. Some

studies have shown that hybrids have a more consistent

distribution of reflectance spectra with the female parent than

that with the male parent or other seeds (Wiwart et al., 2014; Xu

et al., 2017; Yang et al., 2018). Ran et al. (2017) used NIR-HSI to

distinguish corn hybrids from female parents, with an average

correct recognition rate of 85%, which is lower than that of

traditional methods such as SSR analysis and isoenzyme gel

electrophoresis. Therefore, the discrimination of hybrids and

their female parent seeds is more difficult when compared to

seeds of different varieties.

VIS/NIR transmittance spectroscopy is often used as a non-

destructive testing method to evaluate food quality and detect

internal damage in fruits (Dong et al., 2019; Huang et al., 2021).

Compared to the reflectance spectra, transmittance spectra

reflect deeper regions of the fruit (McGlone and Martinsen,

2004). Qin et al. (Qin et al., 2016) used reflectance and

transmittance spectra to identify haploid corn kernels with an
frontiersin.org
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identification accuracy of 93.2% for the transmittance pattern

which is considerably higher than <60% for the reflection

pattern. In addition, the transmittance spectrum is superior to

reflectance spectrum in the detection of seed mildew (Pearson

et al., 2001; Lu and Ariana, 2013). These studies showed that

transmittance spectroscopy should be preferred over reflectance

spectroscopy in situations where it is necessary to detect

differences in deeper regions of samples. The composition of

the hybrid and the female parent on the seed coat is similar, but

the internal composition of the seed is affected by the genes of

both parents, which is different from the female parent.

Therefore, the detection of deeper regions of the sample is

more reflective of the differences between hybrids and their

parent seeds.

To ensure the purity of hybrid wheat seeds, we aimed to identify

and classify seeds and their parents by combining reflectance or

transmittance VIS/NIR hyperspectral data with machine learning

algorithms in this study. The specific research objectives are as

follows: (1) detect the ability of VIS/NIR hyperspectral technology

combined withmachine learning algorithms to identify hybrids and

their parental seeds; (2) analyze and compare the classification

results of reflectance and transmittance hyperspectral data in

classifying hybrids and their parental seeds; (3) select the best

spectral preprocessing and feature extraction method, and

establish the optimal wheat hybrid identification model against its

female parent seeds; (4) explore the performance of the best

detection model in the classification and recognition of seeds

harvested in different years.
2 Materials and methods

2.1 Experimental samples

A total of eight wheat varieties were used in this study,

including Jingmai 9, BS 1086, CP 730, Jingmai 11, 05Y hua 68-2,
Frontiers in Plant Science 03
Jingmai 183, BS 237, and 05Y hua 68-1. Jingmai 9, Jingmai 11,

and Jingmai 183 are hybrids, and others are parental seeds. Notably,

Jingmai 9 and Jingmai 11 have a common female parent. These

experimental samples were all high-purity original seeds provided

by the Institute of Hybrid Wheat, Beijing Academy of Agriculture

and Forestry, Beijing, China. Seeds were collected between 2020 and

2021, sealed in kraft paper bags, and stored in a dry environment.

Before the experiment, withered or damaged wheat seeds were

removed, and 204 seeds of each variety were randomly selected for

data collection. The images of seeds of eight wheat cultivars and

their pedigrees are shown in Figure 1. In addition, 50 seeds were

randomly selected from every hybrid and their female parents

produced in 2021, as well as Jingmai 9 and the female parents

produced in 2020, to test the performance of the model. None of

these seeds were involved in modeling and were solely used to verify

the actual detection accuracy of the model.
2.2 HSI and spectral data collection

2.2.1 HSI system
The VIS/NIR HSI system used in the experiment mainly

consisted of the following six components (Figure 2): a linear

scanning V10E imaging spectrometer (Spectral Imaging Ltd.,

Oulu, Finland), a charge-coupled device camera (EM285CL;

Raptor Photonics, Ltd., Larne, United Kingdom), zoom lens

(OLE23; Schneider, Ratingen Germany), 150 W halogen

tungsten lamp (IT 3900 e; Illumination Technologies Inc.,

New York, NY, USA), stepper motor-driven precision mobile

platform (IRCP0076-1 COMB; Isuzu Optics Corp., Hsinchu,

Taiwan), a computer equipped with Spectral Image software.

The imaging spectral range of the system was 311–1,090 nm, the

spectral resolution was 0.77 nm, and there were 1,002 bands in

total. The No. 1 and No. 2 halogen lamps were located above the

precision mobile platform, symmetrically distributed on both

sides of the camera, and illuminated on the platform at 45° angle
FIGURE 1

Images of wheat seeds and their pedigrees.
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for reflectance spectrum collection. The No. 3 halogen lamp was

located below the platform, in a vertical line with the camera,

and illuminated from bottom to top for transmittance spectrum

acquisition. All acquisitions are carried out in a dark room.

To solely obtain the transmittance spectrum of seeds and

reduce the influence of reflected light, a black cardboard mask

(100 × 100 mm) containing tiny rectangular slits (2 × 4 mm) was

prepared to hold the seeds (Figure 3). The seeds covered the slits

entirely to reduce the influence of the reflected light generated by

the surface of the light-scattering seed on transmittance

spectrum acquisition when the spectral information was

collected (Siedliska et al., 2017; Zhang et al., 2017).
Frontiers in Plant Science 04
A series of preliminary tests were performed before image

acquisition to determine experimental parameters and system

settings. Illumination power was determined by detecting the

raw spectral intensity of wheat seed samples. Compared with

reflection, light loses relatively more energy when penetrating

the wheat sample. Therefore, it is necessary to adjust the light

intensity by increasing the exposure time of the camera to

ensure that the image intensity is at an appropriate level

(<80% of the maximum pixel output of the camera) (Qin

et al., 2016). A Teflon sheet was used for obtaining the white

reference and is often used as a white reference for

transmittance images in quality assessments of interior food

regions (Leiva-Valenzuela et al., 2014; Hu et al., 2018).

Further, we ensured that the image was not saturated when

acquiring a white reference image by choosing a white

reference plate of appropriate thickness. Finally, we

determined that the thickness of the white reference plate

was 4 mm, and the intensity at this time was close to 80% of

the maximum pixel output of the camera.

When collecting the reflectance spectrum, the seeds were evenly

placed on the black cardboard, the black cardboard was placed on

the transfer table, and the No. 1 and No. 2 tungsten halogen lamps

were turned on. When collecting the transmittance spectra, the

hybrid seeds were evenly placed on a black cardboard mask

containing rectangular slits, the black cardboard was placed on the

transfer table, and the No. 3 tungsten halogen lamp was turned on.

To eliminate the influence of dark current and other noise

on the image, the original hyperspectral image was corrected

using the following formula:

Ic =
Iraw − Idark
Iwhite − Idark

(1)

Where Iraw represents the raw hyperspectral image, Iwhite
represents the white image, and Idark represents the dark image. The

dark reference image for the transmittance spectrumwas acquired by

completely covering the lens with an opaque cover. The white

reference image was acquired by transmitting light through a white

Teflon plate (4 mm thick) using light source 3. The dark reference
frontiersin.org
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FIGURE 3

(A) A black paper mask (100 × 100 mm) containing small rectangular slits (2 × 4 mm) was used. (B) Wheat seeds were placed on the mask to
avoid exposure to redundant light. (C) Schematic of transmittance hyperspectral image acquisition of wheat seeds.
FIGURE 2

Hyperspectral imaging system.
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images for the reflectance spectrum were acquired similar to the

transmittance spectrum. In contrast, the white reference images were

acquired using Teflon plates irradiated using light sources 1 and 2.
2.2.2 Spectral collection
Owing to the instability of the spectral information in a

single pixel, it is necessary to extract and calculate the average

value of spectral information of all pixels in the same sub-

projection area to obtain an average spectrum. After obtaining

the hyperspectral image of seeds, threshold segmentation was

used to remove the background spectral information to establish

a mask, and the entire seed region of interest (ROI) was selected

to extract the average spectrum, which represents a simple and

efficient method and is widely used in hyperspectral image

processing (Siedliska et al., 2017; Nie et al., 2019; Zhang et al.,

2020). In this study, the reflectance and transmittance spectrum

bands were at 450.2 nm and 865.2 nm, respectively, and the

difference between the seed spectrum value and the background

reached the maximum value. Therefore, we split the seeds in

these two bands, built an ROI mask via threshold segmentation,

and then extracted the average spectrum of each pixel in the

ROI. To eliminate the influence of the external environment and

camera performance, the front and back bands containing

obvious noise were removed and 765 spectral bands in the

range of 400–1,000 nm were obtained, which were used for

discriminant analysis. The script for spectral extraction was

written using Matlab2021b.
2.3 Data analysis

2.3.1 Data preprocessing
Since the noise in the spectrum acquisition process interferes

with subsequent data analysis, it is necessary to use an appropriate

method to preprocess the original spectrum data to eliminate the

background noise, baseline drift, stray light, and other interference

signals during the spectrum acquisition process and to improve the

model accuracy (Zhang et al., 2020). In this experiment, three

methods, standard normal variable transformation (SNV),

multiplicative scatter correction (MSC), and Detrend, were used

to preprocess raw spectral data.

2.3.2 Characteristic wavelength extraction
Hyperspectral data contains redundant feature variables and

collinear adjacent bands, which can slow down modeling, affecting

the speed and robustness of the model. Therefore, multivariate

wavelength selection algorithms are usually used to obtain key

wavelengths to establish simpler and improved quantitative models.

In this study, uninformative variable elimination (UVE), successive

projections algorithm (SPA), and competitive adaptive reweighted

sampling (CARS) were used to extract characteristic wavelengths

from the average spectrum of wheat seeds, respectively, to simplify
Frontiers in Plant Science 05
the model and improve the reliability of the model (Cai et al., 2008;

Song et al., 2016; Wang et al., 2021).

In this study, the components used to determine the

criterion parameter in the UVE algorithm was set to 20 and

the remaining parameters used default values in Matlab2021b

(random variables: ‘pz’ = 200; cutoff level considered: ‘cutoff’ =

0.99). To improve the processing efficiency of the algorithm, the

minimum and maximum number of variables in the SPA

algorithm were set to 2 and 50, respectively. When CARS was

used as the variable selection algorithm, the sampling number of

Monte Carlo simulation was 500, the final variable number to be

selected was determined via 5-fold cross validation, and the

maximum number of latent variables for cross validation was 5.

2.3.3 Partial least squares discriminant analysis
(PLS-DA)

PLS-DA is a classification model widely used in chemistry, food

science, and other fields (Rodionova and Pomerantsev, 2020). It is

established based on PLS regression (PLSR) and its algorithm

includes two key steps: PLSR fitting and class determination (Xia

et al., 2019). This method combines the advantages of multiple

linear regression and principal component analysis. PLS-DA can

perform regression modeling under the conditions of many

independent variables, multiple correlations, and poor correlation

between independent variables (Wang et al., 2021).

During modeling, seeds of the three wheat hybrids were

combined with their female or male parent seeds resulting in a

total of 12 datasets. For each dataset, 80% of the samples were

randomly selected as the training set to train a model and the

remaining 20% of samples were used as testing set. The method was

repeated 10 times for cross-validation to obtain the average

classification accuracy. The RANDPERM operator in MATLAB

was used for sample division.
3 Results and discussion

3.1 Spectral characteristics of hybrid
wheat seeds

The spectral curves of seeds of the three groups of hybrid wheat

and the parents are shown in Figures 4A–F, and the average spectra

of each variety are shown in Figures 4G, H. The change in trends of

reflectance and transmittance spectra of the three hybrid wheat

seeds and the parental seeds was generally similar. However, the

average reflectance and transmittance spectra of hybrid wheat seeds

and their parents were not identical. This may be due to genetic

differences caused by cross-breeding manifested as differences in

gene expression levels (Nie et al., 2019). The reflectance spectra of

the eight wheat species were relatively smooth and had no obvious

spectral absorption peaks (Figure 4G), while three absorption peaks

were detected in the spectrum of the average transmittance

spectrum (the peaks and valleys were located at 450 nm, 900 nm,
frontiersin.org
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and 980 nm, respectively; Figure 4H). The band at approximately

450 nm is in the range of blue light, and certain specific bands are

related to the pigments of plants, such as chlorophyll II a,

chlorophyll II b, and carotenoids (Zhang et al., 2020). The band

at 900 nm may be related to the third overtone of the C-H stretch.

The spectral wavelength at 980 nm can be attributed to the O-H

stretch second overtone (Cen and He, 2007). However, the spectral

curves of the three groups of hybrid wheat and its parents have a

high degree of overlap. It is unreliable to distinguish hybrid wheat

from its parents only by the spectral curves’ difference in reflectance

and transmittance values. However, the spectral curves of the three

groups of hybrid wheat and its parents had a high degree of overlap.

The discrimination of hybrid wheat from its parents based on the

difference in spectral curves between reflectance and transmittance

values alone is unreliable.
Frontiers in Plant Science 06
A high-frequency noise was detected in the original

spectrum, indicating the need for preprocessing (Figure 4).

Preprocessing improves the classification accuracy of the

model in classifying wheat and its pollutants (Ravikanth et al.,

2016). Therefore, the raw average spectral data obtained in this

study were preprocessed using MSC, SNV, and Detrend

(Figure 5). The relative differences between the average spectra

of the three groups of hybrid wheat and their parents were

reduced after MSC and SNV (Figures 5A, B, D, E). The spectral

value range increased after SNV processing. The absorption peak

increased remarkably after Detrend treatment (Figures 5C, F).

However, neither the raw nor preprocessed mean spectra

differed significantly among different seed varieties. Therefore,

it is necessary to establish a discriminant model to identify and

classify hybrid wheat and parental seeds.
G

A B

D E F

H

C

FIGURE 4

Spectral curve of hybrids and their individual parental seeds: raw reflectance spectra of (A) Jingmai 9, BS 1086, CP730, (B) Jingmai 11, BS 1086,
05Y hua 68-2, and (C) Jingmai 183, BS 237, 05Y hua 68-1; raw transmittance spectra of (D) Jingmai 9, BS 1086, CP730, (E) Jingmai 11, BS 1086,
05Y hua 68-2, and (F) Jingmai 183, BS 237, 05Y hua 68-1; (G) the average reflectance spectra of each wheat variety; (H) the average
transmittance spectra of each wheat variety.
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3.2 Classification results and analysis of
discriminant models based on full
wavelengths

Basedon the spectral data in the entirewavelength range forboth

transmitted and reflected light, the discriminant models of hybrid

wheat mixed with female or male parent seeds were established by

PLS-DA algorithm. The mean of the classification accuracy of 10
Frontiers in Plant Science 07
cross-validations of model were obtained, and the results are shown

in Table 1. From the results of the PLS-DAmodel in Table 1, in the

reflectancemode, themodeling results for identifying the hybrid and

male parent seeds based on full-spectrumdata are better than hybrid

and female parent seeds. This had been in line with our research

expectation that the embryo and endosperm of the hybrid seed

contain both the genetic material of the male and the female parent,

and show different phenotypes from their parents accordingly.
TABLE 1 The classification results based on full spectrum using PLS-DA algorithm.

Group Pretreatment Jingmai 9
mixed with CP

730

Jingmai 9
mixed with BS

1086

Jingmai 11
mixed with 05Y

hua 68-2

Jingmai 11
mixed with BS

1086

Jingmai 183
mixed with 05Y

hua 68-1

Jingmai 183
mixed with BS

237

Tra/% Tes/% Tra/% Tes/% Tra/% Tes/% Tra/% Tes/% Tra/% Tes/% Tra/% Tes/%

Reflectance RAW 97.78 95.12 92.56 83.7 96.78 93.19 84.71 75.14 98.02 95.59 91.21 81.81

MSC 99.30 98.41 95.71 88.76 98.11 95.01 89.99 80.27 98.23 95.26 96.55 89.15

SNV 99.30 98.25 95.84 89.4 98.17 95.69 90.73 79.08 98.22 95.01 96.63 88.89

Detrend 98.43 93.75 95.47 89.08 98.54 95.37 91.17 83.35 98.90 96.62 95.76 89.8

Transmittance RAW 93.75 88.68 96.17 88.79 97.42 90.61 96.21 83.57 95.42 89.32 96.39 86.55

MSC 94.48 89.41 98.05 92.06 97.24 94.73 97.4 91.36 92.67 86.28 95.24 88.70

SNV 94.55 86.18 97.40 92.33 97.70 94.12 97.98 88.49 92.66 86.36 95.23 88.20

Detrend 93.89 89.31 97.12 92.84 98.23 95.36 97.06 91.52 98.92 95.62 97.71 92.38
fronti
Tra, Classification accuracy of training set; Tes, Classification accuracy of testing set; RAW, raw spectral data; MSC, multiplicative scatter correction; SNV, standard normal
variable transformation.
A B

D E F

C

FIGURE 5

Spectral curves of different preprocessing methods: reflectance spectral curves after (A) MSC processing, (B) SNV processing, and (C) Detrend
processing; transmittance spectral curves after (D) MSC processing, (E) SNV processing, and (F) Detrend processing. MSC, multiplicative scatter
correction; SNV, standard normal variable transformation.
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However, the outer layers of wheat caryopses are composed of the

pericarp, the actual seed coat, and remnants of nucellar tissues

(Matzke and Riederer, 1990). These are developed from the ovary

wall and integument, which leads to phenotypic similarity in seed

coat betweenhybrids and their female parent. Therefore, thematerial

compositionof the seedcoat of hybridwheat seeds is similar to thatof

the female parent. This may also explain the higher accuracy in

identification between hybrid and male parent seeds than that of

hybrid and female parent seeds in reflectance mode.

The accuracy of classification and identification of hybrid and

female parent seeds based on modeling full-spectral data was

improved in transmittance mode compared to that obtained in

reflectance spectroscopy. Conversely, the classification accuracy of

the hybrid and male parent seeds models decreased. Owing to the

poor penetration of reflected light, diffuse reflectance spectroscopy

can only obtain information on the surface of the grain. In contrast,

the transmittance spectrum can enable the full accumulation of the

depth information of the analytical optical path and information

inside the sample (Qin et al., 2016). The difference between hybrid

and female parent seeds is mainly reflected in the embryo and

endosperm inside the seed; thus, transmittance spectrum modeling

of the hybrid and female parent is more reliable than modeling

reflectance spectrum. However, for hybrids and male parents with

differences in the seed coat, the model established based on

transmittance spectrum is not better than that using reflectance

spectrum. Moreover, there was a significant decline in the

classification accuracy of Jingmai 9 and the male parent. For the

three groups of seeds used in this study, the transmittance spectrum

classification results of hybrids and female parents were better than

those obtained using reflectance spectrum classification. Among

them, the transmittance spectrum classification effect after Detrend

preprocessing was the best, and the classification accuracy of the

testing set of Jingmai 9, Jingmai 11, and Jingmai 183 reached

92.84%, 91.52%, and 92.38%, respectively. Therefore, further

characteristic wavelength screening was performed using the

transmittance spectrum preprocessed by Detrend, and an analysis

model was established to provide more references for the

development of multi-spectral rapid detection systems.
3.3 Modeling analysis based on
characteristic wavelengths

3.3.1 Optimal wavelengths selection
The purpose of characteristic wavelength selection is to

reduce the dimension of original high-dimensional spectral

data, retain helpful information to the greatest extent, and

eliminate redundant information. In this study, UVE, SPA,

and CARS algorithms were used to re-model the selected

characteristic bands from the complete spectral characteristics

of the three hybrids and their female parent seeds after Detrend
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preprocessing. The specific wavelengths identified by the three

variable selection algorithms are shown in Figure 6.

When UVE was used to select characteristic wavelengths in

the transmittance spectrum, the number of spectral characteristic

variables corresponding to different kinds of hybrid wheat was

reduced from 753 to approximately 65–89. When SPA and CARS

were used to select characteristic wavelengths, the number of

variables was reduced from 753 to approximately 13–28. Few

differences in the characteristic bands were screened out by the

three characteristic wavelength algorithms in the transmittance

and reflectance spectra (Figure 6). Compared with the reflectance

spectrum, the characteristic wavelengths selected by different

feature-screening methods were more concentrated in the

transmittance spectrum. They were mainly concentrated in

certain bands near 400–500, 630–650, and 910–1,000 nm. Few

researchers have proposed that specific-wavelength bands in the

visible light region may be related to plant pigments, such as

chlorophyll II a at 430 nm, chlorophyll II b at 448 nm, carotenoids

at approximately 448 nm and 471 nm, and anthocyanin at 623

nm, 642 nm, and 646 nm with absorption peaks (Sun et al., 2016;

Zhang et al., 2020). Additionally, the spectral band in the range of

400–500 nm is related to the starch content of seeds, and the band

at approximately 900–1,000 nm is considered to reflect

the difference in seed protein content (Wang et al., 2022). The

genes of the paternal parent influence the endosperm of the

hybrid, and the starch and protein content of the hybrid

showed few differences from the maternal parent, which were

reflected in the corresponding bands of the spectrum. To further

determine the optimal feature selection algorithm, further

modeling analysis was performed based on the extracted

characteristic wavelengths and the optimal feature selection

algorithm was selected.

3.3.2 Classification results and analysis based
on characteristic wavelengths

The spectral data preprocessed using Detrend were subjected to

dimensionality reduction transformations of UVE, SPA, and CARS,

and then the hybrid and female parent seed classification models

were established using PLS-DA (Table 2). In the feature band

screening method, the accuracy rate of the model established via

SPA and UVE processing decreased in certain varieties compared

with that of the whole band. The accuracies of models established

using CARS processing were improved compared with that of full-

band modeling. The overall performance of the classification and

identification of hybrids and female parents based on transmittance

spectroscopy was still better than that of reflectance spectroscopy.

Based on the results presented in section 3.3.1, the characteristic

bands finally screened using CARS were below 30, which can

effectively eliminate unusable spectral information, and the number

of extracted bands was <3.2% of the full band, which was

considerably lower than that obtained using UVE. Therefore, the
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Detrend-CARS-PLS-DA model based on the transmittance spectra

was the best model for classifying wheat hybrid and female parent

seeds. Finally, the classification accuracies of the established model

in the testing sets of Jingmai 9, Jingmai 11, and Jingmai 183 were

95.69%, 98.25%, and 97.25%, respectively.

3.3.3 Optimal model validation and
visualization

In addition to the modeled sample of 1,632 seeds (204 seeds per

category), this study selected 250 seeds (50 seeds per category for
Frontiers in Plant Science 09
hybrid and female parent seeds) for optimal model validation and

visualization. A visualization of the verification results is shown in

Figure 7. Five, two, and three seeds were misidentified among

Jingmai 9, Jingmai 11, and Jingmai 183, respectively (Figure 7); the

validation accuracies of the three hybrids were 95%, 98%, and 97%,

respectively; which was consistent with the modeling validation set

(Table 2). Therefore, the model can maintain stable accuracy when

detecting the same batch of seeds. This method can quickly perform

preliminary detection of hybrid seed purity to identify samples with

a high contamination ratio. Additionally, owing to the non-
TABLE 2 The classification results of hybrids and female parent seeds based on different characteristics selection spectra.

Group Wavelength selection Jingmai 9 mixed with BS 1086 Jingmai 11 mixed with BS 1086 Jingmai 183 mixed with BS 237

Tes/% No. Tes/% No. Tes/% No.

Reflected UVE 90.13 81 84.67 86 89.43 89

SPA 85.33 22 80.39 16 88.03 13

CARS 92.65 23 91.44 18 92.94 18

Transmitted UVE 92.35 80 94.12 65 93.01 79

SPA 91.37 28 92.45 30 91.47 25

CARS 95.69 26 98.25 28 97.25 20
Tes, Classification accuracy of testing set; No., Number of selected feature wavelengths; UVE, uninformative variable elimination; SPA, successive projections algorithm; CARS, competitive
adaptive reweighted sampling.
A B

FIGURE 6

Detailed location of characteristic wavelengths screened using different methods: (A) reflectance spectrum and (B) transmittance spectrum.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1015891
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2022.1015891
destructive detection characteristics of HSI, this method can be used

for the online selection of hybrid seeds, and the purity of hybrid

wheat samples can be improved by separating female parent seeds.

Considering Jingmai 9 as an example, for Jingmai 9 seeds with a

purity of 90%, the seeds identified as the female parent were filtered

out via the aforementioned method which increased the seed purity

to approximately 99%.
3.4 Validation of the detection model for
the seed of different years

When hyperspectral data are obtained, their analysis is limited

by modeling samples. While modeling can often maintain a high
Frontiers in Plant Science 10
accuracy rate when detecting samples of the same batch in the same

year, the accuracy significantly decreases when testing across

different years or seed lots (Guo et al., 2017). Therefore, we

selected the hyperspectral transmittance images of 50 seeds of

Jingmai 9 and BS 1086 wheat seeds harvested in 2020 to verify

the detection accuracy of the best purity detection model for seeds

across years and visualized the results.

The cross-year detection results of Jingmai 9 and the female

parent are shown in Figure 8. The final detection accuracy was 86%.

Few identification errors were expected and since the training

samples in the model did not contain seeds harvested in 2020 and

seeds of the samevariety harvested in different years have phenotypic

differences. Compared with the seed samples harvested in 2021, the

model classification accuracy significantly decreased based on the
FIGURE 8

Visualization of detection of seeds of Jingmai 9 and its female parent.
A B C

FIGURE 7

Visualization of hybrid seed versus female parent seed classification results: (A) Jingmai 9, (B) Jingmai 11, and (C) Jingmai 183.
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confounding of Jingmai 9 and female parent seeds harvested in 2020.

Moreover, in the cross-year prediction of the model established for

Jingmai 9 seeds mixed with its female parent seeds, only two female

parent seeds were incorrectly identified as Jingmai 9, and 12 seeds of

Jingmai 9 were predicted as the female parent seeds. Since the

proportion of female parent seeds in hybrid wheat will be relatively

small in actual production, the accuracy of this model used in

assessment of actual seed purity will be further reduced. However,

for seed sorting, owing to the high recognition precision of female

parent seeds, this model can accurately discriminate female parent

seeds from the hybrid sample. In this study, the purity detection

model for hybrids against their female parents established using

transmitted light can achieve good results in detecting seeds from the

same lot. However, the detection accuracy may decline when

analyzing seeds from different years. In further studies, it will be

necessary to add standard samples from different years and growing

environments to improve the prediction accuracy of the model.
3.5 Analysis of modeling results

In this study, we used transmittance and reflectance HSI to

classify hybrids and their parent seeds, respectively. Reflectance

HSI was more efficient in identifying and classifying hybrid and

male parent seeds than when used for classifying hybrid and

female parent seeds (Table 1). Hybrid and male seeds are

harvested from plants of different varieties, and there are

differences in the seed coat. Therefore, we obtained good

results in identifying hybrid and male seeds using reflectance

HSI, which can effectively identify differences in seed coats.

The influence of the maternal parent, including maternal

cytoplasmic inheritance, genomic imprinting, and maternal

effect (Wolf and Wade, 2009), on the formation of offspring is

greater than that of the paternal parent. In Jingmai 11 and

Jingmai 183, the optimal identification accuracies of the testing

set of the hybrid and the male parent in the transmittance

spectrum were 95.36% and 95.62%, respectively, which were

better than the accuracies of 91.52% and 92.83% for the hybrid

and the female parent, respectively (Table 1).

The transmittance spectrum is considered to enable the full

accumulation of the optical path depth information to obtain

information inside the sample (Qin et al., 2016). In our study,

transmittance HSI was better than reflectance HSI in classifying and

identifying the three hybrids and female parent. For the

accumulation of internal depth information, the transmittance

spectrum can reflect certain compositional differences inside the

seeds. Therefore, transmittance hyperspectroscopy is considered

suitable for the classification and identification of hybrids and

female parents.

Transmittance spectra of single seeds can be considered a worst

case with large additive and multiplicative scatter effects due to

differences in kernel size, structure, and presentation angle

(Pedersen et al., 2002). This results in a large variance in the
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transmittance spectrummeasurements due to uncontrolled changes

in light scattering (Figure 4). Although we have processed the

spectra using a preprocessingmethod, the transmittance spectra still

do not perform as well as the reflectance spectra in the identification

of hybrids that are already distinct from the male parent in the seed

coat. Among them, the optimal recognition effect for Jingmai 9 and

male parent in transmittance spectrum was only 89.41%.

This study distinguishes hybrids from females in the 400–

1,000 nm band based on variables selected via three feature-

screening algorithms. The characteristic wavelengths selected for

the transmittance spectrum are concentrated in specific

wavelength bands such as 400–500 nm, 630–650 nm, and

910–1,000 nm. These bands of 400–500 nm and 630–650 nm

correspond to the phytochromes of seeds (Sun et al., 2016;

Zhang et al., 2020), which may be related to wheat seed coats.

It is related to the precipitation of pigment content in the

aleurone layer. The 910-1000nm band corresponds to the

protein content of seeds (Wang et al., 2022), which reflects the

difference in components between the hybrid and the female

parent due to the genetic influence of the two parents. After

feature screening, the model can still maintain a high prediction

accuracy, reduce the number of spectra, and provide a reference

for future multispectral detection.

In addition, the accuracy of the model decreased in the

detection of Jingmai 9 and female parent seeds across years

(Figure 8). The growth environment of seeds may differ across

years, such as: rainfall, temperature, soil fertility. In practical

applications, multi-year seeds should be added for modeling to

further improve the transferability of the model.

At present, the actual production of wheat hybrids mainly

involves the self-crossing of the female parent to produce the

female parent’s seed-contaminated hybrid. Our results show that

compared with reflectance HSI, transmittance HSI can more

accurately identify hybrid and female parent seeds. It can

provide a reference for pure sampling detection and online

sorting of hybrids.
4 Conclusion

In this study, seeds of three pairs of different wheat hybrids

and their parents were identified and classified using HSI

technology combined with a PLS-DA model. The reflectance

and transmittance modes were used for comparison and

analysis, respectively. Combined with different preprocessing

methods and feature extraction algorithms, a fast classification

and identification method was established for discriminating

hybrids and their female parent seeds. The established model can

efficiently and non-destructively differentiate seeds from hybrids

and their female parent seeds. The following specific conclusions

can be drawn from this study:

1) Based on the similar seed coat phenotype, the identification

accuracy of hybrid wheat and the female parent seeds was lower
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than that of hybrid wheat and male parent seeds when using

reflectance spectrum for modeling and classification. The three

wheat hybrids and their female parent seeds selected in this study

were modeled in the hyperspectral full-spectral reflectance mode,

and the recognition and classification accuracies were <90%.

2) The established transmittance hyperspectral model

performed better than the reflectance model in classifying

three hybrids and female parent seeds. The transmittance

spectrum significantly improved the hybrid classification effect

of hybrids and female parents compared to that obtained using

reflectance spectrum.

3) After multivariate data analysis, the Detrend-CARS-PLS-

DA model established using transmittance HSI showed best

performance in classifying and identifying hybrid wheat and

their female parent seeds. The classification and recognition

accuracy of the testing set of Jingmai 9, Jingmai 11, and Jingmai

183 hybrids reached 95.69%, 98.25%, and 97.51%, respectively.

This method established by using transmittance spectroscopy

combined with machine learning can accurately identify hybrid and

female parent seeds. It can be widely used in the supervision and

detection of wheat hybrid production and also in the timely

detection of hybrid seed lots of low purity. In addition, combined

with HSI-based non-destructive and rapid detection characteristics,

this study provides a reference for the development of hybrid seed

online detection and sorting systems in the future.
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