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Maize-soybean intercropping is practiced worldwide because of some of the

anticipated advantages such as high crop yield and better utilization of

resources (i.e., water, light, nutrients and land). However, the shade of the

maize crop has a detrimental effect on the growth and yield of soybean under

the maize-soybean intercropping system. Hence, this experiment was

conducted to improve the shade tolerance of such soybean crops with

optimal nitrogen (N) fertilization combined with foliar application of iron (Fe)

and molybdenum (Mo). The treatments comprised five (5) maize-soybean

intercropping practices: without fertilizer application (F0), with N fertilizer

application (F1), with N fertilizer combined with foliar application of Fe (F2),

with N fertilizer coupled with foliar application of Mo (F3) and with N fertilizer

combined with foliar application of Fe and Mo (F4). The findings of this study

showed that maize-soybean intercropping under F4 treatment had significantly

(p< 0.05) increased growth indices such as leaf area (cm2), plant height (cm),

stem diameter (mm), stem strength (g pot-1), and internode length (cm) and

yield indices (i.e., No of pods plant-1, grain yield (g plant-1), 100-grain weight (g),

and biomass dry matter (g plant-1)) of the soybean crop. Moreover,

intercropping under F4 treatment enhanced the chlorophyll SPAD values by

26% and photosynthetic activities such as Pn by 30%, gs by 28%, and Tr by 28%

of the soybean crops, but reduced its CO2 by 11%. Furthermore, maize-

soybean intercropping under F4 treatment showed improved efficiency of
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leaf chlorophyll florescence parameters of soybean crops such as Fv/Fm (26%),

qp (17%), fPSII (20%), and ETR (17%), but reduced NPQ (12%). In addition, the

rubisco activity and soluble protein content of the soybean crop increased by

18% in maize-soybean intercropping under F4 treatment. Thus, this suggested

that intercropping under optimal N fertilization combined with foliar

application of Fe and Mo can improve the shade tolerance of soybean crops

by regulating their chlorophyll content, photosynthetic activities, and the

associated enzymes, thereby enhancing their yield and yield traits.
KEYWORDS

abiotic stress, shade tolerance, intercropping, photosynthetic efficiencies, enzymes,
growth, yield
1 Introduction

Shade is the most common abiotic stress which adversely

affects the plant’s growth and development when planted at

higher densities such as in the greenhouse, agroforestry, and

intercropping (Hussain et al., 2021; Raza et al., 2021b; Cheng

et al., 2022; Nasar et al., 2022). The effect of shading leads to a

change in not only enzymatic but also non-enzymatic

antioxidants’ role in plants (Rajput et al., 2021). Moreover,

reduced sun radiation, haze, and air pollution all contribute to

a decrease in photosynthetically active radiation (Nyawade et al.,

2019; Cong et al., 2020). The shaded plants adapt by lowering

their photosynthetic activities and enhancing agronomic

features to adjust to the diminished light quality and quantity

(Hussain et al., 2021). Shade has numerous effects on plant life,

resulting in diverse and novel environmental conditions. As a

result, plant growth is negatively impacted, with decreased

biomass, stem diameter, leaf area and thickness, stem breaking

strength, and eventually yield (Hussain et al., 2019; Shafiq et al.,

2020). Under intercropping, shade from one companion plant

limits the photosynthesis in legumes and is considered a major

threat to legume growth (Gitari et al., 2018; Nyawade et al., 2021;

Blessing et al., 2022; Cheng et al., 2022).

Nitrogen is an essential component that plays a crucial part

in the photosynthetic organ of a plant (Liu et al., 2018; Shao

et al., 2020; Ochieng et al., 2021). Appropriate nitrogen helps in

enhancing the chlorophyll content, enzymatic activity, and,

enzyme content of plant leaves, hence boosting photosynthesis

(Noor Shah et al., 2021). Previous studies have shown a

correlation between nitrogen application rate and nitrogen

utilization rate, crop photosynthetic activities, and crop

production (Kong et al., 2016; Liu et al., 2019; Shah et al.,

2021). According to several studies, optimal nitrogen application

can effectively improve the photosynthetic properties of the

plant under shading (Shah et al., 2017a; Wu et al., 2017; Raza
02
et al., 2019). Additionally, in low-light stress situations, the

combination of light and nitrogen can effectively control the

photosynthetic capacity of plant leaves (Fu et al., 2017; Shah

et al., 2017b). Nitrogen has also been shown to improve the

chlorophyll SPAD values, photosynthetic efficiencies, and the

related enzymes of soybean crops under different stress

environments (Gai et al., 2017). In addition, it is also reported

that maize-soybean intercropping under optimal nitrogen not

only improved the growth and yield of maize crop, but also help

reduce the shading effect of maize on soybean by regulating its

photosynthetic and enzymatic activities (Cheng et al., 2022).

Iron (Fe) and Molybdenum (Mo) are two micronutrients

that are frequently needed in smaller amounts but are crucial for

plant growth and development (Togay et al., 2015). Iron is one of

the key elements involved in plant chlorophyll and

photosynthesis (Yoon et al., 2019). Its deficiency in plants is

one of the key abiotic factors affecting the physiology and

productivity of the plant (Togay et al., 2015). As earlier noted

that insufficient iron reduced the number of grana and stroma

lamellae per chloroplast in plant leaves (Jiang et al., 2007; Yoon

et al., 2019), reducing the amount of all membrane constituents,

such as electron carders of the photosynthetic electron transport

chain (Wang et al., 2017; Karimi et al., 2019) and light-

harvesting pigments (Wang et al., 2017). Fe deficiency also

decreases the activity of ribulose 1,5 bisphosphate oxygenase/

carboxylase, which is the most vital enzyme involved in plant

photosynthesis (Bertamini et al., 2001; Wang et al., 2017).

Previously it was reported that Fe deficiency lowers

photosynthesis, photosystem II function, and rubisco activity

in soybean crop (Jiang et al., 2007). In another study, maize crop

was also shown to have lower chlorophyll, photosystem I and II

function under Fe stress (Long et al., 2020).

On the other hand, Mo is crucial for the route that produces

chlorophyll, as well as for the configuration and ultrastructure of

chloroplasts, and thus plays a significant part in the
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photosynthetic process (Oliveira et al., 2022). The production of

chlorophyll, photosynthetic efficiency, and consequently

vegetative growth and grain yields are all positively associated

with the configuration and ultrastructure of intact chloroplasts

(Liu et al., 2018). In light of the delicate photosynthetic system,

these studies suggest that Mo deficient environments might limit

photosynthesis. Examples include the etiolating and yellowing of

leaves (Armarego-Marriott et al., 2020), the suppression of

chlorophyll biosynthesis (Wang et al., 2020), and aberrant

alterations in the ultrastructure and arrangement of the

chloroplast (Jin et al., 2018). Intriguingly, these traits closely

resemble N deprivation, which has been linked to yellowing of

leaves, decreased chlorophyll concentrations, and irregularly

shaped or almost circular chloroplasts, according to other

investigations (Liu et al., 2018). Foliar application of

molybdenum has also been shown to improve the

photosynthetic activities and nitrogen assimilatory enzymes of

maize and soybean in maize-soybean intercropping, thereby

enhancing their growth and yield (Oliveira et al., 2022).

Therefore, it is possible to hypothesize that Mo, in addition to

improving chloroplast structure and chlorophyll synthesis, may

also enhance photosynthesis through effective N uptake

and absorption.

In China, various cropping systems account for over half of

the overall grain yield (Xu et al., 2020). Among these,

intercropping of maize and soybeans has significantly

increased soybean productivity. Approximately 667 thousand

hectares of land in southwest China are used for maize-soybean

intercropping, and the area is still expanding as a result of the

rising demand for foods high in protein (Raza et al., 2020).

However, the lodging of soybean seedlings is a significant issue

in such intercropping system given that maize overshadows

soybeans throughout the co-growth stage, which resulted in

lower component yield besides being incompatible with

mechanization (Chang et al., 2020). Consequently, this makes

it hard to meet the need for high efficiency and higher yields in

modern agriculture. Numerous studies have shown that stem

properties like morphology, physiology, and biomechanics are

closely associated with lodging resistance with the main stem

strength being the most important factor in enhancing the

lodging resistance of soybean. (Liu et al., 2018; Liu et al.,

2019). To counteract the negative effects of shade, several

practices have been put in place to optimize plant growth,

which include the use of plant growth regulators (Sabagh

et al., 2021), shade tolerant cultivars (Paradiso and Proietti,

2022), appropriate NH+
4 : NO

−
3 ratio (Raza et al., 2021a) and

titanium application (Hussain et al., 2021). Nonetheless, to the

best of our knowledge, the physiological and agronomic

activities of soybean under shade stress specifically in maize-

soybean intercropping under the nitrogen application combined

with foliar use of micronutrients (i.e., Fe and Mo) are unclear.

Therefore, this study was designed to examine the effects of

nitrogen fertilization in combination with foliar applications of
Frontiers in Plant Science 03
Fe and Mo on the growth and production of soybean under

intercropping environments. The main objective of this study

was to promote and improve the growth, yield, and

photosynthesis system of soybean crop with optimal N

fertilization combined with foliar application of Fe and Mo

under the shading environment of intercropping.
2 Materials and methods

The current study was conducted in the late summer

growing season from September 2021 to February 2022 at

Guangxi University’s research center in Nanning, China. With

an average annual rainfall of 1080 mm, this region has a

subtropical monsoon climate. The physio-biochemical

properties of experimental soil showed that soil had a loam

texture, 23.7 g kg-1 of organic matter, 0.118 percent total

nitrogen, 109.9 mg kg-1 of alkaline nitrogen, and a pH of 7.4.

In addition, it had 74.0, 73.6, 97.7 and 0.1 mg kg-1 of available

potassium, phosphorus, iron and molybdenum, respectively.

Soybean crop (Gui Chun 15 variety) was planted under

mono-cropping (SM) and intercropping (SI) with maize (Ching

Ching 700 variety) in pots (i.e., 88 cm height, 53 cm width, and

43 cm length) (Figure 1). Initially, 10 seeds of soybean were sown

in mono-cropping and in intercropping with 5 plants of maize at

a field plant density of 20 kg soybean seeds ha-1 and 60,000

maize plants ha-1, respectively. However, at the V3 growth stage,

the soybean plants were reduced to 5 and maize plants to 3 (5:3)

in each pot to better adapt to the pot environment. Each

treatment pot was filled with 120 kg of soil, replicated four

times, and randomly placed (Completely randomized design

CRD) in a ventilated net house under natural light environment.

Plants were sown in the mid of September (2021) and harvested

in mid of February (2022). For fertilizer applied treatments,

nitrogen fertilizer (@ 100 kg ha-1) was applied before sowing by

mixing it with the experimental soil. The foliar application of

iron @ 0.15 mg g-1 and molybdenum @ 0.10 mg g-1 was carried

out in three splits: at the V5, R1, and R5 stages. Nevertheless,

phosphorous and potassium were applied uniformly to all

treatment pots (i.e., P at 100 kg ha-1 and K at 50 kg ha-1).

Nitrogen (N) was applied in form of urea (46% N), phosphorus

as diammonium phosphate (P2O5 46% P), potassium as

potassium chloride (K2O 60% K), iron as ferrous sulphate

(FeSO4 20.5% Fe), and molybdenum as an ammonium

molybdate ((NH4)6Mo7O24 54% Mo). The treatments included

five (5) maize-soybean practices: without fertilization (F0),

nitrogen fertilizer (F1), nitrogen fertilizer coupled with foliar

application of Fe (F2), nitrogen fertilizer coupled with foliar

application of Mo (F3), and nitrogen fertilizer coupled with foliar

application of Fe and Mo (F4). Different agronomic practices

such as irrigation and control of weeds and insect pests were

carefully monitored. Meteorological parameters such as

temperature (°C), precipitation (%), rainfall (mm), daylight
frontiersin.org
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(hrs), and humidity (%) were recorded throughout the

experiment and presented in Figure 2.
2.1 Data collection

2.1.1 Growth indices
The growth indices such as stem diameter, plant height, stem

strength, internode length, and leaf area of soybean crops were

determined at V5 and R5 (Hussain et al., 2021). Plant height was

measured from top to bottom using a measuring tape, and stem

diameter with a Vernier caliper whereas internode length and

stem strength were measured using a digital force tester (YYD-1,

Zhejiang Top Instrument Hangzhou, China). The leaf area was

measured with LI -3000C portable leaf area meter (LI-COR,

Nebraska, USA).

2.1.2 Yield indices and biomass dry matter
The yield indices and biomass dry matter of soybean crops

were obtained at full maturity when harvesting was done (Raza

et al., 2020). The pods were counted and recorded per plant after

which they were removed from the plant and threshed to

determine 100 seeds’ weight and grain yield by weighing on an

electric scale. After threshing, the remaining plant straw was

sun-dried and oven-dried at 65°C for 72 h to obtain dry

biomass matter.

2.1.3 Chlorophyll SPAD and
photosynthetic activities

Chlorophyll SPAD values and photosynthetic activities such

as photosynthetic rate (Pn) (μmol CO2 m-2 s-1), stomatal

conductance (gs) (mol H2O m-2 s-1), intercellular CO2 (Ci)

(mol CO2 mol-1), and transpiration rate (Tr) (μmol H2O m-2
Frontiers in Plant Science 04
s-1) of soybean crop were measured at the V5 stage (Hussain

et al., 2021). These indices were measured on a bright sunny day

in the morning (between 9:00 am and 11:00 am) at a fully

expanded leaf (usually 3 measurements per leaf) from the

healthiest plant. The chlorophyll content was estimated using

the SPAD Chlorophyll Meter (SPAD-502, Minolta Camera,

Tokyo, Japan) while photosynthetic activities were measured

using the Li-6400XT portable photosynthesis system (Licor Inc.,

Lincoln, NE, USA) at an adjusted constant light of 80, 100, 150,

200, 400, 600, 800, and 1000 mmol m-2 s-1 and a leaf temperature

of ~27°C with a continuous CO2 level of 400 mmol mol-1 as per

procedures provided by Ahmad et al. (2022a).

2.1.4 Chlorophyll fluorescence parameters
Chlorophyll Fluorescence parameters such as maximum

PSII quantum yield (Fv/Fm), actual PSII efficiency (fPSII),
photochemical quenching coefficient (qp), non-photochemical

quenching coefficient (NPQ), and the electron transport rate

(ETR) of soybean crop were measured at night (full dark) on the

corresponding day when chlorophyll and photosynthetic

activities were measured (Iqbal et al., 2019). These indices

were measured using the same portable photosynthesis system

used for the estimation of photosynthetic activities at a leaf

temperature of ~27°C by adjusting the system according to

provided manual for dark.

2.1.5 Rubisco activity
Rubisco enzyme activity in soybean leaves was measured at

the V5 stage using a Rubisco enzyme ELISA kit (96 micropores)

sourced from Shanghai Fu Life Industry Co. Ltd., Shanghai,

China. In brief, 1 g of frozen leaf samples were minced using a

mortar and pestle and an icebox using 2 ml of 50 mmol L−1

phosphate buffer solution (pH 7.8). For 15 min, the solution was
FIGURE 1

Schematic diagram of the experiment. F0; without fertilizer application, F1; nitrogen fertilizer application, F2; nitrogen fertilizer with foliar
application of iron, F3; nitrogen fertilizer with foliar application of molybdenum, F4; nitrogen fertilizer with foliar application of iron and
molybdenum).
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centrifuged at 7000 rcf at 4°C after which the level of plant

Rubisco activase was determined by employing a double

antibody sandwich method. In this case, the microspore plate

encapsulated the Rubisco activase antibody forming a solid

phase antibody and then adding to the microspore of the

monoclonal antibody. Firstly, 10 ml of sample solution was

added to the micropore plate followed by the addition of 40 μl of

phosphate buffer solution as a sample diluent. The micropore

plate was kept incubated for 30 min at 37°C with a plastic sheet

covering it and this incubation underwent five rounds. The 3,3´

5,5´-tetramethylbenzidine was transferred with the help of the

enzyme horseradish peroxidase, which was initially colored blue

before changing to yellow when subjected to acid. Within 15

minutes after administering the stop solution, an enzyme marker

used a 450 nm wavelength to quantify the absorbance. The

sample’s RA was calculated using a standard curve and

represented as U g-1 (Ali et al., 2022).
2.1.6 Total soluble protein
Soybean leaf tissues were used to determine the soluble

protein. In brief, 3.0 g of fresh leaf tissue were homogenized in

9 ml of 0.1 M Tris-HCl buffered at pH 8.0 and extracted at a

constant temperature of 4°C. The extract was centrifuged at
Frontiers in Plant Science 05
12,000 revolutions per minute for 30 minutes, and the

supernatant was utilized to make a basic enzyme extract.

Protein content was assessed following trichloroacetic acid

precipitation using bovine serum albumin as a standard. The

soluble protein-containing supernatants were heated to 100°C

for 10 minutes, then placed on ice before being centrifuged at

maximum speed (15 000 g) in a microcentrifuge for 15 minutes

at 4°C to obtain the fraction of termostable soluble proteins.

The electrophoresis on 7.5% polyacrylamide gel (PAG) was

used to separate total and termostable soluble proteins. The

obtained total soluble protein was expressed in U g-1 (Kirova

et al., 2005).

2.1.7 Land Equivalent Ratio
The land equivalent ratio (LER) was computed as indicated

in Equation 1.

LER =
Yim

Ymm
+

Ysi

Ysm

� �
  (1)

Where Yim and Ysi exemplify the grain yield of maize and

soybean crops in intercropping whereas Ymm and Ysm

represent the respective yields under mono-cropping. The LER

is an indicator used to determine the competitiveness between
A

B

FIGURE 2

Weather forecast [(A); temperature and daylight hours and (B); rainfall, precipitation, and humidity] report of the experimental area during the
experiment period.
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intercrops for the utilization of the available resources (Gitari

et al., 2020; Maitra et al., 2020). If the value of LER is 1, indicates

that both monocrop and intercrop produce equal yield and

utilize the available resources equally. If the value of the LER is

greater than 1, suggests a greater complementary effect of

intercropping maize than a competitive one, and produces a

higher yield compared to mono-cropping. If the value of LER is

less than 1, indicates interspecific competition is greater than

interspecific facilitation, and there is no intercropping

advantage. So, the higher the LER, the greater the benefit of

increasing yield in intercropping over mono-cropping (Soratto

et al., 2022).
2.2 Data analysis

The data were computed and formulated in Ms-Excel 2016

and statistically analyzed using the statistical analysis software

ms-statistix 8.1. A two-way factorial ANOVA was performed to

test the significance level (p < 0.05) between means at LSD test by

the fertilizer application (FA) and the planting patterns (PP)

factors as well as their interactions. Graphical and statistical

software (Graphpad Prism 6.1) was used to construct graphs.

The linear regression was used to determine the relationship

between the photosynthetic rate (Pn) with chlorophyll SPAD

values, leaf area, grain yield, biomass dry matter, and other

photosynthetic activities (i.e., Tr, Co2 and gs). The relationship

of Pn was also tested with leaf chlorophyll florescence

parameters (i.e., Fv/Fm, fPSII, qp, NPQ and ETR), Rubisco
Frontiers in Plant Science 06
activity, and soluble protein of the soybean crop (Ahmad

et al., 2022b).
3 Results

3.1 Growth indices

Intercropping without fertilizer application showed lower

trends in the growth indices of soybean crops such as stem

diameter (mm), plant height (cm), stem strength (g pot-1), and

leaf area (cm2) (Table 1). However, with fertilizer application,

intercropping showed significant (p< 0.05) improvement in

these indices of the soybean crop. Under intercropping, the

soybean plant height was 57, 62, 60, 66, and 79 cm in F0, F1, F2, F3,

and F4 treatment, respectively whereas the respective stem

diameters were 11, 12, 13, 12, and 14 mm. The stem strength

for these plants was noted as 362 g pot-1 (F0), 376 g pot-1 (F1),

394 g pot-1 (F2), 388 g pot
-1 (F3), and 426 g pot-1 with respective

leaf areas of 255, 270, 287, 285 and 302 cm2. Nevertheless, it was

observed that intercropping with fertilizer application reduced

the internode length of the soybean by 9, 6, 4, 5, and 2% in F0, F1,

F2, F3, and F4 treatment, respectively.
3.2 Yield indices and biomass dry matter

Shading of soybean by maize under maize-soybean

intercropping without fertilizer applications resulted in a
TABLE 1 Growth indices of soybean crop as influenced by different fertilizer application and planting patterns.

Fertilizer application
(FA)

Planting pattern
(PP)

Plant height
(cm)

Leaf area
(cm2)

Stem diameter
(mm)

Stem
strength
(g pot-1)

Internode length
(cm)

F0 SM 54.15 ± 8.0 c 246.65 ± 12.8 e 10.40 ± 0.1 f 345.05 ± 4.3 g 11.15 ± 1.1 bc

SI 65.95 ± 8.5 bc 255.20 ± 12.5 de 10.67 ± 0.2 f 362.48 ± 3.1 d 10.20 ± 1.0 c

F1 SM 57.20 ± 7.7 bc 250.95 ± 10.7 de 11.07 ± 0.3 e 351.92 ± 5.1 gf 12.20 ± 1.2 ab

SI 62.35 ± 8.9 bc 270.35 ± 9.7 c 11.75 ± 0.3 d 375.93 ± 4.1 c 11.50 ± 1.1 b

F2 SM 60.02 ± 8.1 bc 252.52 ± 9.9 de 11.70 ± 0.3 d 354.70 ± 4.1 ef 12.40 ± 1.0 ab

SI 67.80 ± 6.6 ab 286.80 ± 4.5 b 12.65 ± 0.2 b 393.95 ± 5.8 b 11.90 ± 1.1 ab

F3 SM 59.15 ± 8.1 bc 256.15 ± 7.4 de 11.62 ± 0.1 d 356.98 ± 3.5 ef 12.37 ± 0.8 ab

SI 65.72 ± 7.2 bc 285.23 ± 3.6 b 12.15 ± 0.2 c 387. 92 ± 5.2 b 11.90 ± 0.8 ab

F4 SM 63.95 ± 9.5 bc 261.70 ± 10.1 cd 11.95 ± 0.2 cd 367.17 ± 8.1 cd 12. 65 ± 1.0 a

SI 79.02 ± 13.8 a 302.03 ± 9.4 a 13.57 ± 0.3 a 426.45 ± 13.5 a 12.35 ± 1.0 ab

Significance levels

FA 0.01*** 0.00*** 0.00*** 0.00*** 0.01***

PP 0.01*** 0.00*** 0.00*** 0.00*** 0.04***

FA×PP 0.70ns 0.02*** 0.00*** 0.00*** 0.97ns
The means with ± standard deviations (SD) having different lower-case letters (down the column) differ significantly at the LSD test p ≤ 0.05 level of probability. FA; fertilizer application
regime, PP; planting patterns, F0; no fertilization, F1; nitrogen fertilization, F2; nitrogen fertilization combined with the foliar application of Fe, F3; nitrogen fertilization combined with foliar
application of Mo, F4; nitrogen fertilization combined with foliar application of Fe and Mo. ***p ≤ 0.001, nsp > 0.05.
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significant (p< 0.05) decrease in the yield indices and biomass

dry matter (g plant-1) of the soybean crop (Table 2). However,

the indices increased when intercropping was practiced with

fertilizer application. For instance, an 8% reduction in pods

plant-1 was noted in F0 compared to increases of 15, 13, 11, and

22% that were noted for F1, F2, F3, and F4, respectively. Similarly,

compared with F1, F2, F3, and F4 in which 10, 7, 5, and 16%

increases in grain yield (g plant-1) were noted, respectively, the

yield in F0 decreased by 13%. A comparable trend was noted for

100 seeds weight (g), with a decrease of 7% in F0 and increases of

12, 8, 7, and 19% in F1, F2, F3, and F4, respectively. Similarly, for

biomass dry matter (g plant-1), with exception of F0 where a

decrease of 11% was recorded, intercropping with fertilizer

resulted in 10, 9, 6, and 17% increase in F1, F2, F3, and F4,

respectively. With exception of F4 which had a land equivalent

ratio greater than one (1.03), the other treatments recorded

values below one ranging from 0.86 in F0 to 0.96 in F2.
3.3 Chlorophyll content and
photosynthetic activities

Intercropping without fertilizer application reduced the

chlorophyll and photosynthetic activities of the soybean crop,

but these indices increased significantly (p< 0.05) though

marginally when intercropping was practiced with fertilizer

application (Figure 3). For instance, under F0, intercropping

resulted in reduced chlorophyll SPAD values of soybean crop

by 4%, and increases of 9, 17, 14, and 26% in F1, F2, F3, and F4
Frontiers in Plant Science 07
treatment, respectively. Similarly, intercropping decreased the

Pn (μmol CO2 m
-2 s-1) of soybean by 7% in F0, but increased it

by 13, 19, 14, and 30% in F1, F2, F3, and F4 treatment,

respectively. Moreover, despite gs (mol H2O m-2 s-1)

increasing by 11, 20, 16, and 28% in F1, F2, F3, and F4

treatment, respectively, a decrease of 6% was noted in the F0

treatment. Likewise, intercropping decreased the Tr (μmol

H2O m-2 s-1) by 9% in F0, with increases of 16, 20, 18, and 28%

being recorded for F1, F2, F3, and F4, respectively. In contrast,

intercropping reduced the CO2 (mol CO2 mol-1) of soybean in

all treatments in a decreasing order of 11% (F0)< 8% (F1)< 5%

(F2)< 4% (F3)< 2% (F4).
3.4 Chlorophyll fluorescence

The chlorophyll fluorescence parameters (i.e., Fv/Fm, qp,

fPSII, ETR, and NPQ) varied significantly (p< 0.05) among the

intercropping systems and fertilizer application regimes

(Figure 4). That is, they decreased under intercropping

without fertilizer application but increased with fertilizer

application. In F0 treatment, a decrease of 4% was recorded for

Fv/Fm whereas increases of 11, 12, 7, and 21% were noted in F1,

F2, F3, and F4 treatment, respectively. Based on the qp,

intercropping without fertilizer application (F0) resulted in a

5% decrease as opposed to increases of 10, 12, 9, and 17% that

were noted in treatments that received fertilizer, i.e. F1, F2, F3, and

F4, respectively. Congruently, there were respective increases in

fPSII of 9, 12, 8, and 20% in comparison with a 6% reduction for
TABLE 2 Yield indices and biomass dry matter of soybean crop as influenced by different fertilizer application and planting patterns.

Fertilizer application
(FA)

Planting pattern
(PP)

No of pods plant-1 Grain yield
(g plant-1)

100-grain weight
(g)

Biomass dry
matter

(g plant-1)

LER

F0 SM 27.50 ± 1.3 fg 72.57 ± 5.3 d 14.85 ± 0.5 f 82.85 ± 5.8 e

SI 25.75 ± 1.2 g 62.97 ± 5.9 e 13.85 ± 1.0 g 74.15 ± 3.1 f 0.86

F1 SM 30.75 ± 1.7 de 74.12 ± 4.5 cd 16.32 ± 0.4 de 90.40 ± 4.1 cd

SI 35.50 ± 1.3 bc 81.35 ± 4.7 b 18.25 ± 1.3 b 99.33 ± 3.3 b 0.91

F2 SM 29.00 ± 1.1 ef 75.72 ± 5.6
bcd

15.87 ± 0.3 e 86.55 ± 4.5 de

SI 32.75 ± 1.7 cd 80.65 ± 2.3 b 17.07 ± 0.5 cd 93.67 ± 3.5 bc 0.96

F3 SM 27.75 ± 1.5 fg 76.35 ± 3.3
bcd

16.37 ± 0.4 de 84.85 ± 4.1 de

SI 30.75 ± 1.7 de 79.90 ± 3.4 bc 17.52 ± 0.2 bc 90. 00 ± 5.1 cd 0.94

F4 SM 36.00 ± 1.8 b 80.95 ± 3.8 b 17.67 ± 1.2 bc 94.75 ± 6.4 bc

SI 43.75 ± 4.2 a 93.67 ± 2.5 a 20.95 ± 1.4 a 110.75 ± 2.4 a 1.03

Significance levels

FA 0.00*** 0.00*** 0.00*** 0.00***

PP 0.00*** 0.01** 0.00*** 0.00***

FA×PP 0.00*** 0.00*** 0.00*** 0.00***
frontiers
The means with ± standard deviations (SD) having different lower-case letters (down the column) differ significantly at the LSD test p ≤ 0.05 level of probability. FA; fertilizer application,
PP; planting patterns, F0; no fertilization, F1; nitrogen fertilization, F2; nitrogen fertilization combined with foliar application of Fe, F3; nitrogen fertilization combined with foliar application
of Mo, F4; nitrogen fertilization combined with foliar application of Fe and Mo. ***p ≤ 0.001, **p < 0.01.
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F0. In addition, intercropping without fertilizer application (F0)

resulted in a 4% decrease in ETR whereas with the integration of

fertilizer, the parameter increased by 9, 13, 8, and 17% in F1, F2,

F3, and F4, respectively. In contrast, NPQ increased by 16% in F0,

and decreased under fertilizer application by 4% (F1), 8% (F2), 5%

(F3) and 12% (F4).
3.5 Rubisco activity and soluble protein

Maize-soybean intercropping practiced without fertilizer

application resulted in significant (p< 0.05) lower rubisco

activity (U g-1 plant-1) and soluble protein (U g-1 plant-1) of

soybean crop compared to when the crops were boosted with

fertilizer (Figure 5). For instance, the rubisco activity in F0 was

reduced by 4% and increased by 10% in F1, 14% in F2, 9% in F3,

and 18% in F4. Similarly, there was a 4% decrease in the soluble

protein of soybean in F0 treatment, and increases of 11, 13, 10,

and 18% in F1, F2, F3, and F4, respectively.
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3.6 Liner regression

The linear regression analysis showed that Pn had strong

correlations with chlorophyll, LA, grain yield, and biomass dry

matter (Figure 6). With exception of NPQ and CO2 where Pn

had negative correlations, it indicated significant and strong

associations with Tr, gs, rubisco, soluble protein, and leaf

chlorophyll fluorescence parameters such as Fv/Fm, fPSII, qp,
and ETR (Figures 7–9).
4 Discussion

Shade is the most common abiotic stress, which adversely

affects the physiological and agronomic traits of plants. Under a

maize-soybean intercropping environment, the shading of maize

crops restricts the growth of soybean crop mainly by changing

the direction or blocking the direct solar radiation, which in turn

reduce the chlorophyll, photosynthetic activities, growth indices,
D

A B

E

C

FIGURE 3

Chlorophyll SPAD values (A), Pn (B); gs (C), CO2 (D), and Tr (E) of soybean crop under different planting patterns such as SM; soybean mono-
cropping, SI; soybean intercropping and fertilizer application treatments such as F0; without fertilizer application, F1; nitrogen fertilizer
application, F2; nitrogen fertilizer with foliar application of iron, F3; nitrogen fertilizer with foliar application of molybdenum, F4; nitrogen fertilizer
with foliar application of iron and molybdenum). Pn; photosynthetic rate, gs; stomatal conductance, CO2; intercellular carbon dioxide and Tr;
transpiration rate). The column bars with dissimilar lowercase letters are significantly different from each other as per the LSD test (p< 0.05).
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enzymes, and ultimately its yield (Jiao et al., 2013; Hussain et al.,

2021). However, these negative effects of shading can be

effectively reduced with optimal fertilization of nutrient

elements particularly N, Fe, and Mo. Nitrogen is an important

element for plant growth and devolvement, because of its direct

involvement in the plant amino acid (the building block of plant

protein), nucleic acid (forms plant DNA), and photosynthetic

carbohydrates formation (Chen et al., 2017). Iron on the other

side plays an important role in plant chlorophyll and

photosynthesis, which gives plant oxygen and healthy green

color (Wang et al., 2017; Nasar et al., 2022). This is why iron

deficient plant shows chlorosis or a silky yellow color on their

leaves, thus making iron a crucial element for plant growth and

development. Molybdenum (Mo) is an essential micronutrient

for plant photosynthetic process because of its key role in the
Frontiers in Plant Science 09
chlorophyll biosynthesis pathway, chloroplast ultrastructure,

and configuration (Togay et al., 2015; Imran et al., 2019). It

also forms an important component of nitrate reductase,

nitrogenase, and leghemoglobin, which improve the nutritional

value of the crop resulting in better growth and yield production

(Wang et al., 2017; Oliveira et al., 2022). Previous studies have

focused on the effect of N, Fe, and Mo on the growth and yield of

soybean crops (Gai et al., 2017; Gülser et al., 2019; Oliveira et al.,

2022). However, the combined effect of these elements on the

soybean crop under intercropping environment has not been

reported so far.

The present study demonstrated that maize-soybean

intercropping without fertilization (treatment F0) resulted in

weak physio-agronomic efficiency of the soybean crop.

However, these indices were improved under fertilizer
D

A B

E

C

FIGURE 4

Leaf chlorophyll fluorescence parameters such as Fv/Fm; maximum fluorescence (A), fPSII; efficiency of the photosystem (B), qp;
photochemical quenching (C), NPQ; non-photochemical quenching (D), ETR; electron transport rate (E) of soybean crop under different
planting patterns such as SM; soybean mono-cropping, SI; soybean intercropping and fertilizer application treatments such as F0; without
fertilizer application, F1; nitrogen fertilizer application, F2; nitrogen fertilizer with foliar application of iron, F3; nitrogen fertilizer with foliar
application of molybdenum, F4; nitrogen fertilizer with foliar application of iron and molybdenum. The column bars with dissimilar lowercase
letters are significantly different from each other as per the LSD test (p< 0.05).
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application treatments (i.e., F1, F2, F3, and F4), but the F4

treatment showed promising results. The low agronomic traits

of the soybean crop in the intercropping under F0 treatment
Frontiers in Plant Science 10
could be attributed to the strong shading effect of the maize crop

as reported earlier (Hussain et al., 2021; Cheng et al., 2022).

However, the improvement in these traits in the intercropping
A B

FIGURE 5

Rubisco activity (A) and soluble protein (B) of soybean crop under different planting patterns such as SM; soybean mono-cropping, SI; soybean
intercropping and fertilizer application treatments such as F0; without fertilizer application, F1; nitrogen fertilizer application, F2; nitrogen fertilizer
with foliar application of iron, F3; nitrogen fertilizer with foliar application of molybdenum, F4; nitrogen fertilizer with foliar application of iron and
molybdenum. The column bars with dissimilar lowercase letters are significantly different from each other as per the LSD test (p< 0.05).
D

A B

C

FIGURE 6

Linear regression of photosynthetic rate (Pn), with chlorophyll content (Chl) (A), leaf area (LA) (B), grain yield (GY) (C), and biomass dry matter
(BDM) (D) of the soybean crop.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1014640
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Nasar et al. 10.3389/fpls.2022.1014640
under other treatments (i.e., F1, F2, F3, and F4) could be linked to

the application of N, Fe, and Mo, which help plants retain their

growth under stress environment (Gai et al., 2017; Gülser et al.,

2019; Seleiman et al., 2021; Mirriam et al., 2022; Oliveira et al.,

2022). As previously reported, shading of maize in maize-

soybean intercropping had negatively affected the canopy

structure and stem characteristics, which resulted in lower

physio-agronomic performances of soybean crop (Cheng et al.,

2022). In another study, the lower component yield and weak

growth of soybean crop were mainly because of soybean lodging

due to the shade of maize in maize-soybean intercropping

(Hussain et al., 2021). However, soybean retains its growth

and yield under different environmental stresses when

fertilized with optimal fertilizer application of N, P, Fe, and

Mo (Gai et al., 2017; Gülser et al., 2019; Seleiman et al., 2021;

Mirriam et al., 2022; Oliveira et al., 2022).

The leaf area is the key source of carbon assimilation and

light interception while chlorophyll is an important pigment

involved in not only the absorbance of solar energy but also in its

transmission and conversion into electrochemical energy. The

current study reported low leaf area and decreased SPAD values

of the soybean crop in intercropping under F0 treatments, which
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could be ascribed to increased shade under stress (Wu et al.,

2017). However, under fertilizer application (i.e., F1, F2, F3, and

F4) intercropping significantly increased the leaf area and SPAD

values of the soybean crop, but the F4 treatment was more

evident. The increase in leaf area is mainly linked with higher

chlorophyll content and net photosynthetic rate. Equally, the

study demonstrated a significant improvement in the

photosynthetic activities (i.e., Pn, gs, and Tr) of the soybean

crop in the intercropping at F1, F2, F3, and F4 treatment as

compared to F0 treatment. These results are supported by the

previous reports of Razaq et al. (2017), who stated that the shade

of maize in maize-soybean intercropping causes a significant

decrease in the chlorophyll SPAD, photosynthetic activities, and

ultimately its yield, but under nitrogen fertilization, these indices

improved to a certain extent. Iron foliar application is also

shown to improve the photosystem I and photosystem II

function of soybean crop under different stress environments

(Jiang et al., 2007), which confirmed our results. In another

study, molybdenum foliar application has been shown to

improve the shade tolerance of soybean crop by regulating its

chlorophyll, photosynthetic, and rubisco activities under maize-

soybean intercropping (Oliveira et al., 2022).
A B

C

FIGURE 7

Linear regression of photosynthetic rate (Pn) with transpiration rate (Tr) (A), intercellular carbon dioxide (CO2) (B), and stomatal conductance (gs) (C).
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The improved photosynthetic activities are directly

associated with increased leaf area in response to N, Fe, and

Mo application. This resulted in an improved light interception

and subsequently higher carbon assimilation rates which agree

with earlier findings (Wang et al., 2017; Nasar et al., 2021;

Oliveira et al., 2022). In addition, as reported by Wang et al.

(2017), the increase in photosynthetic activities could as well be

linked with the upregulation of light-harvesting genes in

photosystem II that improved net photosynthesis. Hussain
Frontiers in Plant Science 12
et al. (2021) also reported that the increased leaf area of the

soybean crop has significantly increased the photosynthetic

activities of the soybean crop under maize-soybean

intercropping, particularly under titanium application. These

results are also in line with those of Dervis ̧ et al. (2018), who
reported that the improved chlorophyll and photosynthetic

activities are directly associated with an increase in leaf area.

Moreover, the application of nitrogen, iron, and molybdenum

application either alone or in combination are also reported
D
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FIGURE 8

Linear regression of photosynthetic rate (Pn) with maximum fluorescence (Fv/Fm) (A), efficiency of photosystem (fPSII) (B), photochemical
quenching (qp) (C), non-photochemical quenching (NPQ) (D), and electron transport rate (ETR) (E).
A B

FIGURE 9

Linear regression of Pn with Rubisco activity (A) and soluble protein (B) of soybean crop.
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earlier to increase the leaf area of the plant, thereby improving

the chlorophyll and photosynthetic activities of the plant, which

ultimately leads to higher crop yield (Vagusevičienė et al., 2013;

Wang et al., 2017; Imran et al., 2019).

Changes in the photosynthetic capacity accompany a high

quantity of changes in chlorophyll fluorescence parameters

(i.e., Fv/Fm, øPSII, qp, and ETR) (Yao et al., 2017). Fv/Fm is

used to measure the original light energy conversion efficiency

of PSII in plant leaves. qp reflects the light energy absorbed and

NPQ reflects the light energy dissipated in the form of heat

whether the light energy is absorbed by PSII antenna pigment.

This in turn is used to measure photosynthetic electron

transfer (ETR) (Zhang et al., 2020; Tadmor et al., 2021;

Martıń-Clemente et al., 2022). Under environmental stress,

the Fv/Fm, øPSII, qp, and ETR decreased and the NPQ

increased, indicating that the ability of PS II to use light

energy decreased, resulting in low electron transfer efficiency

of carbon fixation, and the excess light energy lost in the form

of heat dissipation.

The current study demonstrated that intercropping under F0

treatment reduced the Fv/Fm, øPSII, qp, and ETR, and increased

the NPQ of the soybean crop. However, these indices of soybean

crop under intercropping were increased in F1, F2, F3, and F4

treatments, but the F4 treatments showed more prominent

results. The decreased leaf chlorophyll fluorescence parameters

of soybean crops were due to the lower photosynthetic activities

caused by the strong shading of maize crops in intercropping

(Wang et al., 2017; Peng et al., 2021; Oliveira et al., 2022).

However, the increase in leaf chlorophyll fluorescence

parameters could be due to fertilizer application (i.e., N, Fe,

and Mo). As reported earlier, nitrogen improves the

photosynthetic activities and chlorophyll fluorescence of

plants, because of its direct involvement in the component of

chlorophyll content, enzyme content, and enzymatic activity (Qi

et al., 2021). On the other hand, Fe is a key component of the

ribulose 1,5 bisphosphate carboxylase/oxygenase, which is a key

enzyme involved in plant photosynthesis (Wang et al., 2017)

with Mo being directly or indirectly involved in the chlorophyll

biosynthesis, chloroplast ultrastructure and rubisco enzymes

(Imran et al., 2019). Rubisco is the predominant key enzyme

protein involved in plant photosynthesis, contributing up to 20–

30% of total leaf nitrogen and 50% of the total soluble leaf

proteins (1st primary source) (Lin et al., 2022). However, under

environmental stress, plants showed a decrease in the rubisco

enzymes, which causes a decline in the photosynthetic activities

and soluble protein in plant leaves, thereby decreasing its yield

(Feller, 2016; Shao et al., 2021; Rahimi et al., 2022; Taylor

et al., 2022).

The study clearly shows that intercropping reduced the

soluble protein content and rubisco activity of soybean at F0

treatment. However, the soluble protein and rubisco activity of
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intercropping soybean were significantly improved in F1< F3<

F2< F4. The decrease in the Rubisco and soluble protein is linked

to the shading effect under intercropping environment.

However, the increase in rubisco activity and soluble protein

could be due to the fertilizer application of N, Fe, and Mo as

confirmed previously (Gai et al., 2017; Gülser et al., 2019;

Oliveira et al., 2022). Taking together, the findings of this study

suggested that optimal nitrogen fertilization combined with

adequate foliar application of Fe and Mo can help improve the

shade tolerance of soybean crops in maize-soybean

intercropping by improving the chlorophyll, photosynthetic

activities, and the associated enzyme, thereby enhancing its

growth and yield.
5 Conclusions

Nitrogen fertilization combined with foliar application of

iron and molybdenum compensated the shade induce lax

growth by enhancing soybean agronomic parameters such as

stem strength, stem diameter, and biomass dry matter in maize-

soybean intercropping. The same fertilizers combination

improved photosynthetic activities, chlorophyll content, and

chlorophyll fluorescence of soybean crops by expanding leaf

area and regulating the key enzymes and protein that had been

damaged by shade stress under maize-soybean intercropping. As

a result, nitrogen fertilization combined with foliar application

of iron and molybdenum increases soybean yield under maize-

soybean intercropping by up to 16 percent and therefore it’s

worthy of being adopted by soybean growers.
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