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Using transcriptomic and
metabolomic data to investigate
the molecular mechanisms that
determine protein and oil
contents during seed
development in soybean

Wenjing Xu1,2†, Qiong Wang1†, Wei Zhang1, Hongmei Zhang1,
Xiaoqing Liu1, Qingxin Song3, Yuelin Zhu2, Xiaoyan Cui1,
Xin Chen1 and Huatao Chen1*

1Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China, 2College of
Horticulture, Nanjing Agricultural University, Nanjing, China, 3State Key Laboratory of Crop Genetics
and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative
Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
Soybean [Glycine max (L.) Merri.] is one of the most valuable global crops. And

vegetable soybean, as a special type of soybean, provides rich nutrition in

people’s life. In order to investigate the gene expression networks and

molecular regulatory mechanisms that regulate soybean seed oil and protein

contents during seed development, we performed transcriptomic and

metabolomic analyses of soybean seeds during development in two soybean

varieties that differ in protein and oil contents. We identified a total of 41,036

genes and 392 metabolites, of which 12,712 DEGs and 315 DAMs were

identified. Analysis of KEGG enrichment demonstrated that DEGs were

primarily enriched in phenylpropanoid biosynthesis, glycerolipid metabolism,

carbon metabolism, plant hormone signal transduction, linoleic acid

metabolism, and the biosynthesis of amino acids and secondary metabolites.

K-means analysis divided the DEGs into 12 distinct clusters. We identified

candidate gene sets that regulate the biosynthesis of protein and oil in

soybean seeds, and present potential regulatory patterns that high seed-

protein varieties may be more sensitive to desiccation, show earlier

photomorphogenesis and delayed leaf senescence, and thus accumulate

higher protein contents than high-oil varieties.

KEYWORDS

protein content, oil content, gene expression pattern, metabolic pathway, molecular
regulation, soybean
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2022.1012394/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1012394/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1012394/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1012394/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1012394/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1012394/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.1012394&domain=pdf&date_stamp=2022-09-29
mailto:cht@jaas.ac.cn
https://doi.org/10.3389/fpls.2022.1012394
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.1012394
https://www.frontiersin.org/journals/plant-science


Xu et al. 10.3389/fpls.2022.1012394
Introduction

Soybean [Glycine max (L.) Merri.] is one of the most

valuable global crops. Vegetable soybean is a type of soybean

typically harvested during the R6-R7 stage, at which its pods and

seeds are suitable for eating (Young et al., 2000). Soybean seeds

contain approximately 40% protein and 20% oil (Chaudhary

et al., 2015; Li et al., 2015). Optimizing carbon flux towards the

synthesis of fatty acids (FAs) and amino acids and improving

seed quality has always been a major objective of soybean

breeding programs (Bhati et al., 2021). However, the negative

correlations between seed protein content with seed oil content

and seed yield have hindered progress (Chung et al., 2003; Patil

et al., 2017).

Soybean seed oil is mostly comprised of triacylglycerols

(TAGs), which have three acyl groups stemming from five

fatty acids: linolenic acid, stearic acid, linoleic acid, oleic

acid, and palmitic acid (Clemente and Cahoon, 2009). In

plants, TAG biosynthesis entails de novo FA biosynthesis

within plastids as well as TAG assembly in the endoplasmic

reticulum (ER) (Bates, 2016; Xu and Shanklin, 2016). The

enzyme acetyl-CoA carboxylase initiates the de novo FA

biosynthesis pathway by converting acetyl-CoA to malonyl-

CoA (Salie and Thelen, 2016). The newly synthesized FAs are

activated by conversion to FA acyl-CoAs by long-chain acyl-

CoA synthetase (LACS), and are then transported to the ER for

TAG biosynthesis.

The protein of soybean seeds has 18 amino acids and

includes all nine essential amino acids. Of these, there is a

deficiency of Cys, Trp, and Met (Zhang et al., 2018). These

amino acids are essential for seed development metabolism.

While free amino acids (FAAs) are involved in synthesizing

seed-storage proteins, one of their most important roles, they are

also precursors to the secondary metabolite biosynthesis and

provide energy. In addition, amino acids are efficiently

catabolized through the tricarboxylic acid (TCA) cycle (Less

and Galili, 2009; Kirma et al., 2012).

The levels of individual amino acids vary greatly during seed

development. In Arabidopsis, young seeds accumulate mostly

Ser, Glu, Gln, Gly, and Ala at 6 days after flowering (DAF).

However, at 11 DAF, Leu and Val levels significantly increase.

Subsequently, higher Ser and Gly levels were observed at 16 DAF

(Baud et al., 2002).

Amino acids in plants are synthesized via branched

pathways (Less and Galili, 2008; Pratelli and Pilot, 2014). The

carbon skeleton for Gln, Glu, proline (Pro), and Arg biosynthesis

comes from the Krebs cycle intermediate 2-oxoglutarate. The

first precursor for synthesizing the following six amino acids is

oxaloacetate: methionine (Met), threonine (Thr), asparagine

(Asp), isoleucine (Ile), lysine (Lys), and aspartate (Asn).
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Pyruvate is used to synthesize alanine (Ala), valine (Val), and

leucine (Leu), while tryptophan (Trp), tyrosine (Tyr), and

phenylalanine (Phe), all of which are aromatic amino acids,

are derived from the shikimate pathway. A precursor of serine

(Ser) is 3-phosphoglycerate, which leads then to synthesis of

glycine (Gly) and cysteine (Cys).

Previous studies used a variety of populations and

various mapping methods to identify 248 and 327 quantitative

trait loci (QTL) for soybean seed protein and seed oil

content, respectively (SoyBase, https://www.soybase.org).

Genome-wide association studies (GWAS) were used to find

novel loci for soybean oil and protein contents (Li et al., 2018;

Lee et al. , 2019; Zhang et al. , 2021). However, the

mechanisms underlying soybean seed development and the

regulation of protein and oil biosynthesis have not been

comprehensively investigated.

In order to obtain a more complete understanding of the

genetic basis of seed oil and protein accumulation in soybean, we

conducted transcriptomic and metabolomic analyses of

developing soybean seeds. We identified potential key

regulators that regulate the biosynthesis of protein and oil in

soybean seed and present potential regulatory patterns. Our

study provides a valuable resource for the genetic improvement

of soybean seed quality through molecular breeding.
Materials and methods

Plant materials and tissue preparation

For this experiment, we selected two soybean cultivars,

namely, ‘NPS233’ and ‘NPS301’, to evaluate the variations in

protein and oil contents. ‘NPS233’ accumulates more protein

and less oil in the seeds compared to ‘NPS301’, which is a high

oil/low protein variety (Table 1). The plant materials were

cultivated at the Luhe experimental base of Jiangsu Academy

of Agricultural Sciences in Nanjing, China, in the summer of

2021. Seed samples were collected at four developmental stages;

7 DAF (days after flowering), 14 DAF, 21 DAF, and 28 DAF,

frozen in liquid nitrogen and stored at -80°C for further

metabolite determinations and extraction of RNA.
Measurement of protein and oil

For measurement of samples protein and oil content (%),

~20 g seeds were grounded to powder and analyzed by Kjeldahl

Method and Soxhlet extraction, respectively (Bremner, 1960;

Fehr et al., 1968). Samples protein and oil content (%) were

averaged over three replications.
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Extracting of metabolites

Biological samples were vacuum freeze-dried with a

lyophilizer (Scientz-100F) and then crushed with a mixer mill

(MM 400, Retsch) and a zirconia bead at 30 Hz for 1.5 min. 100

mg samples of lyophilized powder were dissolved in a solution of

1.2 ml 70% methanol, vortexed every 30 minutes for 30 seconds

(six total vortexes), and maintained overnight at 4°C. Extracts

were filtered (SCAA-104, 0.22mm pore size; ANPEL, Shanghai,

China; http://www.anpel.com.cn/) after they were centrifuged

for 10 min at 16,000 g. They were then used in UPLC-

MS/MS analysis.
UPLC conditions

Samples were analyzed with a UPLC-ESI-MS/MS system

(UPLC, Shimadzu Nexera X2, www.shimadzu.com.cn/; MS,

Applied Biosystems 4500 Q TRAP, www.appliedbiosystems.

com.cn/) using the following conditions: UPLC; the column

was an Agilent SB-C18 (1.8 µm, 2.1 mm×100 mm); mobile phase

used solvent A, pure water with 0.1% formic acid, and solvent B,

and acetonitrile with 0.1% formic acid. Samples were separated

using a gradient program starting at 95% A, and 5% B. After

9 min, a linear gradient to 5% A, 95% B was set, and a

composition of 5% A, 95% B was maintained for 1 min, after

which a composition of 95% A, 5% B was attained after 1.10 min

and maintained for 2.9 min. The flow velocity, column oven

temperature, and injection volume were 0.35 ml per minute, 40°

C, and 4 ml, respectively. An ESI-triple quadrupole-linear ion

trap (QTRAP)-MS was connected with the effluent.
ESI-Q TRAP-MS/MS

Triple quadrupole (QQQ) and LIT were obtained using a

triple quadrupole-linear ion trap mass spectrometer (Q TRAP),

AB4500 Q TRAP UPLC/MS/MS System, with an ESI Turbo Ion-

Spray interface that was placed in positive and negative ion

modes and operated using Analyst 1.6.3 software (AB Sciex).

The parameters of the ESI source operation included the
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following: ion source, turbo spray; source temperature, 550°C;

ion spray voltage, (IS) 5500 V (positive ion mode)/-4500 V

(negative ion mode); ion source gas I (GSI), gas II (GSII), and

curtain gas (CUR) were set at 50, 60, and 25.0 psi, respectively;

collision-activated dissociation (CAD) was high. Instrument

tuning and mass calibration were carried out using 10 and 100

mmol/L polypropylene glycol solutions in QQQ and LIT modes,

respectively. QQQ scans were obtained with MRM experiments

with collision gas (nitrogen) set to medium. DP and CE for

individual MRM transitions were performed using additional

optimization of DP and CE. Certain MRM transitions were

observed during each time period according to the eluted

metabolites within that time frame.
Principal component analysis

PCA was not supervised and was carried out with the

statistics function prcomp in R (www.r-project.org). Prior to

this analysis, the data were subjected to unit variance scaling.
Pearson correlation coefficients and
hierarchical cluster analysis

Sample and metabolite HCA results are displayed as

heatmaps with dendrograms, and the Pearson correlation

coefficients (PCC) of the samples were assessed using the cor

function in R and only displayed as heatmaps. The R package

pheatmap was used to perform both PCC and HCA. For the

HCA, a color spectrum was used to display the normalized

metabolite signal intensities with unit variance scaling.
Identifying differential metabolites

Metabolites that were significantly regulated among groups

were identified using VIP ≥1 and absolute Log2FC

(│Log2FC│≥1). The values of the VIP were obtained based on

the results of OPLS-DA, which was produced with the R package

MetaboAnalyst R and also provided the score plots and

permutation plots. Prior to OPLS-DA, all data were mean-
TABLE 1 Phenotypic differences between ‘NPS233’ and ‘NPS301’.

Material Leaf
type

Whole growth
period (day)

HSW
(g)

Plant
height
(cm)

Number of main
stem nodes

Oil content (mg/mg) Protein content (mg/mg)

7
DAF

14
DAF

21
DAF

28
DAF

7
DAF

14
DAF

21
DAF

28
DAF

NPS233 oval 105 25.8 69 18 69.6 73.0 65.9 81.9 42.3 116.7 151.7 205.6

NPS301 circular 120 20.1 44 12 75.6 94.3 126.5 124.1 33.9 73.5 120.0 169.5
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centered and log transformed (log2). A permutation test with

200 permutations was conducted to prevent overfitting.
Analysis of enrichment and KEGG
annotation

The KEGG Compound database (http://www.kegg.jp/kegg/

compound/) was used to annotate the resulting metabolites,

which were subsequently mapped to the KEGG Pathway

database (http://www.kegg.jp/kegg/pathway.html). Pathways

with significantly regulated metabolites were then inputted

into MSEA (metabolite sets enrichment analysis), and the p-

values from a hypergeometric test were used to assess

their significance.
RNA extraction and transcriptome
sequencing

Total RNA was extracted from soybean samples using the

RNAprep Pure Plant Kit (TSINGKE, TSP412). RNA

quantification and cDNA library construction were performed

according to the methods described by Lu et al. (2018). The

libraries were sequenced using Illumina NovaSeq S6000. Three

biological replicates were included in each experiment.
Quality control of data

Fast p v 0.19.3 was used to sort the original data, and filter

DNA sequencing reads with adapters. Reads with Ns (unknown

base calls) higher than 10% of base read numbers were

discarded, as were sequencing reads with >50% low-quality (Q

≤20). The resulting clean reads were used to perform all

subsequent analyses.
Mapping reads to reference genomes

Reference genomes and their related annotation files were

obtained from the designated website, while HISAT v2.1.0 was

used to generate the index. Clean reads were cross-referenced

with the reference genome (Wm82.a2.v1).
Quantifying levels of gene expression

FeatureCounts v1.6.2 was used to analyze gene alignment,

after which gene length was used to establish the FPKM

(fragments per kilobase of transcript per million mapped

reads) for each gene, which is the most common method of

assessing levels of gene expression.
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Analyzing differences

The differential expression between the two groups was

analyzed using DESeq2 v1.22.1, while the P value was

corrected with the Benjamini & Hochberg method. The

resulting P values and |log2 fold-change| were used to

categorize significant differences in gene expression.

Differentially expressed genes were assessed according to the

following parameters: corrected P-value of 0.05 and absolute fold

change ≥2 (Mao et al., 2005).
Analysis of differential gene enrichment

The hypergeometric test was used to perform enrichment

analysis, while DEG enrichment in KEGG pathways was

assessed with KOBAS software (Mortazavi et al., 2008). GO

(Gene Ontology) was performed using the GOseq (v3.10.1)

(Götz et al., 2008).
Results

Metabolome profiling

To generate comprehensive metabolic regulatory networks

of soybean seed at different developmental periods, we collected

soybean seed samples from two soybean varieties at 7 days after

flowering (DAF), 14 DAF, 21 DAF, and 28 DAF. Seeds of the

soybean variety ‘NPS233’ accumulate more protein and less

oil than seeds of ‘NPS301’ at all four seed developmental

periods (Figures 1A, B). The experiment consisted of three

biological replicates, each of which was a pool of seeds from

five plants.

The metabolomes of the 24 samples were profiled using the

widely-targeted UPLC-MS/MS metabolic profiling approach.

We detected 392 compounds that could be grouped into 11

classes, including 25 alkaloids, 58 amino acids and derivatives,

52 flavonoids, 68 lipids, 39 nucleotides and derivatives, 32

organic acids, 30 phenolic acids, 23 terpenoids, 16 saccharides

and alcohols, 14 vitamins, and 35 other compounds (Table S1).

Among the metabolite classes, lipids, amino acids and

derivatives, and flavonoids were the most abundant.

We performed hierarchical clustering analysis of the 24

samples (7, 14, 21, and 28 DAF for the two varieties), and the

results showed that the three biological replicates from each

developmental stage grouped together, which suggested that the

generated metabolome data was highly reliable (Figure 1C). The

metabolites were clustered into three main groups, indicating

that there are distinct accumulation levels among the samples

taken at four stages of seed development (7, 14, 21, and 28 DAF).
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The results of principal component analysis (PCA) grouped

the eight samples into four discreet clusters (Figure 1D). The first

principal component (PC1, 36.45%) effectively separated the 7

DAF samples from the other three samples, implying that there

are changes in metabolite accumulation during soybean

seed development.
Analysis of the differentially accumulated
metabolites

To identify the differentially accumulated metabolites

(DAMs) between each pairwise comparison of soybean seed

samples, we analyzed three biological replicates of seeds from the

two soybean varieties at four different growth periods (NPS233-

1, NPS233-2, NPS233-3, and NPS233-4; NPS301-1, NPS301-2,

NPS301-3, and NPS301-4). Metabolites with variable

importance in projection (VIP) ≥1 and fold-change ≥2 or ≤0.5

were considered to be DAMs. We performed two separate types

of analyses of the DAMs; the first between the different growth

periods of the same variety, and the second between the two

varieties at the same growth period. As a result, 315 DAMs were
Frontiers in Plant Science 05
detected; in the first group of analyses these included 209, 203,

and 203, and 179, 179, and 192 DAMs in NPS233-1 vs. NPS233-

2, NPS233-1 vs. NPS233-3, and NPS233-1 vs. NPS233-4, and

NPS301-1 vs. NPS301-2, NPS301-1 vs. NPS301-3, and NPS301-

1 vs. NPS301-4 (Table S2). In the second group of analyses, we

detected 69, 104, 45, and 37 DAMs in the NPS301-1 vs. NPS233-

1, NPS301-2 vs. NPS233-2, NPS301-3 vs. NPS233-3, and

NPS301-4 vs. NPS233-4 comparisons, respectively (Table S2).

Among the DAMs, we detected 49 flavonoids, 48 lipids, and 44

amino acids and derivatives, and these were the most abundant.

Comparative analysis of the six groups of DAMs identified 274

and 235 DAMs in the NPS233 and NPS301 comparisons within the

groups of seed samples, respectively. Moreover, 69 and 30

metabolites were exclusively differentially accumulated in the

NPS233 and NPS301 groups, respectively. There were 20

differentially accumulated lipids and six differentially accumulated

aminoacids andderivatives in theNPS233groups;we found that one

phospho-sugar and one sugar acid, D-fructose 6-phosphate and D-

glucuronic acid, were differentially accumulated exclusively in

NPS233. Also, one lipid and five amino acids and derivatives were

exclusive to the NPS301 groups, but no differentially-accumulated

saccharides were found.
A B

DC

FIGURE 1

Phenotypic difference and 392 detected metabolites between ‘NSP233’ and ‘NPS301’. (A) Protein content of 7 DAF, 14 DAF, 21 DAF and 28DAF.
(B) Oil content of 7 DAF, 14 DAF, 21 DAF and 28 DAF. (C) The hierarchical clustering analysis of the 24 soybean seed samples. (D) Principal
component analysis of the seed samples, each circle represents a sample. For hierarchical clustering analysis, normalized signal intensities of
metabolites (unit variance scaling) are visualized as a color spectrum.7 DAF, NPS233-1 and NPS301-1; 14 DAF, NPS233-2 and NPS301-2; 21 DAF,
NPS233-3 and NPS301-3; 28 DAF, NPS233-4 and NPS301-4.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1012394
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xu et al. 10.3389/fpls.2022.1012394
Furthermore, we investigated DAMs with different

accumulation patterns, which included some intermediates of

the TCA cycle; for example, a-ketoglutaric acid, a ketone

derivative of glutaric acid, was up-regulated in NPS233 versus

NPS301 in developmental period 2 (14 DAF). a-ketoglutarate is
its carboxylate and is also known as 2-oxoglutarate; it is a keto

acid generated by deaminating glutamate and an intermediate

during the Krebs cycle.

We next performed KEGG (Kyoto Encyclopedia of Genes

and Genomes) pathway enrichment analysis. The top enriched

KEGG terms annotated for all the comparisons were “flavone

and flavonol biosynthesis”, “pyrimidine metabolism”,

“isoflavonoid biosynthesis”, “biosynthesis of amino acids”,

“biosynthesis of secondary metabolites”, “ABC transporters”,

“zeatin biosynthesis”, and “aminoacyl-tRNA biosynthesis”

(Figure S1).

In addition, DAM comparisons between the samples from

NPS301 revealed an enrichment of KEGG terms related to

“cyanoamino acid metabolism,” “2-oxocarboxylic acid

metabolism”, and “pyruvate metabolism”. The top enriched

KEGG terms in the comparisons of the NPS233 samples were

“flavonoid biosynthesis”, “folate biosynthesis”, “galactose

metabolism”, “biotin metabolism”, “alanine, aspartate and

glutamate metabolism”, and “cysteine and methionine

metabolism” (Figure S1).
Differentially expressed gene analysis

To investigate the molecular mechanisms underlying the

regulation of protein and oil biosynthesis in the soybean seed

developmental periods, we performed RNA-seq analysis for the

two varieties. A total of 47.0 million clean DNA sequencing

reads were generated, of which 94.79% had a Phred quality score

of Q30 or greater (Table S3). The mapping statistics of the

sequencing libraries are summarized in Table S4. We identified

1,176 novel genes, of which 394 were successfully annotated. In

total, 41,036 genes were found to be expressed in at least one

sample (Table S5).

The dataset was used to identify differentially expressed

genes (DEGs). We performed two separate analyses of the

DEGs; the first was between the different growth periods of

the same variety, and the second was between the two varieties at

the same growth period. The pairwise comparisons of samples

from NPS301 and NPS233 detected 12,906 DEGs in total

(Table S6). The pairwise comparisons NPS233-1 vs. NPS233-2,

NPS233-1 vs. NPS233-3, and NPS233-1 vs. NPS233-4 identified

3,341 (1,887 upregulated; 1,454 downregulated), 4,015 (2,314

upregulated; 1,701 downregulated) and 3,991 (2,228

upregulated; 1,763 downregulated) DEGs, respectively. The

pairwise comparisons NPS301-1 vs. NPS301-2, NPS301-1 vs.

NPS301-3, and NPS301-1 vs. NPS301-4 identified 7,889 (4,539

upregulated; 3,350 downregulated), 7,730 (4,505 upregulated;
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3,225 downregulated) and 8,234 (4,747 upregulated; 3,487

downregulated) DEGs, respectively (Figure 2A; Table S6).

We identified 1,676 DEGs across the three compared groups

from NPS233 and 4,420 DEGs from the comparative analysis of

the NPS301 samples (Figures 2B, C), suggesting that these core

conserved DEGs may be associated with the accumulation of

soybean protein and oil contents, respectively.

We detected 655 DEGs through pairwise comparisons

between the two soybean varieties at the same growth period,

including 242, 366, 236, and 169 DEGs in NPS301-1 vs. NPS233-

1, NPS301-2 vs. NPS233-2, NPS301-3 vs. NPS233-3, and

NPS301-4 vs. NPS233-4, respectively (Table S6).

To further analyze the potential function of these DEGs, we

conducted a KEGG pathway enrichment analysis. The top enriched

KEGG terms annotated for all the compared groups were “carbon

metabolism”, “glycerolipid metabolism”, “linoleic acid metabolism”,

“plant hormone signal transduction”, “biosynthesis of secondary

metabolites”, “glycosylphosphatidylinositol (GPI)-anchor

biosynthesis”, “beta-alanine metabolism”, and “other

glycan degradation”.

Notably, the DEGs in the three NPS233 comparison groups

were enriched in the KEGG terms “biosynthesis of amino acids”,

“r ibosome” , “glycolysis/gluconeogenesis” , “nitrogen

metabolism”, “fatty acid degradation”, and “pantothenate and

CoA biosynthesis”. KEGG pathway enrichment analysis of

DEGs in the pairwise comparisons of NPS301 samples

indicated that these genes were involved in several metabolic

processes including “fatty acid elongation”, “sphingolipid

metabolism”, “fatty acid metabolism”, “pyruvate metabolism”,

and “citrate cycle (TCA cycle)” (Figure S2).
DEGs that respond to soybean seed
development

To gain further insights into gene expression changes that

occurred over the four soybean seed developmental periods, we

performed k-means clustering of the DEGs based on their

expression patterns and obtained 12 clusters (Figure S3;

Table S7).

The DEGs in clusters 1, 6, 7, and 8 showed similar

expression trends in which the expression levels gradually

decreased after the second development period (samples

NPS301-2 and NPS233-2). DEGs in clusters 3 and 12 showed

an increase in expression in the first three periods, after which

the expression of these DEGs decreased in the fourth period.

Notably, the DEGs in clusters 3 and 12 showed different

expression levels in NPS233 and NPS301, indicating that the

DEGs in cluster 3 may be mainly related to protein content,

while the DEGs in cluster 12 may be mainly related to oil

content. The relative expression levels of DEGs in clusters 2, 4, 9,

10, and 11 were down-regulated over the four developmental

periods. Among them, the DEGs in cluster 11 showed a rapid
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down-regulation of expression, and the DEGs in clusters 2 and 4

had opposite expression patterns in NPS233 and NPS301,

indicating that these DEGs are strongly associated with oil or

protein contents in soybean seeds. Finally, expression levels of

DEGs in cluster 5 were rapidly up-regulated, which indicated

that these genes are involved in soybean seed development.

These clusters were selected as candidate DEG sets, and four

candidate DEG sets containing 2,887 DEGs were further

analyzed. We performed a KEGG pathway enrichment

analysis of these genes. Enrichment analysis of the DEGs in

cluster 3 indicated that they were mainly enriched in protein

processing in the endoplasmic reticulum, biosynthesis of the

amino acids valine, leucine, and isoleucine, protein export,

galactose metabolism, glycosaminoglycan degradation, and

other glycan degradation (Figures 3A, B), implying that the

DEGs in cluster 3 may be mainly related to protein biosynthesis.

Glyma.06G169700 in cluster 3, which was functionally annotated

as encoding acetolactate synthase 3, was found to be highly

expressed. Acetolactate synthase catalyzes the formation of

acetolactate from pyruvate, the first step in the synthesis of the

branched-chain amino acids (valine, leucine, and isoleucine).

KEGG analysis of DEGs in cluster 12 revealed that these genes

were associated with the terms “ribosome”, “ribosome biogenesis

in eukaryotes”, “pyruvate metabolism”, “fatty acid elongation”,

“biosynthesis of unsaturated fatty acids”, “fatty acid

degradation”, “fatty acid metabolism” , “peroxisome” ,

“glycolysis/gluconeogenesis”, and “taurine and hypotaurine

metabolism” (Figures 3C, D). Glyma.05G167700 in cluster 12

is a homolog of acetolactate synthase small subunit 2, which

encodes the regulatory subunit of acetohydroxy-acid synthase
Frontiers in Plant Science 07
and is involved in the feedback inhibition by branched-chain

amino acids. The regulatory subunit is required for full

enzymatic activity and contains two repeats of ~180 amino

acids, each of which is able to partially activate the catalytic

subunit. Leucine inhibits the enzyme reconstituted by the first

repeat, though isoleucine and valine do not, and no branched-

chain amino acid inhibits enzymes reconstituted by the second

repeat (Lee and Duggleby, 2001; Lee and Duggleby, 2002).

In addition, DEGs in cluster 2 were mainly enriched in genes

for phenylpropanoid biosynthesis, protein processing in

endoplasmic reticulum, glycerolipid metabolism, endocytosis,

starch and sucrose metabolism, pentose and glucuronate

interconversions or phenylpropanoid biosynthesis, glycerolipid

metabolism, linoleic acid metabolism, and valine, leucine and

isoleucine degradation. Glyma.03G205700 in cluster 2 is a

homolog of ANT1 in Arabidopsis thaliana, and gene that

encodes the protein aromatic and neutral amino acid

transporter 1 (ANT1). Aromatic and neutral amino acids are

translocated by ANT1, including tryptophan, tyrosine, histidine,

phenylalanine, valine, proline, glutamine, leucine, and arginine

(Chen et al., 2001). KEGG analysis of DEGs in cluster 4 showed

that these genes are involved in pyruvate metabolism,

phenylalanine metabolism, phenylpropanoid biosynthesis,

pentose and glucuronate interconversions, phenylalanine,

tyrosine and tryptophan biosynthesis, tyrosine metabolism, the

pentose phosphate pathway, and a-Linolenic acid metabolism

(Figure S4). Glyma.04G236900 in cluster 4 was annotated as

glutamate synthase [NADH], and this enzyme is involved in

glutamate biosynthesis. These results suggest that the DEGs are

related to hormone signal transduction, secondary metabolite
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FIGURE 2

Differentially expressed genes in the six compared groups from NPS233 and NPS301. (A) Number of DEGs identified through the comparative
analysis. (B, C) Venn diagrams depicting the DEGs between pairwise comparisons of seed samples from NPS233 and NPS301.
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biosynthesis or phenylpropanoid biosynthesis, amino acid

biosynthesis, and glycerolipid metabolism.
DEGs involved in FA biosynthesis

To evaluate the expression of FA biosynthetic genes, we

investigated the expression patterns of DEGs involved in lipid

biosynthesis and signal transduction pathways (Figure 4). Most

genes related to the de novo FA biosynthesis pathway were up-

regulated in NPS301 during the first three seed developmental

periods (7, 14, and 21 DAF), including the subunits of acetyl-

CoA carboxylases and the FA synthase complex. Notably, several

genes were down-regulated in NPS301, including one gene for

fatty acyl thioesterase B (FATB) (Glyma.04G151600), two acyl-

CoA binding protein genes (Glyma.11G014900 and

Glyma.13G152900), and one oleosin gene (Glyma.19G004800).

Also, the expression of one ketoacyl-CoA synthase gene

(Glyma.06G214800) was slightly down-regulated in NPS301.

Moreover, a gene encoding ketoacyl-ACP synthase I

(Glyma.08G024700) was up-regulated >5-fold in NPS301-2

versus NPS233-2, and an acyl carrier protein gene

(Glyma.20G230100) was highly expressed in the latter three

developmental periods (14, 21, and 28 DAF) in NPS301.
DEGs involved in the Krebs cycle and
amino acid biosynthesis

To identify putative genes involved in the regulation of

protein and oil contents in developing soybean seeds, we

analyzed the expression of Krebs cycle genes and the
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metabolic network within which it is embedded. As a result,

most of the genes that encode Krebs cycle enzymes had higher

expression levels in NPS301 than in NPS233 (Figure 5). With

regard to the reactions that consume or produce TCA cycle

intermediates, we investigated the expression of genes that

encode enzymes involved in amino acid biosynthesis and

degradation, secondary metabolite biosynthesis, and fatty acid

elongation. Several genes that putatively function in amino acid

biosynthesis pathways were up-regulated in NPS233 (Figure 5);

and example is Glyma.16G041200, which encodes glutamate

dehydrogenase 1. Glyma.02G014800 was annotated as a gene

encoding bifunctional aspartate aminotransferase and

glutamate/aspartate-prephenate aminotransferase (an AtAAT

homolog). The AtAAT gene is required for the transamination

of prephenate to arogenate, and is involved in the aromatic

amino acids biosynthesis pathway (Torre et al., 2006). This gene

was up-regulated in NPS233 compared to NPS301 in the first

developmental period, but down-regulated in the fourth period.

Another gene, Glyma.14G111800, encodes a homolog of the

aspartate aminotransferase P2 gene in Lupinus angustifolius. In

Arabidopsis thaliana, this gene is related to nitrogen metabolism

as well as energy and carbon metabolism, and is important for

the metabolizing organic acids related to the Krebs cycle and

amino acids (Schultz and Coruzzi, 1995). We also identified

several genes that were down-regulated in NPS233 versus

NPS301, including an argininosuccinate lyase gene

(Glyma.06G096700), two putative branched-chain-amino-acid

aminotrans ferase 7 genes (Glyma.07G186100 and

Glyma.08G063200), a glutamate dehydrogenase 2 gene

(Glyma.01G204600), and a branched-chain-amino-acid

aminotransferase-like protein 2 gene (Glyma.19G237000).
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FIGURE 3

KEGG analysis of the DEGs from cluster 3 and 12. (A) KEGG classification of the DEGs from cluster 3. (B) KEGG enrichment analysis of the DEGs
from cluster 3. (C) KEGG classification of the DEGs from cluster 12. (D) KEGG enrichment analysis of the DEGs from cluster 12.
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Discussion

Seed development can be classified into three main stages:

the first includes embryo growth, cell division, and

morphogenesis; the second includes seed maturation and the

accumulation of reserves; and the third includes the desiccation

of seeds and subsequent dormancy (Weber et al., 2004). In our

study, we performed transcriptomics and metabolomics analyses

of soybean seeds in four seed developmental periods. These four

developmental periods belong to the first two fundamental

stages of seed development.

Metabolites and gene regulatory networks for soybean seed

development have been studied in previous reports (Collakova et
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al., 2013; Peng et al., 2021).More recently, comparative metabolome

and transcriptome analyses were performed in the developing seeds

of grain and vegetable soybeans at R6 stage, 299 DAMs and and

20,546 DEGs were identified between the two varieties (Chen et al.,

2022). Functional enrichment analysis revealed that metabolic

pathways, including alanine, aspartate and glutamate metabolism,

fatty acid degradation, starch and sucrosemetabolism, andflavonoid

biosynthesis, were up-regulated in vegetable soybean (Chen et al.,

2022), which could partly explain the high-quality of soybean.

The purpose of our study is to investigate the mechanisms that

regulate soybean seed oil and protein contents accumulation in

developing seeds, our results of enrichment analysis were

consistent with the previous report. The DEGs were significantly
FIGURE 4

Expression patterns of DEGs involved in lipid biosynthesis and signal transduction pathways in soybean seed development. Heatmap showing the
expression patterns of the candidate genes involved in the regulation of oil content accumulation in soybean seed. Glyma.11G014900, acyl CoA
binding protein; Glyma.15G052500, hydroxyacyl-ACP dehydrase; Glyma.04G149300, ketoacyl-CoA synthase; Glyma.04G151600, fatty acyl
thioesterase B; Glyma.13G152900, acyl CoA binding protein; Glyma.08G345900, enoyl-ACP reductase; Glyma.13G057400, heteromeric acetyl CoA
carboxylase, biotin carboxyl carrier protein; Glyma.05G129600, ketoacyl-ACP synthase I; Glyma.18G156100, enoyl-ACP reductase; Glyma.12G027300,
enoyl-ACP reductase; Glyma.05G221100, heteromeric acetyl CoA carboxylase, biotin carboxylase subunit; Glyma.08G084300, ketoacyl-ACP synthase
I; Glyma.08G329700, acyl-CoA synthase; Glyma.11G248000, ketoacyl-ACP reductase; Glyma.06G012500, ketoacyl-CoA synthase;
Glyma.08G179900, hydroxyacyl-ACP dehydrase; Glyma.18G023300, biotin/lipoyl attachment domain-containing protein; Glyma.08G027600,
heteromeric acetyl CoA carboxylase, biotin carboxylase subunit; Glyma.11G233700, biotin/lipoyl attachment domain-containing protein;
Glyma.09G277400, ketoacyl-ACP synthase III; Glyma.18G009200, ketoacyl-ACP reductase; Glyma.08G024700, ketoacyl-ACP synthase I;
Glyma.11G164500, malonyl CoA-ACP malonyltransferase; Glyma.18G211400, ketoacyl-ACP synthase III; Glyma.18G196000, heteromeric acetyl CoA
carboxylase, carboxyltransferase alpha subunit; Glyma.11G245600, ketoacyl-CoA reductase; Glyma.18G195900, heteromeric acetyl CoA carboxylase,
carboxyltransferase alpha subunit; Glyma.18G195700, heteromeric acetyl CoA carboxylase, carboxyltransferase alpha subunit; Glyma.10G010800, ER
long-chain acyl- CoA synthetase; Glyma.10G107100, glycerol 3 phosphate dehydrogenase; Glyma.19G004800, Oleosin; Glyma.19G028800,
heteromeric acetyl CoA carboxylase, biotin carboxyl carrier protein; Glyma.19G053500, glycerol 3 phosphate dehydrogenase; Glyma.20G230100, acyl
carrier protein; Glyma.13G214600, acyl carrier protein; Glyma.06G112900, plastidic long-chain acyl- CoA synthetase; Glyma.02G186600, glycerol 3
phosphate dehydrogenase; Glyma.15G098500, acyl carrier protein; Glyma.18G265300, heteromeric acetyl CoA carboxylase, biotin carboxyl carrier
protein; Glyma.06G214800, ketoacyl-CoA synthase; Glyma.20G200900, Caleosins; Glyma.20G201000, Caleosins. The gene per row is Z-score
standardized.
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enriched in pathways related to amino acid and fatty acid

metabolism, partially explaining the corresponding differentially

accumulated metabolites detected between the two varieties.We

performed two separate analyses of differentially expressed genes

(DEGs); the first was between different growth periods of the same

variety, and the second was between the two varieties at the same

growth period. The pairwise comparisons of samples from the four

different growth periods identified 12,712 DEGs, and the

comparisons of groups from different varieties at the same

developmental periods identified 655 DEGs. Among them, there

are 461 DEGs common to both comparisons, and 194 genes were

exclusively differentially expressed in the comparisons between the

two soybean varieties (Figure 6A). We mapped the selected set of

genes to the lipid biosynthesis and amino acids biosynthesis

pathways to determine their expression patterns. A total of 30

genes were selected, and this candidate DEG set was then used in

further analyses (Figure 6B).

Among these 30 genes, two (Glyma.04G050300 and

Glyma.04G104700) are involved in leaf senescence delay;

Glyma.04G050300 is annotated as a zinc finger CCCH

domain-containing protein 2 (an OsC3H2 homolog), and

Glyma.04G104700 is annotated as encoding an acyltransferase-

like protein (homologous to At1g54570). OsC3H2 may repress

the role of jasmonic acid (JA) signaling in promoting leaf

senescence and the regulation of panicle development and the

pollination/fertilization processes (Kong et al., 2006).

Acyltransferase contributes to the synthesis of fatty acid phytyl

ester in chloroplasts, which is essential for maintaining the

integrity of the photosynthetic membrane during abiotic stress

and senescence (Lippold et al., 2012). Expression of both genes

was up-regulated in the second seed developmental period in

NPS233 versus NPS301, implying that delayed leaf senescence
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allows more protein to accumulate in the seeds. Previous studies

have shown that addition to the de novo synthesis of amino acids

in seed tissues as they develop an important source of additional

free amino acids are those synthesized in vegetative tissues and

then transported to seed tissues. The large-scale migration of free

amino acids to seeds is related to leaf senescence, where leaves

degrade their proteins, producing available free amino acids that

can move to develop seeds (Fernie and Hoefgen, 2013; Cohen

et al., 2017; Watanabe et al., 2017).

Another gene, Glyma.17G149300, is a homolog of CKB2.

CKB2 encodes a casein kinase II subunit beta-2, which is

involved in the regulation of the basal catalytic activity of the

alpha subunit. The tetrameric holoenzyme CK2 has two alpha

and two beta subunits and is responsible for phosphorylating the

transcription factor PIF1 once it’s exposed to light. This induces

proteasome-dependent PIF1 degradation and promotes

photomorphogenesis (Bu et al., 2011). Glyma.17G149300

expression was up-regulated in NPS233 versus NPS301 in the

first developmental period, indicating that photomorphogenesis

in NPS233 occurs earlier than in NPS301.

In addition, the expression of two seed desiccation-related genes,

Glyma.07G236800 and Glyma.07G236900, was up-regulated in the

third period in NPS301 versus NPS233. These two genes were

annotated as encoding desiccation-related protein pcC13-62, and

quantitative analysis demonstrated that there is a lower level of

pcC13-62 transcript accumulation in species prone to desiccation

than in those that tolerate desiccation (Giarola et al., 2018).

Synthesizing seed-storage proteins still happens in the third seed

developmental stage (maturation and desiccation), though the oil

content typically decreased in this stage (Baud et al., 2002). These

results indicate that high-protein soybeans may not tolerate

desiccation, and thus accumulate more protein.
FIGURE 5

DEGs involved in Krebs cycle and the amino acids metabolic network it embedded in. Reactions are shown that consume or produce TCA cycle
intermediates. For simplicity, co-enzymes are omitted from the TCA cycle. For each gene, squares denote expression patterns in each variety
(see legend). Glyma.14G111800, aspartate aminotransferase, Asp + 2-Oxoglutarate <-> Oxaloacetate + Glu, Glyma.06G096700,
argininosuccinate lyase, Argininosuccinate -> Arg + Fumarate. The gene per row is Z-score standardized.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1012394
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xu et al. 10.3389/fpls.2022.1012394
Inour study,weobserved that thegene encoding thedesiccation-

tolerance protein pcC13-62was up-regulated inNPS301; at the same

time, the geneCKB2 that promotes photomorphogenesis was highly

expressed in NPS233, and two genes involved in the delay of leaf

senescence were also up-regulated in NPS233. Moreover, the two

soybean varieties that accumulated different protein and oil contents

had different maturity dates, with NPS233 maturing earlier. Taken

collectively, we propose that the soybean variety NPS233 is more

sensitive to desiccation, photomorphogenesis in NPS233 occurs

earlier, and leaf senescence is delayed, which could explain why

this variety has a higher seed protein content.

There was also a proteasome-related gene identified in the

candidate gene set. the 26S proteasome is a protein complex that is

responsible for selective, efficient, and processive hydrolysis of

intracellular proteins. Glyma.14G071000, annotated as encoding

the 26S proteasome regulatory subunit 10B homolog A, was up-

regulated in NPS301 compared to NPS233. The 26S proteasome is

related to theATP-dependent degradation of ubiquitinated proteins.

Few compounds are used to transport and store most nitrogen in

plants.Themost commoncompoundrelated to transport in legumes

is asparagine (Miflin et al., 1977; Watanabe et al., 1977). An

asparagine synthetase gene, Glyma.18G061100, was also present in

the candidate gene set, and the gene was up-regulated in NPS233

compared to NPS301 in the seed developmental second period,

indicating that there is more nitrogen transport in the high protein/

low oil soybean variety NPS233.

It is worth noting that in our study, a gene annotated as

encoding glutelin type-A 2 (GLUA2), was up-regulated in

NPS301 compared to NPS233. OsGluA2 is involved in the

regulation of grain protein content in rice (Yang et al., 2019);
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it functions as a positive regulator of rice grain protein content

and has a pleiotropic effect on rice grain quality. The grain total

protein content, as well as the glutelin, albumin, and prolamin

contents, is significantly higher in the high grain protein content

accession, but globulin is the exception. However, in soybean,

globulin is the predominant seed storage protein. The results of

our study show that GLUA2 may function differently in soybean

compared to rice. The candidate genes used in this study can be

manipulated through gene editing or molecular marker-aided

selection to improve the quality of soybeans.

One key outcome of our study is a set of potential key candidate

genes. Indeed, within the candidate genes are many fatty acid and

amino acid metabolism-related genes, including ten acetyl-CoA

carboxylase encoding genes, which initiated the de novo FA

biosynthesis pathway. Metabolites with different pattern of

accumulation between the two varieties with respect to amino acid

metabolism were identified. For example, a-ketoglutaric acid, was
up-regulated in ‘NPS233’ versus ‘NPS301’ in developmental stage 2,

whose carboxylate, 2-oxoglutarate provides carbon skeleton for Glu,

Gln, proline (Pro) andArg biosynthesis, and is an intermediate in the

Krebs cycle. Somemetabolites were not detected, possibly due to the

method used in this study, their roles in oil and protein contents

accumulation of soybean seed remain to be studied.
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FIGURE 6

Candidate DEG set belonging to the lipid and amino acids biosynthesis pathways. (A) Venn diagram depicting the specific DEGs between the
four compared groups. (B) Heatmap showing the expression patterns of the candidate genes involved in lipid and amino acids biosynthesis
pathways. The gene per row is Z-score standardized.
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