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Quercus gilva is an ecologically and economically important species of

Quercus section Cyclobalanopsis and is a dominant species in evergreen

broad-leaved forests in subtropical regions of East Asia. In the present study,

we reported a high-quality chromosome-scale genome assembly of Q. gilva,

the first reference genome for section Cyclobalanopsis, using the combination

of Illumina and PacBio sequencing with Hi-C technologies. The assembled

genome size of Q. gilva was 889.71 Mb, with a contig number of 773 and a

contig N50 of 28.32 Mb. Hi-C scaffolding anchored 859.07 Mb contigs (96.54%

of the assembled genome) onto 12 pseudochromosomes, with a scaffold N50

of 70.35 Mb. A combination of de novo, homology-based, and transcript-based

predictions predicted a final set of 36,442 protein-coding genes distributed on

12 pseudochromosomes, and 97.73% of them were functionally annotated. A

total of 535.64 Mb (60.20%) of repetitive sequences were identified. Genome

evolution analysis revealed that Q. gilva was most closely related to Q. suber

and they diverged at 40.35 Ma, andQ. gilva did not experience species-specific

whole-genome duplication in addition to the ancient gamma (g) whole-

genome triplication event shared by core eudicot plants. Q. gilva underwent

considerable gene family expansion and contraction, with 598 expanded and

6,509 contracted gene families detected. The first chromosome-scale genome

of Q. gilva will promote its germplasm conservation and genetic improvement

and provide essential resources for better studying the evolution of Quercus

section Cyclobalanopsis.
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2022.1012277/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1012277/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1012277/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1012277/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1012277/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.1012277&domain=pdf&date_stamp=2022-09-23
mailto:lihe90@csuft.edu.cn
https://doi.org/10.3389/fpls.2022.1012277
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.1012277
https://www.frontiersin.org/journals/plant-science


Zhou et al. 10.3389/fpls.2022.1012277
Introduction

The genus Quercus, comprising approximately 450 species,

is one of the most dominant woody genera throughout Asia,

Europe, and America (Plomion et al., 2018; Zhou et al., 2022).

Classifying Quercus genus has been historically challenging due

to low interspecific differentiation and high intraspecific genetic

variation partly caused by hybridization and introgression

(Hipp, 2015). According to the recent molecular evidence

provided by nuclear ribosomal internal transcribed spacer

(ITS), restriction fragment length polymorphism (RFLP), and

genomics datasets, the species in genus Quercus have been

grouped into two subgenera Quercus and Cerris (Manos et al.,

2001; Denk and Grimm, 2010; Denk et al., 2017; Deng et al.,

2018; Hipp et al., 2020). Subgenus Quercus, which is primarily

distributed in North America, includes five sections: Lobatae,

Ponticae, Protobalanus, Quercus, and Virentes. Subgenus Cerris,

of which the major distribution region is Eurasia, consists of

Cerris, Cyclobalanopsis, and Ilex sections (Denk et al., 2017).

Quercus section Cyclobalanopsis is mainly distributed in

subtropical and tropical regions of Asia (Denk and Grimm,

2010). Approximately 90 species have been recognized in section

Cyclobalanopsis and are well-adapted to warm and humid

climates. Due to their ecological importance, the phylogeny of

Cyclobalanopsis species has been investigated using both

phenotypic and molecular data over the past ten years (Denk

and Grimm, 2010; Deng et al., 2013; Deng et al., 2014; Deng

et al., 2018; Hipp et al., 2020), which helped us to better

understand the evolutionary history of section Cyclobalanopsis.

In the latest study, Deng et al. (2018) utilized restriction-site

associated DNA sequencing (RAD-seq) data to resolve

phylogenetic relationships of 34 Cyclobalanopsis species,

inferring two major lineages that are compound trichome

bases (CTB) lineage and single-celled trichome bases (STB)

lineage. RAD-seq is a fractional genome sequencing strategy

that usually only samples a small proportion of the genome

(Davey and Blaxter, 2010; Lowry et al., 2017). Moreover, the

RAD-seq approach relies on enzymes to isolate restriction site

fragments; the polymorphic sites occurring at restriction sites

consequently lead to missing information, resulting in potential

bias in the phylogenetic estimation (Ai et al., 2022). The

genome-wide sequencing data of white oaks (e.g., Q. robur, Q.

lobata, Q. mongolica) have contributed significantly to resolving

phylogenetic relationships within section Quercus (Plomion

et al., 2018; Ai et al., 2022; Sork et al., 2022). Therefore, the

avai lab i l i ty of whole-genome sequencing data for

Cyclobalanopsis species is essential to the phylogenetic

inference of section Cyclobalanopsis. However, none of

Cyclobalanopsis species have available genome-wide data yet.

Quercus gilva (2n=2x=24) is a representative species of

section Cyclobalanopsis in East Asia, including southern and

southeastern China, Japan, and Jeju Island of South Korea (Zeng

et al., 2019; Han et al., 2020) (Figure 1A). Q. gilva is a native and
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dominant species in evergreen broad-leaved forests in

subtropical areas of East Asia. In China, Q. gilva naturally

distributes in mixed and secondary forests from 106°-122°E to

22°-29°N at altitudes of 300-1500 m (Zeng et al., 2019). It

provides essential ecological services, including water

conservation, soil protection, and carbon sequestration.

Besides, its red, hard, and well-textured heartwood provides

quality materials for high-end furniture and fine artware

production (Zeng et al., 2019) (Figures 1B–D). Q. gilva has

been therefore considered to be ecologically and economically

valuable. However, the once widespread Q. gilva populations

have greatly diminished as a consequence of human disturbance

(e.g., large-scale logging and regional development) (Deng et al.,

2018). Limited studies have been conducted on Q. gilva, which

focused on its identification (Ohyama et al., 2001; Noshiro and

Sasaki, 2011), marker development (Sugiura et al., 2014), genetic

diversity (Sugiura et al., 2015), and potential distributions (Han

et al., 2020). Although a chloroplast genome of Q. gilva was

reported (Zeng et al., 2019), nuclear genome information is not

available for Q. gilva.

We herein report the first chromosome-scale genome

assembly and reveal the genome evolution of Q. gilva. This

high-quality reference genome will promote germplasm

conservation and genetic improvement of Q. gilva and provide

essential resources for better understanding the phylogenetic

relationships of Quercus section Cyclobalanopsis.
Materials and methods

Plant materials and DNA extraction

Fresh leaf tissues were sampled from a 12-year-old Q. gilva

individual growing in Yuchi State-Owned Forest Farm

(113.0697°E, 28.5965°N), Hunan Province, China (Figure 1E).

Leaves were immediately stored in liquid nitrogen until being

transported back to the laboratory and stored at -80°C. The

genomic DNA extraction from leaf tissues was performed using

DNeasy Plant Mini Kit (QIAGEN, Valencia, CA, USA). The

quality and quantity of genomic DNA were assessed by

NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific,

Wilmington, DE, USA), 0.8% agarose gel electrophoresis, and

Qubit 3.0 fluorometer (Life Technologies, CA, USA).
DNA sequencing and data processing

Three different approaches were adopted to perform

genomic DNA sequencing. Illumina libraries were constructed

with ~350 bp inserts and sequenced on a NovaSeq 6000 platform

(Illumina, San Diego, CA, USA) with paired-end reads of 150 bp

(PE 150 bp). Paired-end adapters were removed from raw data

using FastUniq v1.1 (Xu et al., 2012). Raw data were then filtered
frontiersin.org

https://doi.org/10.3389/fpls.2022.1012277
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhou et al. 10.3389/fpls.2022.1012277
according to the following criteria: (a) duplicate read pairs; (b)

reads with unknown bases ≥ 10%; (c) reads of which ≥ 50% bases

with Phred quality score ≤ 5. BWA-MEM v0.7.12 (Li and

Durbin, 2009) was used to filter out contamination reads.

After quality control, Illumina clean reads were obtained and

utilized to perform a genome survey.

PacBio library was prepared using the “Procedure &

Checklist – Preparing HiFi SMRTbell® Libraries using the

SMRTbell Express Template Prep Kit 2.0” protocol (Pacific

Biosciences of California, Inc., CA, USA). HiFi sequencing was

carried out on a PacBio Sequel II (Pacific Biosciences of

California, Inc., CA, USA) with circular consensus sequencing

(CCS) mode using Sequel II Binding Kit 2.2 and Sequel II

Sequencing Kit 2.0. After removing adapters and low-quality

reads using the PacBio SMRT Analysis module in SMRT Link

v11.0, HiFi CCS clean data were obtained and used for

subsequent analyses.

A Hi-C library was generated following the approach

described by Lieberman-Aiden et al. (2009). Briefly, chromatin

was fixed, extracted, and digested. Subsequently, DNA was

purified from protein, then randomly sheared into fragment
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sizes of 100-500 bp, and sequenced using PE 150 bp mode on a

NovaSeq 6000 platform. Data were cleaned and processed in the

same manner as described in the genomic DNA sequencing for

the genome survey.
RNA extraction and sequencing

Total RNA was extracted from root, leaf, and branch

tissues of the same Q. gilva individual that was used for

genome sequencing using RNAprep Pure Plant Kit (Tiangen,

Beijing, China). RNA Nano 6000 Assay Kit of Agilent

Bioanalyzer 2100 system (Agilent Technologies, CA, USA)

and NanoDrop 2000 spectrophotometer (Thermo Fisher

Scientific, Wilmington, DE, USA) were then used to

examine RNA quality and quantity. A mixture of total RNA

from three tissues was used for library construction,

performed by Hieff NGS Ultima Dual-mode mRNA Library

Prep Kit for Illumina (Yeasen Biotechnology, Shanghai,

China) and sequenced using an Illumina NovaSeq 6000

platform with PE 150 bp mode.
FIGURE 1

Distribution and characteristics of Quercus gilva. (A) Distribution of Q. gilva based on specimen records, literature, and field survey, (B) trunk,
(C) leaves, and (D) fruits of Q. gilva, (E) individual of the sampled 12-year-old Q. gilva.
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Genome survey, assembly
and assessment

Before de novo genome assembly, the genome size, repeated

sequences, and heterozygosity were estimated using K-mer

analysis with Illumina clean reads. The iterative selection of 19

bp base sequences (K-value=19) was used for K-mer analysis. K-

mer frequency distribution was tallied and the K-mer depth

distribution curve was calculated, which were then used to

evaluate genome size, the percentage of repeated sequences,

and heterozygosity ratio as described by Li et al. (2019).

HiFi CCS clean reads were initially assembled using Hifiasm

v0.15.4 (Cheng et al., 2021) with parameters -z20 to trim both

ends of reads by 20 bp. BWA-MEM v0.7.12 (Li and Durbin,

2009) was then used to align the Hi-C clean data onto the

assembled genome. The read pairs were independently mapped

to the genome assembly and only read pairs that were uniquely

mapped were used in subsequent analyses. Valid interaction

paired-end reads were used to cluster, sort, and correct the

contigs into 12 pseudochromosomes using 3D-DNA

(Dudchenko et al., 2017) and manual inspection was

performed with Juicebox v1.22 (Robinson et al., 2018).

The quality of the assembled Q. gilva genome was assessed

from four aspects. First, Illumina clean reads and CCS clean reads

were re-aligned onto the final assembly by BWA-MEM v0.7.12 (Li

and Durbin, 2009) and Minimap2 v2.24 (Li, 2018), respectively.

Second, BUSCO v5.2.2 assessment (Simão et al., 2015) was

performed using the embryophyta_odb10 dataset and default

parameters. Third, the long terminal repeat (LTR) Assembly

Index (LAI) was applied to assess the assembly continuity as

described previously (Ou et al., 2018). Finally, the occurrence of

telomeric tandem repeat ((TTAGGG/CCCTAA)n) was examined

on both edges of 12 pseudochromosomes to assess the

completeness and accuracy of our chromosomal assembly.
Genome annotation

The repetitive sequences that include tandem repeats and

transposable elements (TEs) in the Q. gilva genome were

identified. Tandem repeats were annotated using MISA v2.1

(Thiel et al., 2003). TEs in the assembled genome were identified

using de novo and homology-based approaches. A de novo

repetitive sequence library of the Q. gilva genome was

constructed using RepeatModeler v2.0 (http://www.

repeatmasker.org/RepeatModeler/) and TEs were subsequently

identified using RepeatMasker v4.0.5 (Tarailo-Graovac and

Chen, 2009). For the homology-based approach, the assembled

Q. gilva genome was aligned against the Repbase database v20.05

(Bao et al., 2015) using RepeatMasker v4.0.5 with default

parameters for TEs identification. Results from these two

approaches were merged to yield final TEs in the assembled Q.

gilva genome.
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A combination strategy of de novo, homology-based, and

transcript-based predictions was applied to predict protein-

coding genes. De novo prediction was performed using

AUGUSTUS v3.3.3 (Stanke et al., 2004) on the repeat-masked

sequences. In homology-based prediction, the protein sequences

of Quercus aquifolioides, Quercus lobata (Sork et al., 2022),

Quercus mongolica (Ai et al., 2022), Quercus robur (Plomion

et al., 2018), and Quercus suber (Ramos et al., 2018) were aligned

against the Q. gilva assembly using TBLASTN v2.60 (Gertz et al.,

2006). GeMoMa v1.8 (Keilwagen et al., 2016) was then employed

to predict protein-coding genes based on homologous

sequences. In the transcript-based approach, RNA sequencing

clean data were mapped to the Q. gilva genome by HISAT2

v2.2.0 (Kim et al., 2019), and transcripts were then assembled

using StringTie v2.1.3 (Pertea et al., 2015). PASA v2.4.1 (Haas

et al., 2003) was utilized to predict gene models. MAKER v3.1.2

(Cantarel et al., 2008) was used to integrate the results from de

novo, homology-based, and transcript-based approaches to

generate a consensus gene set.

Functional annotation of the predicted genes was performed

by searching for the best matches of alignments in non-

redundant (NR) (https://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/

), Swiss-prot (Boeckmann et al., 2003), and Eukaryotic

Orthologous Groups (KOG) (Tatusov et al., 2003) using

BLASTP v.2.7.1 (Camacho et al., 2009) with e-value ≤ 1e–5.

Gene Ontology (GO) (Ashburner et al., 2000) terms were

assigned to the predicted genes based on eggNog-mapper

v2.1.6 (Cantalapiedra et al., 2021) annotation. Putative gene

pathways were inferred based on the Kyoto Encyclopedia of

Genes and Genomes (KEGG) databases using the BlastKOALA

webservice (http://www.kegg.jp/blastkoala/) (Kanehisa et al.,

2016). Protein domains and motifs were characterized using

InterProScan v5.42-78.0 (Jones et al., 2014) with Pfam (Finn

et al., 2014) database.

Non-coding RNAs (ncRNAs), which include ribosomal

RNAs (rRNAs), transfer RNAs (tRNAs), micro RNAs

(miRNAs), and small nuclear RNAs (snRNAs), were identified

through sequence alignment to the Rfam database (Griffiths-

Jones et al., 2005). The rRNAs were identified using RNAmmer

v1.2 (Lagesen et al., 2007). The tRNAs were predicted using

tRNAscan-SE v1.3.1 (Schattner et al., 2005) with eukaryote

parameters. Infernal v1.1 (Nawrocki and Eddy, 2013) was used

to detect miRNAs and snRNAs.
Phylogenetic analysis and divergence
time estimation

Protein sequences of Arabidopsis thaliana, Betula

platyphylla, Castanea dentata, Fagus sylvatica, Oryza sativa,

Populus trichocarpa, Q. gilva, Q. lobata, Q. suber, and Ricinus

communis were used to cluster the orthologous genes. For each

gene, only the longest transcript was retained and protein
frontiersin.org
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sequences that are less than 50 amino acids in length or have

internal stop codons were filtered. Gene family clustering

analysis was then performed using OrthoFinder v2.5.2 (Emms

and Kelly, 2019) with filtered protein sequences of the 10 species.

A phylogenetic tree on a basis of shared single-copy

orthologous genes was generated for A. thaliana , B.

platyphylla, C. dentata, F. sylvatica, O. sativa, P. trichocarpa,

Q. gilva, Q. lobata, Q. suber, and R. communis. MAFFT v7.490

(Katoh and Standley, 2013) was used to independently perform

the multiple sequence alignment for each gene, and Gblocks

v0.91b (Talavera and Castresana, 2007) was then utilized to filter

poorly aligned sequences. Protein sequences of all single-copy

orthologous genes were concatenated, which was then used to

construct a maximum-likelihood (ML) tree by RAxML v8.2.12

(Stamatakis, 2014) with PROTGAMMALGX model of

sequence evolution.

Divergence times betweenQ. gilva and nine other species were

estimated with MCMCTree in PAML v4.10.0 (Yang, 2007). Two

calibration nodes were used in divergence time estimation. The

first calibration was the divergence time between A. thaliana and

O. sativa (152 Ma) obtained from the TimeTree database (http://

www.timetree.org) (Kumar et al., 2017), which is widely used to

estimate divergence times among plant species. The pollen fossil

of a Quercus specimen (Hofmann et al., 2011) that has been

commonly used to constrain the node of genus Quercus (Hipp

et al., 2020; Zhou et al., 2022) was used to calibrate the stem node

of Q. gilva, Q. suber, and Q. lobata with 56 (54-60) Ma.
Gene family contraction and
expansion analysis

To examine gene family expansion and contraction between

the ancestor and each species, gene family clustering and

phylogenetic analysis results were inputted into CAFÉ v3.1

(De Bie et al., 2006). Significant gene family expansion and

contraction were determined with P-value ≤ 0.05. Functional

enrichment analysis was conducted to identify expanded and

contracted gene families in the Q. gilva genome. GO term

assignment and KEGG pathway analysis were performed using

eggNog-mapper v2.1.6 (Cantalapiedra et al., 2021) and

BlastKOALA webservice (Kanehisa et al., 2016), respectively.
Genome synteny and whole-genome
duplication analysis

Colinear maps were generated by comparing genome

sequences on 12 pseudochromosomes of Q. gilva with Q.

lobata and Q mongolica genomes using MUMmer v4.0

(Marçais et al., 2018) to investigate the syntenic relationship

between Q. gilva and these two oak genomes. Additionally,

synteny analysis was performed between Q. gilva and Q.
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lobata genomes and between Q. gilva and Q. mongolica

genomes using JCVI v1.1.19 (Tang et al., 2008) with following

parameters: – cscore=.99, –minspan=30. The block comprising

at least five sequential genes and with C-score≥0.99 was defined

as the initial syntenic block and the syntenic blocks spanning

more than 30 genes were displayed in the synteny map.

According to the previous findings that Q. lobata does not

undergo species-specific whole-genome duplication (WGD)

events besides the ancient gamma whole-genome triplication

(g-WGT) event shared by core eudicot plants (Ai et al., 2022), Q.

lobata and Q. suber were selected for the inference of WGD

events in Q. gilva. Protein sequences of these species were

compared with Q. gilva genome to identify syntenic blocks

and syntenic genes using BLASTP v.2.7.1 (Camacho et al.,

2009) (e-value ≤ 1e–5). Synonymous substitution rate (Ks) of

the syntenic gene pairs within and among genomes was

calculated using KaKs_Calculator 2.0 (Wang et al., 2010) and

ParaAT v2.0 (Zhang et al., 2012), respectively. The probability

density distribution curve of Ks was visualized using R software,

and WGD events were inferred from the distribution peaks.
Results

Genome survey, assembly
and assessment

A genome survey was performed to predict the genome size,

repeated sequences, and heterozygosity of Q. gilva using K-mer

analysis based on ~55.66 Gb of Illumina clean data

(Supplementary Table 1). With a K-mer number of

47,492,571,457 and K-mer depth of ~54.86, the genome size

was estimated to be ~865.75 Mb. A high level of heterozygosity

ratio of 1.16% and ~48.17% of repeated sequences were observed

(Supplementary Figure 1; Supplementary Table 2).

A total of ~30.76 Gb of HiFi CCS clean reads were produced

by the PacBio Sequel II and used for the subsequent genome

assembly (Supplementary Table 1). The contigs were then

polished with HiFi CCS clean data, generating a genome

assembly of 889.71 Mb, with a number of contigs of 773 and a

contig N50 of 28.32 Mb (Table 1). The contig N50 of the

assembled Q. gilva genome is ~11-fold and ~405-fold

compared with Q. mongolica and Q. robur, respectively. In

total, ~121.70 Gb of Hi-C data were obtained and connected

to 12 pseudochromosomes (Supplementary Table 1). Finally,

859.07 Mb of sequences (96.54% of the genome assembly) were

anchored onto 12 pseudochromosomes, ranging in sizes of

40.26-104.15 Mb (Figure 2; Supplementary Figure 2;

Supplementary Table 3). The chromosome-scale genome

assembly of Q. gilva was characterized by a scaffold number of

515 and a scaffold N50 of 70.35 Mb. The scaffold N50 of Q. gilva

is similar to that ofQ. mongolica (66.74 Mb) andQ. lobata (75.00

Mb) while ~53-fold than Q. robur (1.34 Mb).
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The quality of the Q. gilva genome assembly was assessed by

four approaches. First, 100% of Illumina short reads and 99.85% of

CCS clean reads were mapped to the assembled genome, which

could cover 96.22% and 99.87% of the assembled genome sequence,

respectively (Figure 2; Supplementary Table 4). Second, among

1,614 Benchmarking Universal Single-Copy Orthologs (BUSCO)

genes, 98.6% of complete BUSCOs, including 93.5% of complete

single-copy and 5.1% of complete duplicated, were detectable in our

assembled genome (Supplementary Figure 3). Third, LAI of the Q.

gilva genome assembly is 22.71 which is greater than the gold

standard quality level of the assembly (LAI=20) (Ou et al., 2018)

(Supplementary Figure 4). Additionally, our chromosomal

assembly reached telomeric tandem repeats on both ends of six

pseudochromosomes and on one end of six more (Figure 2). These

results elucidated the high completeness and quality of our Q. gilva

genome assembly.
Genome annotation

In total, 929,678 tandem repeats, including 663,186 mono-,

199,396 di-, 53,203 tri-, 10,358 tetra-, 2,064 penta-, and 1,471

hexa-nucleotide repeats, were identified in the Q. gilva genome,

accounting for ~2.63% of the assembled genome (23.38 Mb)

(Supplementary Table 5). Approximately 512.26 Mb (~57.57%

of the genome) of TEs were identified via the combination of de

novo and homology-based predictions, with 0.20% of short

interspersed nuclear elements (SINEs), 3.89% of long

interspersed nuclear elements (LINEs), 18.67% of long

terminal repeats (LTRs), and 2.41% of DNA transposons. The

percentage of TEs in Q. gilva is comparable to that of Q. lobata

(54.4%) and Q. robur (53.3%).
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A final set of 36,442 protein-coding genes distributed on 12

pseudochromosomes was predicted through a combination of de

novo, homology-based, and transcript-based approaches, with

average exons per gene of 4.5 (Table 1; Supplementary Figure 5;

Supplementary Table 6). The average gene and CDS length were

3,724 and 980 bp, respectively. In total, ~97.73% of the predicted

protein-coding genes (35,615 genes) were functionally annotated

in the databases described above (Supplementary Figure 6;

Supplementary Table 7). The ncRNAs were identified in the

Q. gilva genome, which included 709 tRNAs, 1,798 rRNAs, 38

miRNAs, and 142 snRNAs.
Phylogenetic analysis

Gene family clustering analysis assigned 235,227 genes from Q.

gilva and nine other species to 20,844 orthogroups. A total of 13,241

genes clustered into 9,259 gene families were revealed in Q. gilva

genome through comparisons of protein sequences homologous

between Q. gilva and nine other species (Supplementary Figure 7;

Supplementary Table 8). In total, 1,244 single-copy orthologous

genes were shared among Q. gilva and nine other species, which

were used to construct a phylogenetic tree and to estimate species

divergence time (Figure 3).

The maximum-likelihood phylogenetic tree indicated that

Q. gilva (in section Cyclobalanopsis) was most closely related to

Q. suber (in section Cerris), with a divergence time at ~40.35

(13.40-50.81) Ma. The estimated divergence time of Q. lobata

(species of subgenus Quercus) from the common ancestor of Q.

gilva and Q. suber (members of subgenus Cerris) was ~47.45

(41.97-53.63) Ma. The estimated split between C. dentata and

three Quercus species was ~51.75 (47.98-55.88) Ma.
TABLE 1 Comparison of genome assembly and annotation between Quercus species.

Q. gilva Q. lobata Q. mongolica Q. robur

Sequencing platform Illumina, PacBio, Hi-C Illumina, PacBio, Hi-C Illumina, PacBio, Hi-C Illumina, Roche 454

Assembly

Assembly version This study ValleyOak v3.0 Quercus mongolica v1 Haploid v2

Number of contigs 773 * 645 22,615

Total contig length (Mb) 890 * 810 790

Contig N50 size (Mb) 28.32 * 2.64 0.07

Number of scaffolds 515 2,010 330 1,409

Total scaffold length (Mb) 890 846 810 814

Scaffold N50 size (Mb) 70.35 75.00 66.74 1.34

% of sequence anchored on chromosome 97 96 96 96

Annotation

Number of protein-coding genes 36,442 39,373 36,553 25,808

Average length of gene (kb) 3.7 5.4 6.1 2.9

Average length of CDS (kb) 1.0 1.3 1.2 1.2

Average exons per gene 4.5 5.5 4.8 *
Information of Q. lobata, Q. mongolica, and Q. robur was referenced from the published articles (Plomion et al., 2018; Ai et al., 2022; Sork et al., 2022).
*Data were not provided in the original articles.
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Gene family contraction and expansion

In total, 598 expanded and 6,509 contracted gene families have

been observed in the Q. gilva genome (Figure 3). Among them, 41

and 207 gene families were significantly expanded and contracted

(P<0.05), respectively. The expanded gene families in the Q. gilva

were significantly enriched in 565 GO terms (Q<0.01), which were

primarily enriched in cellular component of cell (GO:0005623, 59

genes) and molecular function of catalytic activity (GO:0003824, 52

genes) (Supplementary Table 9). The contracted gene families

showed significant enrichment in 398 GO terms, with major

enrichment in biological process of cellular process (GO:0009987,

37 genes) and cellular component of cell part (GO:0044464, 37

genes) (Supplementary Table 10). KEGG enrichment analysis of

expanded gene families revealed only two significantly enriched

pathways (Q<0.01) (Supplementary Table 11).While the contracted

gene families were found to be significantly enriched in 15 KEGG

pathways, with the chief enrichment in plant-pathogen interaction

(ko04626) (Supplementary Table 12).
Frontiers in Plant Science 07
Genome synteny and whole-genome
duplication

Colinear maps were generated by comparing Q. gilva

genome with Q. lobata (Figure 4A) and Q. mongolica

(Figure 4B) genomes. Both maps showed a small proportion

(6.4% between Q. gilva and Q. mongolica genomes and 12.2%

between Q. gilva and Q. lobata genomes) of blue dots showing

the identical sequence in the opposite orientation, which

elucidated high similarity between Q. gilva and Q. lobata

genomes and between Q. gilva and Q. mongolica genomes.

Moreover, syntenic blocks were generated for Q. gilva versus

Q. lobata genomes and Q. gilva versus Q. mongolica genomes

(Figure 4C). In total, 174 and 104 syntenic blocks have been

obtained from the comparison of Q. gilva versus Q. lobata

genomes and Q. gilva versus Q. mongolica genomes,

respectively. A one-to-one corresponding relationship of the

12 chromosomes was observed between Q. gilva and Q. lobata

genomes and between Q. gilva and Q. mongolica genomes.
FIGURE 2

Features of the Quercus gilva genome. The outermost circle represents the 12 pseudochromosomes, with red dot at the end indicating
telomeric repeat ((TTAGGG/CCCTAA)n) reached. From outer to inner circles: (A) sequence coverage by PacBio CSS clean reads; (B) LTR
Assembly Index (LAI); (C) gene density; (D) GC content. (A–D) were drawn in 50 kb non-overlapping sliding windows. The intragenomic
syntenic blocks were indicated by the innermost circle.
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The distribution curves of Ks forQ. gilva andQ. lobata showed a

peak at ~1.3 Ks units (Supplementary Figures 8, 9), indicating these

two species shared a WGD event that is gamma whole-genome

triplication (g-WGT) event in the common ancestor of core eudicots.
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Another peak at low values of Ks (0.1-0.2) nearly fitted with

exponential distribution was observed in three Quercus species,

which indicated the recent burst of local gene duplications. The

peak value of orthologous gene pairs of Q. gilva versus Q. lobata and
A B

C

FIGURE 4

Syntenic analysis through comparisons of the 12 pseudochromosomes of Q. gilva with Q. lobata and Q. mongolica. (A) Colinear map of the Q.
gilva and Q. lobata genomes. (B) Colinear map of the Q. gilva and Q. mongolica genomes. Red and blue dots indicate the identical sequence in
the same and opposite orientation, respectively. (C) Chromosome-level syntenic comparisons based on gene pairs between Q. gilva and Q.
lobata and between Q. gilva and Q. mongolica. Syntenic blocks with more than 30 genes are connected by grey lines.
FIGURE 3

Phylogenetic tree based on shared single-copy gene families among Quercus gilva and nine other species. Inferred maximum-likelihood (ML)
phylogenetic tree was generated on the basis of 1,244 single-copy orthologous genes across 10 species. The numerical value at the right of
each node shows the estimated divergence time in millions of years. Red dots indicate calibrated nodes. Numbers in green (+) and red (−) show
the number of expanded and contracted gene families, respectively. The green, red, and blue portions of the pie charts indicate the percentage
of gene families undergoing expansion, contraction, and rapidly evolving event, respectively.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1012277
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhou et al. 10.3389/fpls.2022.1012277
Q. gilva versus Q. suber (Ks value of 1.1) was lower than the peak

value of paralogous gene pairs ofQ. gilva andQ. lobata, implying that

the divergence between Q. gilva and two other Quercus species

occurred later than the shared g-WGT and Q. gilva did not

experience species-specific WGD events.
Discussion

In the present study, a high-quality chromosome-scale

genome assembly of Q. gilva was generated by employing a

combination strategy of Illumina NovaSeq 6000, PacBio Sequel

II, and Hi-C sequencing technologies. The assembled genome

size ofQ. gilva was ~890 Mb, with contig and scaffold N50 values

of 28.32 and 70.35 Mb, respectively. Greater than 96% of the Q.

gilva genome sequences (~859 Mb) were anchored onto the 12

pseudochromosomes that ranged in a size of 40.26-104.15 Mb.

Consistent with Q. lobata and Q. mongolica genomes, the

greatest number of genes were observed on chromosome 2

(4,774) among the 12 chromosomes of Q. gilva. However,

differing from Q. lobata and Q. mongolica genomes that

chromosome 2 was found to be the longest, chromosome 4 is

slightly longer (104.15 Mb) than chromosome 2 (101.11 Mb) in

our Q. gilva genome assembly. The increase in the length of

chromosome 4 may be caused by the high level of transposable

elements (TEs) (~69 Mb) present on it. Genome assembly of

woody plants has been generally challenged due to high levels of

duplication and heterozygosity. The level of repetitive elements,

specifically TEs, was found to be constantly high in genus

Quercus, for instance, 51.78% in Q. mongolica (Ai et al., 2022),

53.3% in Q. robur (Plomion et al., 2018), 54.4% in Q. lobata

(Sork et al., 2022), and 57.57% in Q. gilva. The heterozygosity of

Q. gilva was estimated at 1.16%, which is comparable to Q.

mongolica (1.09%) (Ai et al., 2022) and Q. lobata (1.25%) (Sork

et al., 2016). Although high levels of repetitive sequences and

heterozygosity are present in Q. gilva genome, our assembled

genome displays a high assembly quality, with 98.6% of complete

BUSCOs detected in the genome assembly, an LAI score of

22.71, and telomeric tandem repeats reaching at both ends of six

pseudochromosomes and at one end of six more. This Q. gilva

genome is the first reference genome for Quercus section

Cyclobalanopsis. It will provide essential information to better

understand the evolution of this dominant lineage in East Asia.

Phylogenetic analysis revealed that Q. gilva was most related

to Q. suber (section Cerris), with an estimated divergence time of

40.35 (13.40-50.81) Ma, and the estimated split time between

two subgenus Cerris species (Q. gilva and Q. suber) andQ. lobata

(subgenus Quercus) was 47.45 (41.97-53.63) Ma. The result is

consistent with the phylogenetic structure resolved by previous

reports that the divergence of section Cyclobalanopsis from

sections Cerris and Ilex and the divergence between subgenera

Cerris and Quercus occurred in the early Eocene (Hipp et al.,
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2020; Zhou et al., 2022). While our study suggested earlier

divergences between Quercus species than those proposed by

Deng et al. (2018), which may be due to the different fossil

calibrations of genus Quercus used in this previous study.

Analysis of WGD event based on Ks distribution elucidated

that Q. gilva and Q. lobata only underwent the gamma whole-

genome triplication (g-WGT) that was shared by core eudicot

plants with a Ks peak value of 1.3. A deviated peak value (Ks of

1.1) was observed in Q. suber, which supports the previous

finding that this deviation may be caused by the low-quality

assembly of Q. suber using second-generation sequencing (Ai

et al., 2022). Moreover, Ks distribution curve elucidated that the

divergence between Q. gilva and the other two Quercus species

occurred later than the shared g-WGT and Q. gilva did not

experience species-specific WGD events since Ks peak value

(1.1) of orthologous gene pairs of Q. gilva versus Q. lobata and

Q. gilva versus Q. suber was lower than the peak value (1.3) of

paralogous gene pairs of Q. gilva and Q. lobata. The WGD event

could also be inferred from the high level of synteny between Q.

gilva and the other two Quercus genomes. A one-to-one

corresponding relationship of the 12 chromosomes was found

between Q. gilva and Q. lobata and between Q. gilva and Q.

mongolica. At the same time, fewer inversions occurred between

Q. gilva and Q. mongolica genomes, which may be due to the use

of PacBio Sequel II sequencing technology with higher accuracy

in Q. gilva and Q. mongolica. Based on the previous findings that

Q. lobata and Q. mongolica did not experience lineage-specific

WGD besides g-WGT (Ai et al., 2022) and the high collinearity

between Q. gilva and these two species, we could confirm that no

lineage-specific WGD occurred in Q. gilva.

Compared with Q. suber and Q. lobata, the Q. gilva genome

experienced considerable gene family contraction, with genes

related to the plant-pathogen interaction pathway significantly

contracted in the Q. gilva genome. The previous study indicated

that as the key component of plant-pathogen interaction,

disease-resistance (R) genes strongly expanded in Q. robur

(Plomion et al., 2018). Our study may not support this point,

however, it is consistent with the finding observed on Q.

mongolica that the gene families in the plant-pathogen

interaction pathway of this Asian oak exhibited significant

contraction and the R gene number in Q. mongolica was

considerably lower compared with other oak species (Ai et al.,

2022). In the East Asian environment, the absence of some

pathogens may result in a reduced number of corresponding

resistance genes from the standpoint of fitness cost, leading to

the contraction of related genes (Tian et al., 2003).

In conclusion, we herein report a high-quality chromosome-

scale genome assembly of Q. gilva, the first reference genome for

Quercus section Cyclobalanopsis, and elucidate the genome

evolution of this ecologically and economically important

species. Our study will promote germplasm conservation and

genetic improvement of Q. gilva and provide valuable resources
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for a better understanding of the evolution of Quercus

section Cyclobalanopsis.
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