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A plastid-targeted heat shock
cognate 70-kDa protein
confers osmotic stress
tolerance by enhancing
ROS scavenging capability

Feng Ding1,2, Fan Li1 and Binglei Zhang2*

1State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China,
2School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
Osmotic stress severely affects plant growth and development, resulting in

massive loss of crop quality and quantity worldwide. The 70-kDa heat shock

proteins (HSP70s) are highly conserved molecular chaperones that play

essential roles in cellular processes including abiotic stress responses.

However, whether and how plastid-targeted heat shock cognate 70 kDa

protein (cpHSC70-1) participates in plant osmotic stress response remain

elusive. Here, we report that the expression of cpHSC70-1 is significantly

induced upon osmotic stress treatment. Phenotypic analyses reveal that the

plants with cpHSC70-1 deficiency are sensitive to osmotic stress and the plants

overexpressing cpHSC70-1 exhibit enhanced tolerance to osmotic stress.

Consistently, the expression of the stress-responsive genes is lower in

cphsc70-1 mutant but higher in 35S:: cpHSC70-1 lines than that in wild-type

plants when challenged with osmotic stress. Further, the cphsc70-1 plants have

less APX and SOD activity, and thus more ROS accumulation than the wild type

when treated with mannitol, but the opposite is observed in the overexpression

lines. Overall, our data reveal that cpHSC70-1 is induced and functions

positively in plant response to osmotic stress by promoting the expression of

the stress-responsive genes and reducing ROS accumulation.
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Introduction

Environmental stresses such as drought, cold, and salinity can alter water availability by

changes in solute concentrations (i.e., inorganic cations, sugars, anions, and salts) and impose

osmotic stress on plants, which affects cell membrane integrity, photosynthetic capacity, and

osmotic regulation, leading to severe restrictions on plant growth and development
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(Zhao et al., 2020). Osmotic stress reduces the water uptake of

plants, bringing about not only ionic stress but also oxidative

damages caused by overaccumulated reactive oxygen species

(ROS) including hydroperoxide (H2O2), superoxide anion (O•−
2 ) ,

and hydroxyl radicals (•OH) (Wenjing et al., 2020; Zhao et al., 2020;

Wang et al., 2021b; Zhang et al., 2021). These ROS can affect

proteins, lipids, and nucleic acids if accumulated over a certain

threshold, leading to cell damage and death (Yuan et al., 2017;

Nadarajah, 2020). To overcome this issue, plants have employed

complex antioxidant defense mechanisms to protect plants from

osmotic stress-induced oxidative damage by scavenging ROS and

maintaining the balance of ROS production (Hasanuzzaman

et al., 2021).

The antioxidant defense system includes a series of enzymes

such as catalase (CAT), superoxide dismutase (SOD), ascorbate

peroxidase (APX), and non-enzymatic antioxidants (a-
tocopherol, glutathione, b-carotene, ascorbate). They work in

coordination to maintain ROS homeostasis by scavenging stress-

induced excess ROS in plant cells (Waszczak et al., 2018;

Sánchez-McSweeney et al., 2021). For instance, SOD can

disproportionate O2- to H2O2, and then H2O2 is further

detoxified into H2O by APX with the assistance of ascorbate in

the chloroplast (Uzilday et al., 2014) and thus overexpressing

SOD and APX can improve the plant’s tolerance under salt stress

(Shafi et al., 2019). CATs, the enzymes directly degrading H2O2

without assistance of any reducing equivalent, are also necessary

for scavenging ROS in plants under various stressed conditions

(Hasanuzzaman et al., 2020). It is reported that the plants with

CAT3 mutation accumulate higher H2O2 and are hypersensitive

to water deprivation, but the plants overexpressing CAT3 have

less H2O2 and are more tolerant to drought stress compared with

the wild type (Zou et al., 2015). Similarly, the disruption of CAT2

causes excess H2O2 accumulation and reduces plant tolerance to

high salinity (Bueso et al., 2007). Further, several factors have

been indicated to regulate antioxidant enzymes in the stressed

plants. For example, the zinc finger protein Zat12 involved in

plant response to oxidative stress by promoting APX1 expression

and Zat12-deficient plants are more sensitive to H2O2

application than wild-type plants (Rizhsky et al., 2004).

Overexpression of AtbHLH112 increases salt and drought

tolerance by promoting SOD activity to improve ROS

scavenging ability (Liu et al., 2015). A recent report

documented that leucine aminopeptidase 2 (LAP2), as a

collaborator of CAT2, confers Arabidopsis plants increased

osmotic stress tolerance possibly through maintaining CAT2

protein stability (Zhang et al., 2021). In addition, peroxisome-

localized small heat shock protein Hsp17.6CII activates catalase

by interacting with CAT2 and thus confers alkaline and salt

stress tolerance in plants (Li et al., 2017). MeHSP90.9-silenced

plants have repressed CAT1 expression, reduced CAT activity,

and higher H2O2, resulting in more sensitivity to drought stress
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(Wei et al., 2020). These reports reveal that modulations of

antioxidant enzymes play a vital role in regulating plant abiotic

stress tolerance.

Heat shock proteins (HSPs) are a diverse group of

multifamily proteins, functioning in adverse stimuli by

preventing protein misfolding, reducing the aggregation of

denatured proteins, and maintaining protein structural

stability (Sable et al., 2018; Qi et al., 2019). Based on their

apparent molecular weight, amino acid sequence homology,

and functions, HSPs have been classified into HSP100s,

HSP90s, HSP70s, HSP60s, and small heat shock protein

(sHSP) families (Mayer and Bukau, 2005). Of all HSPs,

HSP70 superfamily members are the most abundant, highly

conserved, and well-characterized group of molecular

chaperones in all organisms from prokaryotes to eukaryotes

(Xu et al., 2020; Li et al., 2021). Structurally, HSP70s are

identified by three distinct domains: a 45-kDa N-terminal

ATPase, a 15-kDa b-sandwich domain, and a 10-kDa C-

terminal a-helical domain (Zhu et al., 1996; Tang et al.,

2016). Functionally, while HSP70s assist cellular machinery

in regulating protein degradation and verifying proteins

quality under normal conditions (Bukau et al., 2006; Su and

Li, 2008; Hartl et al., 2011), they facilitate denatured protein

refold, prevent denatured proteins from aggregating, and

dissolve or degrade protein aggregates during stress (Wang

et al., 2004; Lee and Tsai, 2005). In Arabidopsis, 18 HSP70s

have been identified, and they are divided into four subclasses

based on their subcellular localization: cytosol/nucleus,

mitochondria, endoplasmic reticulum (ER), and plastids

(Wu et al., 1994; Lin et al., 2001). The cytosolic/nuclear

HSP70s mainly function in plant development, signaling

pathways, abiotic stresses including drought, salinity, and

high temperature, and biotic stresses such as virus infection

(Jungkunz et al., 2011; Leng et al., 2017). The mitochondria-

localized mtHSC70-1 and mtHSC70-2 are required for the

mitochondrial Fe–S cluster assembly and aid in the

translocation of precursor proteins to mitochondria as part

of the translocon (Zhang and Glaser, 2002; Leaden et al.,

2014). Early reports showed that overexpression of the rice

(Oryza sativa) mtHSC70 inhibited heat- and H2O2-induced

cell death in protoplasts through reducing reactive oxygen

species (ROS) generation and sustaining mitochondrial

membrane potential (Qi et al., 2011). A recent study showed

that mtHSC70-1 mutation resulted in severe embryo defects

(Li et al., 2021). As ER-localized HSP70s, immunoglobulin-

binding proteins (BiPs) play an important role in male and

female gametophyte development and unfolded protein

responses (Srivastava et al., 2013; Maruyama et al., 2014).

For plastid-localized HSP70s in Arabidopsis, two cpHSC70s

(cpHSC70-1 and cpHSC70-2) are identified to be essential for

maintaining chloroplast structure and functions (Sung et al.,
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2001; Latijnhouwers et al., 2010). While cphsc70-1 mutant

plants exhibit variegated cotyledons, slow growth, deformed

leaves, and impaired root growth under normal growth

conditions, the stressed cphsc70-1 mutant plants are more

sensitive to high temperature and drought stress (Su and Li,

2008; Latijnhouwers et al., 2010). However, whether and how

cpHSC70-1 participates in plant response to osmotic stress

remains unknown.

In this study, we report that cpHSC70-1 plays important

roles in plant tolerance to osmotic stress. When challenged

with osmotic stress, the expression of cpHSC70-1 is promoted

in plants. Moreover, the knockout of cpHSC70-1 has enhanced

sensitivity to osmotic stress with lower APX and SOD

activities and increased ROS accumulation. Overexpression

of cpHSC70-1 in wild type improves tolerance of transgenic

Arabidopsis to osmotic stress, with a higher expression of

genes encoding antioxidant enzymes and decreased ROS

accumulation. Taken together, these results show that

osmotic stress-induced cpHSC70-1 functions necessarily in

the stress tolerance by modulating ROS scavenging capacity

in Arabidopsis.
Materials and methods

Plant materials and growth conditions

The Columbia-0 (Col-0) Arabidopsis thaliana ecotype was

employed in the present study. The mutants cphsc70-1

(Salk_140810) and cphsc70-2 (Salk_095715) were previously

reported (Su and Li, 2008). Arabidopsis seeds were surface

sterilized with 5% (w/v) bleach for 5 min, rinsed three times

with sterile water, stored to 4°C for 3 days, and then grown on 1/

2 strength MS (Murashige and Skoog) medium (pH 5.8)

containing 1% (w/v) agar and 1% (w/v) sucrose, and plants

were grown at 23°C with 16-h light (100 mmol m–2 s–1

illumination)/8-h dark conditions. For osmotic stress

treatment, the corresponding seedlings were planted on 1/2

MS medium supplemented with or without 300 mM mannitol

(Beijing Dingguo Changsheng Biotechnology Co., Ltd., DH190-

2) for 5 days, and then the fresh weight and root length were

determined and analyzed.
Plasmid construction and
plant transformation

The full-length coding sequences (CDS) of cpHSC70-1

(AT4G24280), cpHSC70-2 (AT5G49910), and the promoter

(2 kb) of cpHSC70-1 were amplified using PCR. The resulting

fragments (cpHSC70-1 and cpHSC70-2) were cloned into the
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pCAMBIA1300S vector and verified by sequencing. cpHSC70-1

was also cloned into pCAMBIA1300 driven by the cpHSC70-1

promoter. The resultant plasmids were transformed into Col-

0 or the homozygous cphsc70-1 mutant using Agrobacterium

tumefaciens strain pGV3101 and the floral dip method. The

primer sequences are listed in Supplemental Table 1.
RNA extraction and quantitative
reverse transcription PCR

The RNA was extracted as previously described (Ding et al.,

2022). Briefly, plants were thoroughly ground with liquid

nitrogen, and TRIzol reagent (Invitrogen) was used to extract

the total RNA by following the manufacturer’s instructions, and

RQ1 RNase-free DNase I (Promega) was employed to remove

the contaminated DNA. RNA reverse transcription was

performed with ReverTra Ace kit (TOYOBO) according to the

manufacturer’s instructions. qPCR was performed using a Bio-

Rad CFX96 and SYBR Green I dye (Invitrogen) with the

program of 95°C for 3 min, 35 cycles of 95°C for 10 s, and

60°C for 45 s, followed by 5 min incubation at 95°C. ACTIN2

(AT3G18780) was used as the reference gene, and all

experiments included three independent biological replicates

and three technical repetitions. Primer sequences are shown in

Supplemental Table 1.
Seed germination and cotyledon
expansion statistics

Germination was determined in the same way as before

(Ding et al., 2022). Briefly, the seeds were planted on 1/2 MS

medium with or without 300 mM mannitol. The radicle’s

appearance served as a gauge for seed germination. The

percentages of germinated seeds were counted at the specified

times. For each seed germination experiment, at least 60 seeds of

each genotype were used, and experiments were conducted three

times. On the fifth day, the percentages of cotyledon expansion

per plant was scored.
3,3-Diaminobenzidine and nitroblue
tetrazolium staining

As detailed earlier (Yu et al., 2019; Luo et al., 2021), the 7-

day-old seedlings grown on 1/2 MS medium were transferred to

mannitol (300 mM) containing 1/2 MS medium for 48 h, then

the seedlings were stained with 3,3-diaminobenzidine (DAB) or

nitroblue tetrazolium (NBT) to determine H2O2 or superoxide

anion accumulation. For DAB staining, seedlings were incubated

for 8 h in freshly prepared DAB staining solution [1 mg/ml DAB
frontiersin.org
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(Beijing Dingguo Changsheng Biotechnology Co., Ltd., JD091)

which was dissolved in 10 mM Na2HPO4 supplemented with

0.1% (v/v) Tween-20] and then washed with 70% ethanol to

remove chlorophyll . The leaves were analyzed and

photographed using a Nikon microscope (SMZ25; Nikon). The

relative levels of DAB staining were quantitatively analyzed by

using Photoshop CS6 software (Adobe). For superoxide anion

labeling, seedlings were vacuum infiltrated with 0.1 mg/ml NBT

(Sigma-Aldrich, N6876) in 25 mM HEPES buffer (pH 7.6) for

2 h in the dark. Seventy percent ethanol was used to remove

chlorophyll from the leaves, then these leaves were imaged using

a differential interference contrast (DIC) optical system (BX64;

Olympus) and a charge-coupled device (CCD) camera

(DP72; Olympus).
Detection of H2O2 and O•
2 contents

The POD-coupled assay was utilized to quantify the H2O2

levels as previously reported (Yuan et al., 2017). First, 2 ml of

HClO4 (1 M) containing insoluble polyvinylpyrrolidone (5%)

was used to extract 0.2 g of the Arabidopsis seedlings. The

homogenate was centrifuged at 12,000 g for 10 min, and the

supernatant was neutralized to pH 5.6 with 5M K2CO3 to pH 5.6

in the presence of 100 ml of 0.3 M phosphate buffer, pH 5.6. The

solution was centrifuged for 1 min at 12,000 g, and the

supernatant was then mixed with 1 unit of ascorbate oxidase

and left to stand for 10 min at 25°C. 3-(Dimethylamino)benzoic

acid (3.3 mM), 0.07 mM 3-methyl-2-benzothiazoline hydrazone,

and 0.1 M phosphate buffer (pH 6.5) were added to 500 ml of the
reaction mixture to start the final reaction. After standing for

30 min at 25°C, the 590-nm absorbance change in the solution

was determined. A superoxide anion content detection kit

(Beijing Solarbio Science and Technology Co., Ltd., BC1290)

was used to measure the O•−
2 contents according to the

provided instructions.
Determination of catalase,
ascorbate peroxidase, and
superoxide dismutase activities

Total CAT, APX, and SOD activities were analyzed using a

Catalase Assay Kit (Beyotime Biotechnology), Ascorbate

Peroxidase Assay Kit (Gelatins), and a Total Superoxide

Dismutase Assay Kit with NBT (Beyotime Biotechnology),

respectively, following supplied protocols. The CAT activity

was assayed based on decreases in H2O2 accumulation.

The APX activity was measured by calculating the AsA

oxidation rate. The SOD activity was detected by NBT

photoreduction inhibition.
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Western blot analysis

Total proteins were extracted using the plant protein

extracting buffer containing 375 mM NaCl, 2.5 mM EDTA,

1% b-mercaptoethanol, 125 mM Tris–HCl (pH8.0), and 1%

SDS. Protein concentrations were assayed using a bicinchoninic

acid assay (BCA) protein assay kit (Beijing Dingguo Changsheng

Biotechnology Co., Ltd.). Afterward, the proteins were separated

by electrophoresis using 12% SDS-PAGE gel. Immunoblotting

was performed on PVDF membranes with anti-HSC70

(Agrisera, AS08348) and anti-ACTIN (Abmart, M20009M).

The intensity of each immunodetection band was determined

using an image-processing and analysis software package

(ImageJ, version 1.52v). Relative protein levels were

normalized against those in control, which were set to 1.
Results

Osmotic stress promotes the expression
of cpHSC70-1

HSP70s play key roles in ensuring cellular homeostasis,

whether cells are in normal or stressful environments (Leng

et al., 2017). Although their family members, cpHSC70s, have

been reported to be involved in some biotic stresses such as heat

and drought (Su and Li, 2008; Latijnhouwers et al., 2010), the

function of cpHSC70s in osmotic stress remains unknown. To

investigate whether cpHSC70s are involved in plants osmotic

stress response, we examined whether mannitol treatment affects

the expression of cpHSC70-1 and cpHSC70-2. Our reverse

transcription PCR (RT-qPCR) analyses showed that osmotic

stress significantly induced the expression of cpHSC70-1, but not

cpHSC70-2 (Figure 1A). Moreover, we measured cpHSC70

proteins in mannitol-treated wild-type plants; our Western

blot analyses indicated that the mannitol-treated wild-type

seedlings had higher cpHSC70 accumulation than untreated

control (Figure 1B). Thus, our data suggest that osmotic stress

promotes cpHSC70-1 expression in the stressed plant.
The cpHSC70-1 functions positively in
plant response to osmotic stress

The induction of cpHSC70-1 expression by osmotic stress as

shown in our above results implies a possible role of this gene in

plant response to osmotic stress. To verify this possibility, we

obtained the mutant cphsc70-1 (SALK_140810), in which T-

DNA was inserted in the second intron of cpHSC70-1 and

cpHSC70-1 expression was significantly reduced in the mutant

(Supplementary Figures 1A, B) and generated the
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complementation lines (cpHSC70-1::cpHSC70-1 cphsc70-1) by

expressing the full-length coding sequence of cpHSC70-1 driven

under its native promoter in cphsc70-1 mutant (Supplementary

Figure 1B). Then, we examined the phenotypes of the mutant

and its complementation lines under osmotic stress. We found

that when grown under normal conditions, cphsc70-1 exhibited

variegated cotyledons, malformed leaves, small size, and

impaired root growth compared with the wild type as

previously reported (Su and Li, 2008; Chu et al., 2020), but

cphsc70-1 plants showed a similar germination rate and

cotyledon expansion rate as the wild type had (Figures 2A-C).

When challenged with osmotic stress, the cphsc70-1 seedlings

had a reduced germination rate and cotyledon expansion rate

than wild-type seedlings (Figures 2B, C). In addition, the fresh

weight and primary root elongation were further repressed by

osmotic stress in the mutant compared with the wild type

(Figures 2D, H). Regarding the cpHSC70-1::cpHSC70-1

cphsc70-1 plants, they behaved as the wild type under either

normal or stressed conditions (Figures 2A-H). Taken together,

our results indicate that cpHSC70-1 functions positively in plant

response to osmotic stress.
Overexpression of cpHSC70-1 enhances
plant tolerance to osmotic stress

Further, we tested whether overexpression of this gene can

confer plants more tolerance to osmotic stress. For this end, we

generated transgenic lines 35S::cpHSC70-1 by overexpressing

cpHSC70-1 under the control of the 35S promoter in the Col-0

background Arabidopsis. RT-qPCR results showed that the

cpHSC70-1 expression in the overexpression lines was higher
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than that in the wild type (Supplementary Figure 1B). While

35S::cpHSC70-1 plants showed no aberrant phenotype

compared to the wild type under normal growth conditions

(Figure 3), these seedlings had a higher germination rate,

promoted the cotyledon expansion rate, and increased fresh

weight and longer primary root length than the wild-type

seedlings (Figures 3A-F). These findings reveal that

overexpression of cpHSC70-1 enhances osmotic stress

tolerance in the transgenic plants.
cpHSC70-1 regulates the expression
of the genes involved in plant
stress response

Previous studies reported that various abiotic stresses

including high salinity and osmotic stress modulate the

expression of stress-responsive genes (Wang et al., 2021a;

Ding et al., 2022). To explore the impact of cpHSC70-1 on

the molecular basis of osmotic stress response, we detected the

transcripts of several key genes involved in osmotic stress

(RD29A, KIN1, COR15A, and P5CS1) (Wang et al., 2021b).

We found that the transcripts of all tested genes were similar

in cphsc70-1 , 35S::cpHSC70-1 , cpHSC70-1::cpHSC70-1

cphsc70-1, and wild-type plants under normal conditions

(Figures 4A-D). However, upon osmotic stress, phsc70-1

plants suppressed but 35S::cpHSC70-1 plants promoted the

expression of these genes compared with both wild-type and

cpHSC70-1::cpHSC70-1 cphsc70-1 plants (Figures 4A-D).

These results suggest that the expression of the stress-

responsive genes could be involved in cpHSC70-1-mediated

plant osmotic stress response.
A B

FIGURE 1

Osmotic stress induces cpHSC70-1 expression. (A) The cpHSC70-1 and cpHSC70-2 expression levels of 5-day-old wild-type seedlings
subjected to osmotic stress (300 mM mannitol for 6, 12 h) and its control. The data are means ( ± SEM) from at least three independent
experiments. Asterisks indicate significant differences revealed using a Student’s t-test (***p < 0.001). (B) cpHSC70 protein level of 5-day-old
wild-type seedlings treated with 300 mM mannitol for 0, 12, and 24 h. The intensity of each immunodetection band was measured by using an
image-processing and analysis software package (ImageJ). The protein levels of 0 h were set to 1. Actin was used as control.
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The cpHSC70-1 regulates
ROS homeostasis of plants
under osmotic stress

It is reported that ROS is involved in plant response to

osmotic stress (Foyer and Noctor, 2005); (Koussevitzky et al.,

2008; Vishwakarma et al., 2015; Li et al., 2019; Wang et al., 2021a).

Thus, we also tested the expression of genes involved in the ROS-

scavenging system (CAT1, CAT2, CAT3; APX1, sAPX, tAPX;

CSD1, CSD2, CSD3) in cphsc70-1 and 35S::cpHSC70-1 plants

under osmotic stress. Our results showed that while cphsc70-1,

35S::cpHSC70-1, cpHSC70-1::cpHSC70-1 cphsc70-1, and wild-type

plants had similar expressions of CAT1, CAT2, CAT3, APX1,

CSD1, and CSD3, the cphsc70-1 mutant reduced but cpHSC70-1
Frontiers in Plant Science 06
overexpression lines increased the expression of sAPX, tAPX, and

CSD2 compared with cpHSC70-1::cpHSC70-1 cphsc70-1 and wild-

type plants when subjected with mannitol treatment

(Figures 4E-G; Supplementary Figures 2A-F). Consistently, all

tested plants had similar CAT activity when grown under both

normal and stressful conditions; however, osmotic stress-

promoted activities of APX and SOD in both cpHSC70-1::

cpHSC70-1 cphsc70-1 and wild-type plants were repressed in

cphsc70-1 mutant but enhanced in 35S::cpHSC70-1 plants

(Figures 5A-C; Supplementary Figures 3A-C). These results

suggest the possible involvement of ROS homeostasis in

cpHSC70-1-mediated plant osmotic stress response. Therefore,

we examined the contents of H2O2 in plant response to osmotic

stress by using both 3,3-diaminobenzidine (DAB) staining
A B

D E

F

G H

C

FIGURE 2

Loss-of-function mutation of cpHSC70-1 increases plant sensitivity to osmotic stress. (A) Images of 5-day-old wild-type, cphsc70-1, and
cpHSC70-1::cpHSC70-1 cphsc70-1 seedlings grown on 1/2 MS medium with or without (Mock) 300 mM mannitol. Bars = 1 cm. (B) Germination
rate of the wild-type, cphsc70-1, and cpHSC70-1::cpHSC70-1 cphsc70-1 plants in response to 300 mM mannitol. (C) Rate of cotyledon
expansion, (D) fresh weight, and (E) relative fresh weight of the wild-type, cphsc70-1, and cpHSC70-1::cpHSC70-1 cphsc70-1 plants in panel
(A). (F) Images of 5-day-old wild-type, cphsc70-1, and cpHSC70-1::cpHSC70-1 cphsc70-1 seedlings grown on 1/2 MS medium with or without
(Mock) 300 mM mannitol. Bars = 1 cm. (G) Root length and (H) relative root length of the plants shown in (F). The data are means ( ± SD) from
at least three independent experiments (n ≥60 for germination rate and n ≥30 for root length). Asterisks indicate significant differences revealed
using a Student’s t-test (*p < 0.05; **p < 0.01; ***p< 0.001). Different letters indicate significant differences as determined using ANOVA
followed by Tukey’s test (P < 0.05).
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A B

D

E

F

C

FIGURE 3

Overexpression of cpHSC70-1 enhanced osmotic stress tolerance. (A) Images of 5-day-old wild-type and 35S::cpHSC70-1 seedlings grown on
1/2 MS medium with or without (Mock) 300 mM mannitol. Bars = 1 cm. (B) Germination rate of the wild-type and 35S::cpHSC70-1 plants in
response to 300 mM mannitol. (C) Rate of cotyledon expansion and (D) fresh weight of wild-type and 35S::cpHSC70-1 plants in panel
(A). (E) Images of 5-day-old wild-type and 35S::cpHSC70-1 seedlings grown on 1/2 MS medium with or without (Mock) 300 mM mannitol.
Bars = 1 cm. (F) Root length of the plants shown in (E). The data are means ( ± SD) from at least three independent experiments (n ≥60 for
germination rate and n ≥ 30 for root length). Asterisks indicate significant differences revealed using a Student’s t-test (* p < 0.05; **p < 0.01;
***p < 0.001). Different letters indicate significant differences as determined using ANOVA followed by Tukey’s test (p < 0.05).
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experiments and the POD-coupled assay. Our results showed that

while the stress elevated H2O2 levels in the stressed cphsc70-1,

35S::cpHSC70-1, cpHSC70-1::cpHSC70-1 cphsc70-1 and wild-type

plants compared with their untreated control, respectively, H2O2

accumulation was higher in cphsc70-1 but lower in 35S::cpHSC70-

1 than that in cpHSC70-1::cpHSC70-1 cphsc70-1 and the wild type

upon osmotic stress treatment (Figures 5D, E; Supplementary

Figures 3D, E). Similar results were found when we assayed the

abundance of the superoxide anion (O•−
2 ) using NBT staining and

spectrophotometry (Figures 5F, G; Supplementary Figures 3F, G).

These findings indicate that cpHSC70-1 regulates plant ROS

homeostasis under osmotic stress.
Discussion

HSP70 proteins are widespread and play key roles in

organisms ranging from prokaryotes to land plants. They have

been mainly reported in heat shock responses, protein folding

and translocation, and prevention of protein aggregation

(Miemyk, 1997). However, whether the chloroplast-located

cpHSC70-1 participates in plant response to osmotic stress

remains unknown. Here, we provide evidence that cpHSC70-1

is required for plant tolerance to osmotic stress because cphsc70-

1 plants have higher sensitivity to osmotic stress and 35S::

cpHSC70-1 plants exhibit higher osmotic stress tolerance.

It has been documented that there are two chloroplast-

localized HSPs (cpHSC70-1 and cpHSC70-2) in Arabidopsis.
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These two proteins are structurally homologous based on their

protein sequence alignment and play important roles in

chloroplast development and functional integrity (Sung et al.,

2001; Latijnhouwers et al., 2010). In this study, we found that

osmotic stress induces the expression of cpHSC70-1, but the

cpHSC70-2 expression is not affected by the stress (Figure 1).

Thus, we also examined whether cpHSC70-2 is involved in plant

response to osmotic stress. We obtained the mutant cphsc70-2

(SALK_095715), in which T-DNA was inserted in the second

intron of cpHSC70-2 and cpHSC70-2 expression was significantly

reduced in the mutant (Supplementary Figures 1C, D), and we

assayed the stress response of this mutant under osmotic stress.

We found that cphsc70-2 and wild-type plants had no substantial

distinction in terms of germination rate, cotyledon expansion

rate, fresh weight, and primary root elongation under either

normal or osmotic-stressed conditions (Supplementary

Figure 4). Further, the transgenic 35S::cpHSC70-2 lines, in

which pHSC70-2 is overexpressed under the control of the 35S

promoter (Supplementary Figure 1D), does not show higher

stress tolerance compared with the wild type (Supplementary

Figure 4). Thus, our data do not support the involvement of

cpHSC70-2 in plant response to osmotic stress. Similar

observations were also reported when the role of cpHSC70-1/2

was examined in plant response to drought and heat stresses (Su

and Li, 2008; Latijnhouwers et al., 2010). These studies indicate

that cpHSC70-1 acts positively in plant response to these stresses,

but cpHSC70-2 is not required for plant tolerance to

these stresses.
A B D
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FIGURE 4

Effects of cpHSC70-1 on expression of genes involved in stress response and ROS-scavenging system. (A–G) The expression levels of
(A) RD29A, (B) COR15A, (C) P5CS1, (D) KIN1, (E) sAPX, (F) tAPX, and (G) CSD2 of the 5-day-old wild-type, cphsc70-1, cpHSC70-1::cpHSC70-1
cphsc70-1, and 35S::cpHSC70-1 plants treated with or without (Mock) 300 mM mannitol for 12 h. The expression of these genes was
determined by RT-qPCR and correlated with that of the WT, the value of which was set as 1. ACTIN2 was used as the reference gene. The data
are means ( ± SEM) from at least three independent experiments. Different letters indicate significant differences as determined using ANOVA
followed by Tukey’s test (p < 0.05).
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Many studies indicate that various abiotic stresses induce the

expression of stress-responsive genes (Zhang et al., 2019; Fu

et al., 2021; Ding et al., 2022). There have been various reports

that hypersensitive mutants have increased the induction of

stress-inducible genes. For example, the salt stress-induced

expression of COR15A and ABCG6 is enhanced in salt stress-

sensitive glyI2 mutants (Fu et al., 2021). Similarly, dpg1 mutants

have higher expressions of RD29A and RD29B than the wild type

under high salinity (Yi et al., 2019), and gcn20mutants are more

sensitive to salt stress with higher expressions of KIN1, KIN2,

and COR15A (Ding et al., 2022). However, it is widely
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documented that hypersensitive mutants have a decreased

induction of stress-inducible genes. For instance, cand2-1

mutants are hypersensitive to osmotic stress with decreased

induction of RD29A, KIN1, P5CS1, and COR15A (Wang et al.,

2021b). Also, mutation of DCD results in the inhibition of

cadmium stress-induced PCR1 and PDR8 (Zhang et al., 2020).

A recent report documents that expression levels of COR15A,

COR47, and RD29A are significantly lower in rboh-D, rboh-F,

and rboh-DF mutants than in the WT when treated with cold,

and these mutants are less tolerant to cold stress (Liu et al.,

2022a). In addition, salt and drought stress-induced RD29A and
A B
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FIGURE 5

The cphsc70-1 mutant has higher ROS accumulation and reduced APX and SOD activity. (A) Catalase activity, (B) APX activity, and (C) SOD
activity of the 5-day-old wild-type, cphsc70-1, and cpHSC70-1::cpHSC70-1 cphsc70-1 plants treated with or without (Mock) 300 mM mannitol
for 2 days. (D) The DAB-staining images of leaves from the 5-day-old wild-type, cphsc70-1, and cpHSC70-1::cpHSC70-1 cphsc70-1 plants
treated with or without (Mock) 300 mM mannitol for 2 days. (E) Measurements of H2O2 in the 5-day-old wild-type, cphsc70-1, and cpHSC70-1::
cpHSC70-1 cphsc70-1 plants treated with or without (Mock) 300 mM mannitol for 2 days. (F) The NBT-staining images of leaves from the 5-
day-old wild-type, cphsc70-1, and cpHSC70-1::cpHSC70-1 cphsc70-1 plants treated with or without (Mock) 300 mM mannitol for 2 days.
(G) Measurements of O•−

2 in the 5-day-old wild-type, cphsc70-1, and cpHSC70-1::cpHSC70-1 cphsc70-1 plants treated with or without (Mock)
300 mM mannitol for 2 days. The data are means ( ± SD) from at least three independent experiments. Different letters indicate significant
differences as determined using ANOVA followed by Tukey’s test (p < 0.05).
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RD22 are significantly higher in the amiR-TSB1 mutants than in

the wild type when the mutants show higher tolerances to

drought and salt stress than the wild type (Liu et al., 2022b).

Our experimental results indicate that osmotic stress promoted

the expression of stress-responsive genes such as RD29A,

COR15A, P5CS1, and KIN1 in wild-type plants which are

repressed in cphsc70-1 mutant but enhanced in 35S::cpHSC70-

1 plants. However, how cpHSC70-1 modulates the expression of

these genes is unclear. ABA is a central phytohormone

regulating plant responses to osmotic stress (Tivendale et al.,

2014; Julkowska and Testerink, 2015). Many ABA-inducible

genes such as RD29A, KIN1, and COR15A function in various

abiotic stresses including osmotic stress (Ding et al., 2022). We

speculate that cpHSC70-1 may be involved in regulating the

expression of these stress-responsive genes by affecting ABA

accumulation or ABA signaling, which is worthy of further

exploration. Additionally, it has been documented that

cpHSC70-1 can interact with GENOMES UNCOUPLED1

(GUN1), a protein that participates in multiple retrograde

signaling pathways, regulating the expression of many nuclear-

encoded genes (Wu et al., 2019). Thus, investigating whether

GUN1 functions in cpHSC70-1-mediated plant osmotic stress

response by modulating the expression of nuclear-encoded

stress-responsive genes could be a future research direction.

Various environmental stresses including osmotic stress,

result in oxidative damages caused by overaccumulated

reactive oxygen species (ROS) (Wenjing et al., 2020; Zhao

et al., 2020; Wang et al., 2021b; Zhang et al., 2021). These ROS

can affect proteins, lipids, and nucleic acids if accumulated over

a certain threshold, leading to cell damage and death (Yuan

et al., 2017; Nadarajah, 2020). Thus, reducing stress-induced

ROS overaccumulation is one of the most important and

common protective mechanisms for plants under an adverse

environment. Our study shows that the knockout of cpHSC70-

1 has decreased APX and SOD activities and increased ROS

accumulation, and overexpression of cpHSC70-1 in wild-type

lines has higher ROS detoxification capacity and less ROS. It is

known that a system of posttranslational protein transport into

the chloroplast is absolutely essential for its functions such as

photosynthesis, and cpHSC70-1 is a motor for protein import

into the chloroplast and its mutation significantly reduces the

efficiency of protein import (Su and Li, 2010; Li et al., 2020). In

animals, HSP70 modulates SOD2 activity by promoting the

import of SOD2 into the mitochondria (Zemanovic et al.,

2018). We also notice that the mutation of cpHSC70-1

reduces activities of APX and SOD, but not CAT, under

osmotic stress. It is possible that cpHSC70-1 may regulate

the import of sAPX, tAPX, and CSD2 into the chloroplast, but

not CAT1, CAT2, and CAT3, into the peroxisome, resulting in

changes in the activities of APX and SOD under osmotic stress.

Chloroplasts are thought to be the main source and target of
Frontiers in Plant Science 10
ROS (Waszczak et al., 2018); thus, we speculate that when

plants are subjected to osmotic stress, this impaired import of

sAPX, tAPX, and CSD2 into the chloroplast in cphsc70-1

mutants, resulting in reduced activities of APX and SOD,

which in turn causes ROS accumulation. Further experiments

are needed to verify this hypothesis.
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