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Plant nitrogen content (PNC) is an important indicator to characterize the

nitrogen nutrition status of crops, and quickly and efficiently obtaining the PNC

information aids in fertilization management and decision-making in modern

precision agriculture. This study aimed to explore the potential to improve the

accuracy of estimating PNC during critical growth periods of potato by

combining the visible light vegetation indices (VIs) and morphological

parameters (MPs) obtained from an inexpensive UAV digital camera. First, the

visible light VIs and three types of MPs, including the plant height (H), canopy

coverage (CC) and canopy volume (CV), were extracted from digital images of

the potato tuber formation stage (S1), tuber growth stage (S2), and starch

accumulation stage (S3). Then, the correlations of VIs and MPs with the PNC

were analyzed for each growth stage, and the performance of VIs and MPs in

estimating PNC was explored. Finally, three methods, multiple linear regression

(MLR), k-nearest neighbors, and random forest, were used to explore the effect

of MPs on the estimation of potato PNC using VIs. The results showed that (i)

the values of potato H and CC extracted based on UAV digital images were

accurate, and the accuracy of the pre-growth stages was higher than that of

the late growth stage. (ii) The estimation of potato PNC by visible light VIs was

feasible, but the accuracy required further improvement. (iii) As the growing

season progressed, the correlation betweenMPs and PNC gradually decreased,

and it becamemore difficult to estimate the PNC. (iv) Compared with individual

MP, multi-MPs can more accurately reflect the morphological structure of the

crop and can further improve the accuracy of estimating PNC. (v) Visible light

VIs combined with MPs improved the accuracy of estimating PNC, with the
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highest accuracy of the models constructed using the MLR method (S1: R2 =

0.79, RMSE=0.27, NRMSE=8.19%; S2:R2 = 0.80, RMSE=0.27, NRMSE=8.11%; S3:

R2 = 0.76, RMSE=0.26, NRMSE=8.63%). The results showed that the

combination of visible light VIs and morphological information obtained by a

UAV digital camera could provide a feasible method for monitoring crop

growth and plant nitrogen status.
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1 Introduction

Worldwide demand for food has increased dramatically

owing to the constraints of arable land area and the increasing

global population. Some studies suggest that the yield of

agricultural systems must double by 2050 to meet the growing

food demand of the worldwide population (White et al., 2012;

Holman et al., 2016). Staple crops, such as rice (Oryza sativa),

maize (Zea mays), and wheat (Triticum aestivum), have a limited

scope for increasing yields and high requirements for irrigation

systems, which results in high production costs and low potential.

Alternatively, potato (Solanum tuberosum) is becoming

increasingly important in ensuring global food security as the

fourth largest food crop with a short growth cycle and the ability

to adapt to the environment (Liu et al., 2022). In recent years, the

excessive application of nitrogen (N) fertilizer to aggressively

maximize potato yields in some regions has reduced the

efficiency of N fertilizer use, resulting in increased production

costs and wasted resources and triggering potential environmental

risks (Nayak et al., 2015). Therefore, scientific N fertilizer

management is a vital issue that needs to be addressed for the

healthy and sustainable development of the potato industry.

Plant nitrogen content (PNC) is an important indicator that

is used to characterize the nitrogen nutritional status of crops.

Quickly and efficiently obtaining the PNC information of crops

is highly significant for evaluating crop growth and scientifically

applying N fertilizers (Fu et al., 2021a). Although traditional field

surveys and destructive sampling methods can obtain more

accurate PNC information, they are time-consuming and

inefficient. Therefore, they cannot meet the current

development needs of large-scale, rapid, and efficient

monitoring of crop growth conditions in precision agriculture

(Yue et al., 2019; Peter et al., 2021; Li et al., 2022). In recent years,

the rapid development of remote sensing technology has

provided a new option for the efficient, non-destructive, and

real-time monitoring of the PNC status of crops.

Compared with ground and satellite remote sensing

techniques, unmanned aerial vehicle (UAV) imaging
02
technology can obtain higher temporal and spatial resolution

and is more suitable for crop growth monitoring and estimating

physicochemical parameters at the farm scale (Yue et al., 2021a).

A substantial amount of research has been conducted on UAV

imaging technology to monitor the N nutrition status of crops.

For example, Feng et al. (Feng et al., 2016) combined the

normalized difference red-edge index (NDRE) and floating-

position water band index (FWBI) to construct a new

vegetation index – the water-tolerant nitrogen index (WNI),

which effectively improved the accuracy of estimating the N

content in winter wheat leaves. Wang et al. (Wang et al., 2012)

showed that the three-bands vegetation index with wavelengths

of 423 mm, 703 mm, and 924 mm was significantly better than

the two-bands vegetation index in monitoring the nutrient status

of N in rice. Xu et al. (Xu et al., 2021) fused multi-source sensors

information to construct coverage-adjusted spectral indices

(CASIs) to estimate the content of leaf N of maize in three

reproductive stages. The results showed that the CASIs

outperformed conventional spectral indices. These studies

showed that vegetation indices (VIs) can effectively

characterize the N nutrient status of crops compared with the

traditional methods, which will aid in the efficient management

of nitrogen fertilization in the field. However, most of these

indices contain wavelengths other than visible light, such as red-

edge and near-infrared bands and require the integration of

narrow-band reflectance (He et al., 2016; Lu et al., 2021).

Simultaneously, the sensors used to acquire these bands, such

as hyperspectral and multispectral, are expensive. They have

complicated data processing processes that increase the cost of

agricultural production and limit their large-scale application in

agricultural remote sensing.

In contrast to sensors, such as hyperspectral and

multispectral, high-definition digital cameras are inexpensive

and have high spatial resolution, simple data processing, and

stable performance (Li et al., 2020; Lu et al., 2021). The use of

inexpensive digital cameras to monitor the N nutrition status of

crops has gradually become favored by many researchers (Putra

and Soni, 2018; Putra and Soni, 2020). However, owing to the
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few wavelength channels of digital camera sensors, the red-edge

and near-infrared bands closely related to the crop canopy

structure cannot be obtained (Prey et al., 2018; Jin et al.,

2021). Thus, there are certain limitations in monitoring crop

N nutrition using VIs that have only been constructed with

visible light (Wang et al., 2014).

Morphological parameters (MPs), such as plant height (H)

and canopy cover (CC), are direct expressions of crop growth

and nutritional status, as well as a comprehensive reflection of N

metabolism in the crop (Yue et al., 2021b; Li et al., 2022). Similar

to the red-edge and near-infrared bands, MPs can provide

structural information closely related to crop growth. The

combination of H and CC extracted from UAV digital images

has been shown to significantly improve the accuracy of VIs in

estimating crop growth parameters, such as yield, biomass, and

the leaf area index (Lu et al., 2019; Wan et al., 2020; Qiao et al.,

2022; Shu et al., 2022). Furthermore, most of the growth

parameters described above are closely related to the N

nutrient status of crops. Therefore, there should also be some

connection between MPs and the N status of crops. However,

whether the structural information provided by MPs can be used

to monitor the nitrogen status of crops remains to be further

investigated. The high spatial resolution of UAV digital cameras

makes them unique at extracting crop MPs, which provides a

new concept to effectively monitor the N nutrient status of crops

using inexpensive digital cameras.

However, there are differences in the ability of different MPs

to characterize the growth status of crops. For example,H and CC

reflect the morphological information of crops in vertical and

canopy structures, respectively (Bendig et al., 2015; Maimaitijiang

et al., 2019). With the advance in growth period, the values of H

and CC may tend to be stable and no longer change significantly

(Tilly et al., 2015). The use of only a single MP may not be able to

accurately reflect the dynamic changes of crop growth (Niu et al.,

2019; Fu et al., 2021b). Thus, this study calculated the canopy

volume (CV) of crops based on the product ofH and CC, explored

the relationship between multiple MPs (H, CC and CV) and the

potato PNC, and used the three methods of multiple linear

regression (MLR), k-nearest neighbors (KNN) and random

forest (RF) to explore the performance of MPs and MPs

combined with visible light VIs to estimate the potato PNC

with the goal of providing a new method to effectively monitor

the N status of crops with an inexpensive digital camera.

In summary, this study utilized potato as the research object

and explored the potential of MPs extracted by inexpensive

digital camera and those combined with visible light VIs to

estimate the potato PNC to provide technical support for the

scientific and precise management of potato N nutrition. The

specific goals of this study were to: (1) evaluate the accuracy of

extraction of potato MPs by a UAV digital camera; (2) compare

the performance of different MPs and the combination of multi-

MPs to estimate the potato PNC; and (3) investigate the effect of

MPs on the estimation of potato PNC by visible light VIs and
Frontiers in Plant Science 03
evaluate the potential of combining the two to improve the

accuracy of estimating PNC.
2 Experiment and methods

2.1 Experimental design

The experiment was conducted from April to July 2019 at the

National Precision Agriculture Experiment Station (40°10´N, 116°

26´E), Changping District, Beijing, China. The average altitude is

36 m, and the climate type is a warm temperate semi-humid

continental monsoon. Potato seed tubers were sown on 28 March

2019 and harvested on 9 July 2019. The experimental area was

divided into the density experimental area (T plots), N

experimental area (N plots) and potassium fertilizer

experimental area (K plots) to increase the spatial difference of

potato growth (Liu et al., 2022). Among them, three levels were

established in the density test area, including 60,000 plants/hm2

(T0), 72,000 plants/hm2 (T1), and 84,000 plants/hm2 (T2). Two

early maturing potato varieties Zhongshu 5 (Z5) and Zhongshu 3

(Z3) were the two varieties under each density treatment and the

experiments were conducted in triplicate with a total of 18 plots.

Four levels of N were established in the N test area, including 0 kg/

hm2 urea (N0), 244.65 kg/hm2 urea (N1), 489.15 kg/hm2 urea

(N2, normal treatment, 15 kg of pure N), and 733.50 kg/hm2 urea

(N3). The same two varieties (Z5 and Z3) were under each N

treatment and three replicates for a total of 24 plots. Three levels

were established in the potassium fertilizer test area, including 0

kg/hm2 potassium fertilizer (K0), 970.50 kg/hm2 potassium

fertilizer (K1, the planting density and nitrogen test area

received the K1 treatment), and 1,941 kg/hm2 potassium

fertilizer (K2)under one variety treatment (Z3), which was

repeated three times for a total of six plots. Both N and K plots

were treated under T1 density. There were 48 test plots in total,

and the area of a single plot was 32.5 m2. A total of 11 ground

control points (k01~k11) were evenly buried around the test area

to accurately obtain the spatial location of the test area and reduce

the influence of the positional deviation of each growth period on

the test results, and the three-dimensionality (3-D) of each ground

control point (GCP) was measured by high-precision GPS. The

location of the test field and the details of the test plan are shown

in Figure 1.
2.2 UAV digital images acquisition and
pre-processing

UAV flight operations were conducted on April 20, May

28, June 10, and June 20, 2019, to obtain digital images of the

potato bare soil stage, tuber formation stage (S1), tuber growth

stage (S2), and starch accumulation stage (S3). A DJI Genie

4Pro UAV (DJI Group, Ltd. Shenzhen, China) was used as the
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remote sensing system platform, and it carried a COMS sensor

with 20 million effective pixels and three wavelength channels,

including Red (R), Green (G), and Blue (B). In addition, the

system was equipped with a position and orientation system

(POS) to record the position and spatial altitude of the camera

center during data acquisition. The UAV flights were operated

in clear, cloudless, and calm weather conditions between

11 a.m. and 1 p.m. local time. The flight altitude was

established to 20 m; the overlap rate of heading and
Frontiers in Plant Science 04
collateral direction was 85%, and the spatial resolution of the

images obtained was approximately 0.86 cm.

The digital images were pre-processed using Agisoft PhotoScan

Professional software (Agisoft, LLC, St. Petersburg, Russia). The

specific processing flow started with the digital images with POS

data, and the 3-D coordinates of GCPs in the potato bare soil period

and each growth period were imported into the software. Images

with abnormal attitude angles were removed, and the images were

initially aligned. The spatial position and attitude of the
FIGURE 1

Potato field location and experimental design.
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photography center at the moment of image acquisition was

restored. Secondly, the images were topographically corrected

based on the 3-D coordinates of the GCPs to further optimize

the spatial attitude and position of the images and generate a sparse

point cloud with precise spatial information attributes in the flight

area. Next, the dense point cloud of the flight area was constructed

to generate a spatial grid and texture information. Finally, the digital

orthophoto map (DOM) and digital surface model (DSM) of the

test area were generated.
2.3 Ground data acquisition

The ground data collection was simultaneously conducted

with the UAV flight operation and primarily included digital

ground photos and measurements of the plant height and PNC at

each growth stage. The digital ground photos were obtained by

first placing a 1.3 m × 1.3 m white box (perpendicular and parallel

to the test crop rows) randomly in each test plot and then using a

Canon G16 digital camera to horizontally photograph at 2 m

directly above the white box to obtain ground digital photo of each

test plot to extract the ground coverage. The plant height was

measured by selecting four representative plants in each plot and

measuring the distance from the base of the stem to the tip of the

leaf and recording it. Finally, the average height of the four plants

was considered to be the measured plant height of the plot. The

potato PNC was measured by selecting three representative plants

in each plot, separating the stems and leaves, and then killing them

at 105°C for 0.5 h. The plants were then dried at 80°C to a

constant mass and weighed. The N contents of the stem and leaf

parts weremeasured separately using a Kjeldahl nitrogen analyzer.

Finally, the PNC was calculated based on the dry mass and

nitrogen content of the samples (Fu et al., 2020). The statistical

analysis of the measured plant height and PNC at each growth

stage is shown in Table 1.
2.4 Vegetation index selection

Based on the existing research results in which visible light

VIs were used to monitor crop N status, 10 VIs with potential
Frontiers in Plant Science 05
performance for estimating the potato PNC were selected for

follow-up studies as shown in Table 2. Among them, R, G, and B

represent the digital number (DN) values of the red, green, and

blue channels, respectively, and r, g, and b were calculated from

equations(1)–(3), which represent the digital numbers of the

normalized R, G, and B, respectively.

r ¼ R
R+G+B

(1)

g ¼ G
R+G+B

(2)

b ¼ B
R+G+B

(3)
2.5 Extraction of
morphological parameters

The acquisition of H in the different growth stages of potato

was primarily determined by the difference between the DSM in

each growth stage and that in the bare soil stage. The specific

methods first included obtaining the high-definition digital

images of the experimental field in the bare soil period and

combining them with the 3-D coordinates of GCPs. The DSM of

this period, namely DSM0, was generated, which was used as the

reference plane for the subsequent H extraction. Secondly, based

on the digital images of different growth stages of potato,

combined with GCPs, the DSM of the corresponding growth

stage, namely DSMi (i=1, 2, 3, denoted S1, S2, and S3,

respectively) was generated. DSMi was then differentiated from

DSM0 (Equation 4) to obtain the crop height models for the

corresponding growth periods. Finally, the average plant height

of each plot was extracted using ENVI 5.3 software (L3Harris

Geospatial, Boulder, CO, USA) and the vector data of each

experimental plot was used to obtain the H of each plot.

Hi = DSMi − DSM0 i = 1, 2:3ð Þ (4)

This study extracted the CC of potato in each growth period

based on the ground digital photos and UAV digital images,
TABLE 1 Statistical analysis of plant height and nitrogen content of potato in different growth stages.

Growth stages Crop parameters Max Min Mean Standard deviation Coefficient of variation (%)

S1 H 40.50 20.38 30.29 4.76 15.71

PNC 4.50 2.09 3.21 0.61 19.03

S2 H 40.88 20.42 27.72 5.20 18.75

PNC 4.00 1.61 2.69 0.58 21.41

S3 H 40.35 15.12 25.78 5.15 19.97

PNC/% 3.74 1.86 2.94 0.46 15.86
S1, tuber formation stage; S2, tuber growth stage; S3, starch accumulation stage.
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respectively, and used the results extracted from the ground digital

photos as the CC measured values to verify the results extracted by

the UAV (Li et al., 2005; Meyer and Neto, 2008). Among them, the

vegetation coverage extraction algorithm (VCEA) based on ground

digital photos derived the concepts of CC extraction from several

studies (Gitelson et al., 2003; Meyer and Neto, 2008) and optimized

some of them. The basic process first involved transforming the test

area based on the Hue-Saturation-Intensity (HSI) color space, and

secondly, using the Excess Green Vegetation Index (EXG) to

conduct green vegetation processing on the results of HSI

processing. The soil background and weed noise were removed

using the maximum interclass variance threshold and

morphological threshold. Finally, the ratio of the number of

pixels of vegetation in each plot to the total number of pixels in

the plot was calculated, which is the measured CC value of the plot.

The basic process of CC extraction based on UAV digital images

included first processing the DOM of each growth period using the

EXG index. The threshold value of vegetation and soil was then

obtained using the bimodal method, and the number of pixels of

vegetation and soil in each plot was obtained using the banding

operation. Finally, the ratio of number of pixels of vegetation to the

total number of pixels in each plot was calculated, which was the CC

value of that plot based on UAV extraction.

In this study, the product of extracted H and CC was defined

as the canopy volume (Qiao et al., 2022) to explore the

association of multiple MPs with the potato PNC, and the CV

was calculated as shown in Equation 5.

CV = CC*H (5)
2.6 Model building and evaluation

A total of 48 sets of data were obtained in each growth period

of potato. To enhance the reliability of the experimental

conclusions, the models were constructed with repetitions 1

and 3 (32) as the training set, and the data of repetition 2 (16)
Frontiers in Plant Science 06
was used to validate the models. The methods used to build the

potato PNC estimation models included MLR, KNN, and RF.

Among them, MLR is an effective linear regression method,

which is often used to describe the linear relationship between

multiple independent variables and dependent variables. KNN is

a mature machine learning algorithm that can determine the

regression values of the samples to be tested based on the

features of the k most similar samples in the feature space. RF

is a supervised ensemble learning algorithm. It trains input

samples to generate a decision tree training set based on

bootstrap resampling technology, and then integrates the

results of each decision tree to output the predicted target

value. In this study, the coefficient of determination (R²), root

mean square error (RMSE), and normalized root mean square

error (NRMSE) were used to evaluate the accuracy and stability

of the models.
3 Results and analysis

3.1 Potato plant height extraction

The crop height models based on UAV digital images can

visually represent the spatial distribution of potato plant height at

different growth stages, which helps to monitor the growth of

potato plants, and explore the effects of varying treatment factors

on the height of potato plants. In this study, the DSM of different

growth stages of potato and that of the bare soil stage were

calculated to obtain the crop height models of corresponding

growth stages, and the results are shown in Figure 2. It is apparent

that the height of potato plant in each growth period was generally

high in the west and low in the east. Among them, there were

differences in the plant height between different varieties, nutrient

and density treatments, and the difference in plant height of the

different varieties of potato was the most obvious.

To verify the accuracy ofH extraction based on the DSM, the

measured plant height and extracted plant height were
TABLE 2 Visible light vegetation indices related to nitrogen.

Visible light vegetation indices Definition Reference

R R /

G G /

B B /

GRRI r/g (Lu et al., 2021b)

GLA (2*g-r+b)/(2*g+r+b) (Yue et al., 2021b)

GLI (2*g-r-b)/(2*g+r+b) (Yue et al., 2018; Zhou et al., 2018)

GRVI (g-r)/(g+r) (Bendig et al., 2015)

VARI (g-r)/(g+r-b) (Maimaitijiang et al., 2019)

EXG 2*g-b-r (Fu et al., 2021a)

NDI (r-g)/(r+g+0.01) (Meyer and Neto, 2008)
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compared and analyzed for the three reproductive stages, and

the results are shown in Figure 3. The coefficients of

determination of the extracted plant height and the measured

plant height in the three growth stages were 0.86, 0.87 and 0.76,

respectively, and the RMSE were 2.29 cm, 2.47 cm, and 2.79 cm,

respectively. These values indicated that the plant height

extraction based on DSM had higher precision, and the

extraction precision of potato in the early stages of growth was

higher than that in the later stage of growth.
3.2 Potato coverage extraction

The ground digital photos and UAV digital images of three

growth stages of the potato plants were processed by VCEA

and EXG index bimodal threshold methods, respectively, and

the CC values of each growth stage that were measured and

extracted were obtained. The use of plot s20 as an example in

Figure 4 compares the results of CC extraction by the two

methods. The digital ground photos and the UAV digital
Frontiers in Plant Science 07
images showed slight differences in potato canopy

morphology. Among them, the digital ground photos more

clearly reflected the interplant interlacing state of potato, which

was more conducive to the extraction of potato canopy cover.

UAV digital images can also better distinguish potato plants

from soil background, and the CC values extracted based on

the two methods can effectively reflect the potato canopy cover

in general.

The CC that was extracted using the two methods for the

three growth stages was compared and analyzed to quantitatively

evaluate the accuracy of CC extraction based on the UAV digital

images. The results are shown in Figure 5. The CC values of the

S1 were primarily concentrated between 0.6 and 0.8, while the

CC values of the S2 and S3 were primarily concentrated between

0.4 and 0.8. The coefficients of determination of the fit between

the extracted CC and the measured CC in the S1, S2, and S3 were

0.83, 0.81, and 0.78, respectively. The RMSE were 0.02, 0.05, and

0.08, respectively, indicating that the accuracy of potato canopy

cover extracted based on digital images is reliable and can be

used to estimate crop physical and chemical parameters.
B CA

FIGURE 2

Crop height models of potato at (A) S1, (B) S2, (C) S3.
B CA

FIGURE 3

Contrastive analysis of plant height extracted from potato and measured plant height at (A) S1, (B) S2, (C) S3.
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3.3 Correlation analysis between the
parameters and PNC

Correlation analysis was performed between the visible light

VIs and MPs obtained in each growth period of potato and PNC,

and the results are shown in Figure 6. The correlation between

most of the VIs and PNC tended to increase and then decrease
Frontiers in Plant Science 08
from the S1 to S3. Among them, all the VIs except G reached a

significance level of 0.01 for the correlation with the PNC during

the S1 and S2, and the absolute values of correlation coefficients

ranged from 0.40 to 0.74 and 0.54 to 0.83, respectively. All the VIs

reached a significance level of 0.01 for the correlation with the

PNC during the S3, and the absolute values of correlation

coefficients ranged from 0.40 to 0.69. Unlike visible light VIs,
B CA

FIGURE 5

Comparative analysis of potato extraction coverage and measured coverage at (A) S1, (B) S2, (C) S3.
B C D

E F G H

I J K L

A

FIGURE 4

Comparison of two methods for extracting potato coverage.(A, E, I) Ground digital photos of the potato plants at S1-S3; (B, F, J) The effect of
potato CC extraction using ground digital photo at S1-S3; (C, G, K) UAV digital images of potato plants at S1-S3; (D, H, L) The effect of potato
CC extraction using UAV digital image at S1-S3.
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the correlation between MPs and PNC gradually decreased as the

growing season progressed. Nevertheless, the correlation between

all theMPs and PNC a significance level of 0.01 in all three growth

stages. Furthermore, the correlations of CV were higher than

those of H and CC, and the absolute values of the correlation

coefficients were 0.77, 0.63, and 0.65 for the three growth stages

S1, S2, and S3, respectively. Compared with the visible light VIs,

the correlations between MPs and PNC in the three growth stages

of potato were comparable to those of most of the visible light VIs,

indicating that the association between MPs and PNC is stronger

and that it is practical to monitor the potato PNC based on the

MPs extracted from inexpensive digital cameras.
3.4 Estimation of the Potato PNC

3.4.1 Estimation of the potato PNC by visible
light VIs

In this study, the top five VIs with higher correlations in each

growth period were selected, and the three methods MLR, KNN

and RF were used to construct estimation models for the potato

PNC. The results are shown in Table 3. The R2 of potato PNC

estimation models constructed using the three methods > 0.5 for

all three growth periods, indicating that the selected VIs could
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reflect the potato PNC status some extent. Thus, it was feasible to

monitor the potato PNC status based on visible light VIs during

the critical growth periods. A comparison of the results of the

three reproductive stages indicated that the estimations of the S1

and S2 were clearly better than that of the S3. From the modeling

and validation results, it can be seen that the potato PNC

estimation models constructed by the three methods show

similar R2, RMSE, and NRMSE.

3.4.2 MPs to estimate the potato PNC
To investigate the association between MPs and the PNC,

this study constructed estimation models of the potato PNC

based on extracted H, CC, and constructed CV. The three were

combined to investigate the effect of multiple MPs in estimating

the potato PNC. The results are shown in Figure 7. The

estimation of PNC by single or multiple MPs was better in the

S1 and worse in the S3, whereas H and CC were the worst in the

S3 (R2< 0.4). The models constructed by CV had a higher R2,

lower RMSE, and NRMSE and better estimation of PNC than

those of H and CC. The combination of multiple MPs effectively

improved the accuracy of PNC estimation at all the growth

stages of potato compared with the models constructed with

single MPs. However, compared with visible light VIs (Table 3),

the estimation effect of MPs requires further improvement.
FIGURE 6

Correlation analysis results of each parameter and potato PNC. Note: the horizontal dashed line indicates a significance level of 0.01.
TABLE 3 Visible light vegetation indices estimation of potato PNC.

Growth stages Dataset MLR KNN RF

R2 RMSE/% NRMSE/% R2 RMSE/% NRMSE/% R2 RMSE/% NRMSE/%

S1 Cali 0.75 0.31 9.76 0.72 0.33 10.45 0.75 0.31 9.95

Vali 0.75 0.30 8.99 0.72 0.34 10.32 0.73 0.36 10.67

S2 Cali 0.74 0.27 10.43 0.69 0.31 11.44 0.73 0.28 10.70

Vali 0.78 0.32 11.23 0.62 0.42 14.77 0.73 0.38 13.52

S3 Cali 0.69 0.24 8.42 0.62 0.27 9.37 0.68 0.26 8.83

Vali 0.72 0.29 10.12 0.64 0.32 8.90 0.64 0.31 10.55
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3.4.3 Estimation of the potato PNC by
combining visible light VIs and MPs

To investigate the effect of inexpensive digital camera

extraction of MPs on the visible light VIs to estimate the

potato PNC, this study constructed the PNC estimation

models for the three potato growth stages using three

methods MLR, KNN, and RF based on the selected VIs and

extracted MPs in Section 2.5. The results are shown in

Table 4. The models used to estimate the PNC were

constructed using three methods with visible light VIs

combined with MPs. They were also more effective at

estimating the S1 and S2 than the S3 for potato at all stages

of growth. Combined with Tables 3, 4, it is apparent that

during the same growth period, the R2 of the models

constructed by VIs combined with MPs increased compared

with a single model variable. In addition, the RMSE and

NRMSE decreased substantially, indicating that the addition

of MPs improved the accuracy of visible light VIs in

estimating the PNC. Comparing the estimation results of

different methods in each growth stage, it can be seen that

the three methods have achieved promising results. The

scatter plot of the predicted and measured PNC values for

each growth period are shown in Figure 8. The predicted and

measured PNC values obtained by the three methods were

mostly uniformly distributed around the 1:1 line for each
Frontiers in Plant Science 10
potato growth period, indicating that the overall effect of

estimating the PNC based on visible light VIs and MPs

is suitable.
4 Discussion

4.1 Extraction of the morphological
parameters

The highly accurate extraction of the potato H and CC at all

growth stages is essential to explore the potential of MPs in

combination with the visible light VIs to estimate the potato

PNC. UAV remote sensing platforms are advantageous because

of their operational flexibility and high spatial and temporal

resolution; thus, they have more significant advantages in

extracting crop MPs (Holman et al., 2016; Li et al., 2016; Niu

et al., 2019; Johnson et al., 2020). In this study, based on the crop

height models of potato, the plant height was extracted in three

growth stages, and it is apparent in Figure 3 that the extraction of

the plant height in all three growth stages of potato was highly

accurate, and the accuracy of the S1 and S2 was better than that

of the S3. The reason is that during the first two growth periods,

the potato plants primarily grew vegetatively and reproduced,

producing vigorous plants with a large area of leaf expansion. At
B CA

FIGURE 7

Estimation of the potato PNC effect by morphological parameters at (A) R2, (B) RMSE, (C) NRMSE.
TABLE 4 Estimation of the potato PNC by visible light vegetation indices combined with morphological parameters.

Growth stages Data set MLR KNN RF

R2 RMSE/% NRMSE/% R2 RMSE/% NRMSE/% R2 RMSE/% NRMSE/%

S1 Cali 0.78 0.29 9.07 0.75 0.31 9.78 0.78 0.29 9.20

Vali 0.79 0.27 8.19 0.76 0.29 8.84 0.81 0.35 10.58

S2 Cali 0.76 0.27 10.36 0.71 0.29 10.99 0.73 0.29 10.95

Vali 0.80 0.27 8.11 0.70 0.36 12.73 0.75 0.34 11.90

S3 Cali 0.71 0.24 8.13 0.70 0.25 8.39 0.72 0.26 9.21

Vali 0.76 0.26 8.63 0.70 0.29 9.65 0.73 0.28 9.53
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this time, the plant height extracted was less affected by mixed

pixels and was highly precise. The potato tubers were bulking

and maturing during the S3, and some potato leaves began to

turn yellow and shrink, and the canopy coverage was reduced. At

this time, the extracted plant height was substantially affected by

the soil background, which reduced the accuracy. Similar to the

plant height, the accuracy of extraction of the CC also showed

that the S1 and S2 could be more effectively extracted than plants

in the S3. The reason for this is that the extraction of CC was less

influenced by soil and weeds and more accurate during the early

growth periods of potato. In contrast, there was a larger

difference between the CC values extracted based on digital

ground photos and those based on UAV digital images during

the S3. The accuracy of extraction of CC decreased owing to the

influence of a small number of field weeds and soil background.

As shown in Figures 3, 5, the extraction of the potato canopy

MPs based on the UAV digital camera was highly accurate and
Frontiers in Plant Science 11
more effectively reflected the growth conditions of potato, which

enables their use to estimate physical and chemical parameters.

In addition, measures, such as mulching and weeding, can be

implemented in the field to reduce the interference of soil

background and weeds and further improve the accuracy of

extracting crop MPs.
4.2 Response of visible light VIs
to the PNC

Based on the existing research results, this study selected 10

VIs that were closely linked to crop N and analyzed their

correlation with the PNC in three key growth stages of potato.

As shown in Figure 6, most of the VIs and PNC reached a

significance level of 0.01 for the correlation, indicating that it is

feasible to use visible light VIs to estimate the PNC. The
B C

D E F

G H I

A

FIGURE 8

Validation effect of estimation of potato PNC based on fusion characteristics at each growth stage.(A, D, G) MLR, S1-S3; (B, E, H) RF, S1-S3; (C,
F, I) KNN, S1-S3.
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correlation between most VIs and PNC first increased and then

decreased from the S1 to S3. The effect of estimating the PNC

based on visible light VIs (Table 3) also showed that the

estimation of the early growth stages of potato were better

than those at the later stage.

The reason is that the vegetative and reproductive growth

were the primary factors during the early stages of potato

growth. The plants grew vigorously, and the extracted VIs

were less affected by mixed pixels, such as soil, so they more

effectively reflected the change in PNC. In contrast, the effect of

spectral saturation rendered most of the VIs less sensitive to the

evolution of PNC during the late stage of potato growth, and

some potato plants began to senesce and turn yellow during this

period. The spectral information extracted at this time was also

substantially affected by the soil background. Therefore, the

accuracy of estimation of PNC by visible light VIs was lower

during the S3 than during the first two reproductive stages. In

addition, compared with Nigon’s result (Nigon et al., 2015) of

estimating the content of N in potato leaves (R2 = 0.79), the

accuracy of this study was lower. There are several primary

reasons for this. On the one hand, Nigon used the red edge

information obtained by a hyperspectral camera to obtain more

spectral information related to nitrogen (Raper and Varco,

2015). Alternatively, compared with the N content of plants,

changes in the canopy spectrum were more closely related to the

content of crop leaf N than that of the plant, and the spectral

information is more suitable for estimating the leaf N content

(Zhou et al., 2018).
4.3 Response of morphological
parameters to the PNC

The MPs of crops have been widely used to monitor crop

growth parameters (Bendig et al., 2015; Stevens et al., 2020).

However, the status of response of PNC to different MPs at the

various crop growth stages is unclear. As shown in Figures 6 and

7, the correlation between all three MPs and the PNC gradually

decreased as the growth period advanced, and the constructed

models gradually became less accurate. The reason for this is that

the potato growth was most closely related to the nutritional

status during the S1, and the accuracy of extraction of each MP

was higher, which more effectively reflected the changing status

of PNC. During the S2, H and CC tended to saturate, and no

longer changed significantly (Wan et al., 2020; Qiao et al., 2022),

and the link between MPs and PNC weakened. The growth of

potato was primarily reproductive during the S3, and the N in

plant continued to transfer to the tuber. While the changes of H

and CC were not obvious, the accuracy of extraction also became

worse. The connection between MPs and PNC was weakest at

this stage, and the models constructed were the least effective at

estimating the PNC.
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Considering that a single MP cannot finely reflect the crop

growth condition, this study constructed the CV based on the

extracted H and CC. In addition, we explored the effect of

multiple MPs in estimating the potato PNC by combining H,

CC, and CV. Figures 6, 7 show that the correlation between CV

and PNC was higher than that of H and CC for all three

reproductive stages of potato, and the effect of estimating PNC

based on the CV was better than that based on the H and CC.

The reason is that the PNC was composed of two parts, which

included the contents of leaf N and stem N, and the CV

simultaneously reflected the growth status of potato in the

canopy and vertical scales, which weakened the saturation

phenomenon of PNC estimated by H or CC. The combination

of H, CC and CV was much more accurate at estimating the

PNC than a single MP because multiple MPs can characterize

the morphological changes of potato from multiple dimensions

and improve the sensitivity of MPs to PNC in each period (Lu

et al., 2021).
4.4 Effect of the MPs on the estimation
of PNC from visible light VIs

Existing studies have shown that both VIs and MPs can

reflect the growth and nutritional status of crops. The visible

light VIs and MPs obtained by UAV digital camera enabled

this study to use the three methods of MLR, KNN, and RF to

explore the effect of combining the VIs and MPs to estimate

the potato PNC. As shown in Table 4, the combination of VIs

with MPs improved the accuracy of estimating PNC

compared with using the VIs alone, and the accuracy of the

models constructed in the three growth stages was closer to

the result of Nigon. The reason is that, on the one hand, the

VIs and MPs combined the nutritional information and

morphological information of crops, which can better

characterize the law of crop growth and enhance the

connection with PNC. Alternatively, the red-edge or near-

infrared band was sensitive to crop canopy structure, while H

and CC were the primary factors that affect the crop canopy

structure; the combination of multiple MPs provides similar

information to the red-edge and near-infrared bands (Wang

et al., 2012; Wan et al., 2020), which enhanced the link

between optical VIs and PNC. Thus, the combination of

visible light VIs and MPs can improve the accuracy of

estimating the PNC.
4.5 Implications for future study

In this study, digital images of the key growth periods of

the potato were obtained using a UAV digital camera, and the

visible light VIs and MPs, such as H, CC, and CV, were
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extracted from them. Combined with different regression

methods, the effect of different MPs and MPs combined

with VIs in estimating the potato PNC were explored. The

results showed that the morphological information of potato

plant was closely related to the N nutrition status, and the

combination of VIs and MPs could improve the accuracy of

estimating the PNC, which was consistent with the existing

research conclusions (Maimaitijiang et al., 2019; Shu et al.,

2022). In addition, Figures 3 and 5 showed that the H and CC

of potato plant extracted based on the UAV digital camera

were highly accurate, which could provide a favorable

reference for monitoring the growth of potato. The use of

MPs extracted by an inexpensive UAV digital camera

combined with the visible light VIs to estimate the potato

PNC not only fully utilizes the advantages of high spatial

resolution of the digital camera but also avoids the possible

matching error between multi-source sensors, which can

provide an effective manner to estimate the physical and

chemical parameters with high precision.

This study only discussed the effect of using the MPs extracted

from the UAV digital images to estimate the PNC in the critical

growth periods of potato at a fixed flying height. However, the

accuracy of extraction of the MPs is closely related to the spatial

resolution of the digital images and the flying height of the UAV.

These factors should also be considered in subsequent studies. In

addition, future studies should also consider usingpotatodata from

different locations and years to verify the conclusions.
5 Conclusions

This study developed a method to effectively estimate the

growth parameters and PNC status of potato at critical

growth stages based on an inexpensive UAV digital camera.

First, the UAV digital camera was used to extract visible light

VIs and morphological information about the potato canopy.

Next, the effect of MPs and VIs combined with MPs in

estimating PNC was investigated by combining various

methods. Several conclusions can be drawn from these

results. (1) UAV digital images can obtain potato H and CC

information with high accuracy, which can provide a

reference to assess the growth of potato plants. (2) Both

visible light VIs and MPs reflect the status of potato PNC,

and VIs are more closely associated with the PNC. (3)

Different MPs have different effects on estimating PNC, and

multiple MPs can more effectively reflect the morphological

structure of crops, which can further improve the accuracy of

estimating PNC. (4) Visible light VIs combined with MPs can

improve the accuracy of estimating the PNC. Based on these

findings, the method can provide a reference to monitor crop

growth and N nutrient status using a UAV digital camera to

reduce agricultural production costs and improve precision

agricultural management.
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