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Soil applied silicon and
manganese combined with
foliar application of 5-
aminolevulinic acid mediate
photosynthetic recovery in Cd-
stressed Salvia miltiorrhiza by
regulating Cd-transporter genes
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Noman Ali Buttar3, Zongqi Yang1, Basharat Ali3* and Ling Xu1*

1Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life
Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China, 2Faculty of Science,
Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, Brunei, 3Department of Agricultural
Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim
Yar Khan, Pakistan
Salvia miltiorrhiza is an important medicinal plant that experiences significant

growth and biomass losses when cultivated on cadmium (Cd) contaminated

soils. High Cd accumulation in plant tissues also increases the risk of metal

entry into the food chain. In this study, we proposed that Cd accumulation in S.

miltiorrhiza can be restricted through plant growth regulators and nutrient

management. Therefore, S. miltiorrhiza seedlings were transplanted into mixed

nutrient soil for two weeks, then treated with 30 mg kg-1 CdCl2, 200 mg kg-1

Na2SiO3·9H2O, and 100 mg kg-1 MnSO4, and simultaneously sprayed with 10

mg L-1 ALA on the leaves one week later. This study showed that elevated Cd

accumulation significantly reduced plant growth and biomass. This growth

inhibition damaged photosynthetic machinery and impaired carbon

assimilation. In contrast, 5-aminolevulinic acid (ALA) significantly promoted

the biomass of S. miltiorrhiza, and the dry weight of plants treated with ALA

combined with manganese (Mn)/silicon (Si) increased by 42% and 55% as

compared with Cd+Mn and Cd+Si treatments. Exogenously applied ALA and

Si/Mn significantly activated antioxidant enzymes and promoted the growth

recovery of S. miltiorrhiza. Further, exogenous ALA also reduced the Cd

concentration in S. miltiorrhiza, especially when combined with Si.

Compared with the Cd+Si treatment, the Cd+Si+ALA treatment reduced the

Cd concentration in roots and leaves by 59% and 60%, respectively. Gene

expression analysis suggested that ALA and Si significantly up-regulated genes
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associated with Cd transport. Other genes related to heavy metal tolerance

mechanisms are also regulated to cope with heavy metal stress. These results

indicated that the combined action of ALA and Si/Mn could reduce Cd-toxicity

by increasing chlorophyll content and changing oxidative stress and can also

affect Cd accumulation by regulating gene expression.
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Introduction

With rapid urbanization, and industrial and anthropogenic

activities (such as smelting and mining), agricultural soils and

waters in many developing countries are seriously contaminated

with heavy metals. For instance, human activities such as

mining, pesticides, fertilizers, and industrial wastewater have

significantly increased cadmium (Cd) concentration in soils

(Nicholson et al., 2003). The national soil contamination

survey report showed that the total point exceedance rate of

the national soil was 16%, and Cd occupies the largest part, 7%.

Cd contamination is rapidly increasing throughout the country,

with more than 50% in the southwest region and 10%-40% in

northern, northeastern, and western China (MEP and MLR,

2014). In China, about 19.4% of arable land is contaminated with

heavy metals (Zhao et al., 2015), including 2.8×105 hm2 of

farmland contaminated with Cd (Liu et al., 2015). Cadmium,

nickel, lead and arsenic were considered the most harmful

pollutants in soil (Shang et al., 2018; Mwamba et al., 2020;

Aslam et al., 2021). Cadmium is a non-essential element for

plant growth. In soils, it is quickly mobilized, absorbed by plant

roots, and accumulated in edible parts, endangering human

health (Ali et al., 2014; Hussain et al., 2020). It can also inhibit

the uptake and transport of some nutrients, causing nutrient

deficiencies and slow growth in plants (Mwamba et al., 2016;

Chattha et al., 2021). Plants cultivated on these contaminated

soils experience significant growth and developmental

challenges. The excess reactive oxygen species (ROS) in plant

tissues can damage plant growth (Tian et al., 2014; Yang et al.,

2018). Heavy metal contamination accelerates the process of

ROS production, disrupting cell structure and affecting cell

function (Daud et al., 2009; Najeeb et al., 2011).

In Cd-contaminated soils, plant growth can be managed

through appropriate nutrient management and/or plant growth

regulator applications. For instance, manganese (Mn) is an

essential trace element for plant growth (Li et al., 2019). It can

reduce Cd absorption by forming Cd-Mn complexes in root

tissues (Srivastava and Dubey, 2011; Wang et al., 2021a).

However, the concentration of Mn should not be too high as it
02
can limit the uptake of other nutrients, such as calcium,

magnesium, iron, or zinc (Loren et al., 2021). Similarly, silicon

(Si) is the second most abundant mineral element in soil,

comprising approximately 28% of the earth’s crust; it can

interact with heavy metals, reducing their bioavailability and

absorption by plants (Malčovská et al., 2014; Adrees et al., 2015).

In Cd-stressed plants, Si accumulates in the cell wall, forming a

Cd complex (Si-wall matrix), reducing Cd absorption (Ma et al.,

2015; Xu et al., 2017; Thind et al., 2020). Toxic metals in soil or

growth media can slow root growth and development, which can

be restored by Si treatment (Zhang et al., 2008a; Lu et al., 2018;

Tian et al., 2020). Exogenous Si application has been found

effective in reducing Cd absorption and protecting cellular

organelles from Cd injury by regulating metal transporter

genes (Gheshlaghpour et al., 2021). 5-aminolevulinic acid

(ALA), a key precursor of pyrrole molecule synthesis pathways

such as chlorophyll (Akram and Ashraf, 2013; Gill et al., 2015;

Gill et al., 2016), can promote plant performance under stressed

environments (Ali et al., 2013b; Xu et al., 2016; Xu et al., 2018). It

also activates the antioxidant enzyme defence system, reduces

lipid peroxidation, and protects plant organelles from damage

(Youssef and Awad, 2008; Xu et al., 2015). Further, El-Shora

et al. (2021) also found that ALA reduced malondialdehyde

(MDA) and ROS levels in S. miltiorrhiza and improved plant

growth under lead stress. ALA was also effective in protecting

chlorophyll machinery and the photosynthesis process of plants

under Cd-stressed environments (Ali et al., 2013a).

Salvia miltiorrhiza L. mainly contains fat-soluble and water-

soluble practical components (Chen et al., 2021; Yu et al., 2021;

Chen et al., 2022b), and its roots are commonly used in the

pharmaceutical industry to treat cardiovascular and

cerebrovascular diseases (Xing et al., 2015; Zhang et al., 2021;

Chen et al., 2022a). The accumulation of Cd can seriously affect

its efficacy and quality, affecting human health. Therefore, it is

necessary to limit the Cd content in plant tissues to maintain the

stability of the efficacy of S. miltiorrhiza. However, most studies

are conducted on food crops, and few have been conducted on

reducing Cd content in the medicinal plant S. miltiorrhiza. In

this study, Cd accumulation in S. miltiorrhiza could be
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suppressed through soil management (Mn and Si) and plant

growth regulator ALA application. To date, synergistic effects of

ALA combined with MnSO4/Na2SiO3 on S. miltiorrhiza under

heavy metal Cd stress have not been studied. This study explored

the effects of ALA and Si/Mn on Cd-stressed S. miltiorrhiza,

intending to understand the physiological pathways associated

with Cd absorption and transport in plant tissues.
Materials and methods

Plant material

S. miltiorrhiza seeds were collected from Shangluo, Shanxi

Province, China. Soak the prepared seeds in distilled water for 12

hours. Then, the seeds were placed in a seedling tray and grown

at 28°C for seven days, constantly replenishing water during the

cultivation process. All the plants were transplanted into long

flowerpots and grown under 200 mmol m−2 s−1 active photon

flux density, 24/20°C (day/night temperature), 60-70% relative

humidity, and 14/10 hours (light/night) photoperiod. After two

months of growth, seedlings were transplanted into pots (180

cm) containing nutrient soil, vermiculite, and perlite (4: 2: 1, v:v)

as substrate. The S. miltiorrhiza seedlings were transplanted into

mixed nutrient soil for two weeks, then treated with 30 mg kg-1

CdCl2, 200 mg kg-1 Na2SiO3·9H2O, and 100 mg kg-1 MnSO4,

and sprayed with 10 mg L-1 ALA on the leaves one week later.

Among them, the concentrations of CdCl2, Na2SiO3·9H2O,

MnSO4, and ALA were selected based on preliminary

experiments where several Cd levels, i.e., 0, 10, 30, and 50 mg

kg-1 were tested. The results showed that Cd concentrations at 10

mg kg-1 did not significantly affect plant growth, whereas Cd at

50 mg kg-1 was more toxic to plant growth, causing the leaves to

be yellowed and even die. There were ten different treatments,

namely control, Cd, Si, Mn, ALA, Cd+Si, Cd+Mn, Cd+ALA,

Cd+Si+ALA, and Cd+Mn+ALA. Three independent replicates

of each treatment were used, and three plants per replicate were

selected for subsequent analysis. Seven days after the treatment,

the plants were harvested for biomass measurements and

biochemical analysis.
Chlorophyll and carotenoid content

To estimate chlorophyll contents, fresh root and leaf samples

(0.1 g) were placed in a centrifugal tube containing 4.5 mL

absolute ethanol, 4.5 mL acetone, and 1 mL distilled water and

incubated in the dark overnight. The absorbance of the solution

was taken at 663 nm, 645 nm, and 470 nm (Porra et al., 1989).
Frontiers in Plant Science 03
Malondialdehyde and reactive
oxygen species

The MDA content was measured by mixing 5 mL of 0.5% 2-

thiobarbituric acid with 1.5 mL of enzyme solution, and then it

was bathed in water at 95°C for 30 min, followed by a rapid ice

bath and centrifugation. The supernatant was measured at 532

nm and 600 nm (Zhou and Leul, 1999). Superoxide radicles (O−
2 )

were measured as described by Jiang and Zhang (2001). Add

0.1g of fresh roots or leaves to 3 mL of pre-cooled potassium

phosphate buffer solution, grind, and centrifuge. The absorbance

was measured at 530 nm to calculate the (O−
2 ) generation rate.

The content of hydrogen peroxide (H2O2) was determined by

mixing 0.1g fresh sample with 2 mL of 0.1% trichloroacetic acid

(TCA) according to the method of Velikova et al. (2000).

Hydroxyl ion (-OH) contents were measured following

Halliwell et al. (1987). Fresh samples (0.1 g) were ground in 1

mL sodium phosphate buffer solution and centrifuged. Hydroxyl

ion contents of the supernatant solution were measured at

550 nm.
Antioxidant enzyme activities

Fresh samples (0.1 g) were ground with potassium

phosphate buffer solution and centrifuged, and the supernatant

solution was used for further analysis. Superoxide dismutase

(SOD) activity was determined by the photochemical nitro blue

tetrazolium (NBT) method of Zhang et al. (2008b), and the

absorbance was measured at 560 nm. Peroxidase (POD) activity

was determined by the method of Zhou and Leul (1999). The

change of absorbance of the reaction system at 470 nm was

measured, and finally, POD activity was calculated. Catalase

(CAT) was measured at 240 nm, and the activity of CAT was

calculated Aebi (1984). Ascorbic peroxidase (APX) was

measured by Nakano and Asada (1981), and the absorbance

change within 1 min was measured at 290 nm. The absorbance

at 340 nm to calculate glutathione reductase activity (GR) by

Jiang and Zhang (2002).
Tissue cadmium contents

Dried S. miltiorrhiza root and leaf samples (0.05 g) were

digested with 10 mL of nitric acid in a polytetrafluoroethylene

container into a microwave digestion apparatus. The digested

samples were poured into a Teflon beaker, heated to nearly 1 mL,

and adjusted the volume to 50 mL in a centrifuge tube. The

iCAP™ RQ ICP-MS (Thermo Fisher, USA) was used to
frontiersin.org

https://doi.org/10.3389/fpls.2022.1011872
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sun et al. 10.3389/fpls.2022.1011872
determine Cd content in the roots and leaves of S. miltiorrhiza.

The bioaccumulation quantity (BCQ) was calculated as the

product of Cd concentration in different tissues and their

dry weights.
Scanning electron microscopy

Two modifiers of MnSO4 and Na2SiO3·9H2O were scattered

on two conductive tapes, respectively, then blew off the weak

samples with a rubber suction bulb and stuck the conductive

tapes on the aluminum sample table. A scanning electron

microscope (ZEISS GeminiSEM 300, Germany) was used to

characterize the two kinds of particles, and their microstructure

was observed.
Gene expression analysis

RNA from fresh roots and leaves of S. miltiorrhiza was

extracted using a TaKaRa MiniBEST Plant RNA Extraction Kit

(Takara Bio, Kyoto, Japan). The extracted RNA was

quantitatively analyzed through agarose gel electrophoresis

and Nanodrop 2000 spectrophotometer (Hu et al., 2021).

Then, the cDNA was synthesized using TaKaRa PrimeScript™

RT Master Mix (Perfect for Real-Time). Three repeated

experiments were conducted for the next step of data analysis.

TB Green™ Premix Ex Taq™II (Tli RNaseH Plus) (TaKaRa)

was applied to a real-time PCR reaction. Actin, a constant

expression internal reference gene, was selected as a control.

The quantitative experiment was carried out with QuantStudio 6

Flex Real-Time PCR Systems. The primers for RT-PCR reaction

were designed by GenScript and shown in Supplementary

Table 1. Among them, primers PAL, C4H, DXS2, DXR,

HMGR3, and Actin were from Xing et al. (2018), primers

CSD2, FSD2, MSD1, MSD2 were from Han et al. (2020),

primer PPT was from Liu et al. (2019), primer ERF73 was

from Zheng et al. (2021). The relative expression level was

expressed by the calculation result of the 2-DDCt values,

according to Han et al. (2022).
Tanshinone and salvianolic acid

The weighed dried roots and leaves (0.02 g) were placed in a

centrifuge tube containing 1 mL of 70% methanol. Place the

prepared sample overnight, and then use an ultrasonic cleaning

machine for ultrasonic treatment. The centrifuged supernatant

was collected with a disposable syringe and filtered with a 0.22 mm
filter membrane to obtain the required sample. Three technical

repetitions were performed for each treatment. The reagent

concentrations in plant tissues were determined by Waters
Frontiers in Plant Science 04
e2695 HPLC and Waters 2998 UV detector. The HPLC method

was consistent with that of Liu et al. (2016). Cryptotanshinone,

tanshinone I, and tanshinone IIA contents were determined at 270

nm, and salvianolic acid B was determined at 288 nm.
Statistical analysis

SPSS v23.0 (SPSS, Chicago, IL, USA) was used to compare

the mean value of three replicates ± standard error (SE) for data

analysis. The statistical chart was drawn by GraphPad Prism 9.

One-way ANOVA was performed, then LSD and Duncan tests

were used, and the significance level P< 0.05 was selected for

data processing.
Results

ALA and Mn/Si promote the growth of
S. miltiorrhiza

Cadmium treatment significantly reduced plant growth and

biomass production in S. miltiorrhiza (Figure 1). Compared with

non-stressed control, Cd-stressed plants produced 36% and 42%

lower root and leaf dry weights, respectively (Table 1). ALA

significantly promoted the growth of S. miltiorrhiza plants in

Cd- and non-stressed environments. Under Cd-free treatment,

Mn-treated plants produced 28% and 36% less root and leaf

biomass, and Si-treated plants produced 22% and 40% less.

ALA-treated plants had 82% and 56% more root and leaf

biomass, respectively, compared with the control (Table 1).

However, adding ALA, Si and Mn significantly reduced the

inhibitory effect of Cd on plant growth and altered these growth

parameters. ALA increased root, and leaf dry weight of Cd stressed

plants by 36% and 39%, Mn increased the dry weight of roots and

leaves by 27% and 36%, and Si increased the dry weight of roots

and leaves by 45% and 72%, respectively, compared with Cd only

treated plants. However, the combination treatment of ALA and Si

increased the dry weight of roots and leaves by 1.24 and 1.19 folds,

and the combination treatment of ALA and Mn increased by 0.8

and 1.04 folds, respectively, compared with Cd alone. Therefore,

the combined ALA and Si/Mn treatment alleviated plant growth

under Cd stress. Compared with the control, the Cd-treated plant

contained nearly half of the leaf chlorophyll a, chlorophyll b, and

carotenoid contents (Table 2). Compared with Cd alone, the

chlorophyll content of plants increased significantly after adding

ALA, Mn, and Si; among them, the total chlorophyll content

increased by 29%, 19%, 26%, and the carotenoid content increased

by 3%, 11%, 24%, respectively. However, treatments of Cd+Si

+ALA and Cd+Mn+ALA significantly increased the total

chlorophyll content by 42% and 64% compared with Cd+Si, and

Cd+Mn stress alone (Table 2). Therefore, spraying of ALA in
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Cd+Si and Cd+Mn showed a better effect on increasing

chlorophyll levels.
Frontiers in Plant Science 05
Reactive oxygen species and MDA
contents under the application of
ALA and Mn/Si

In this study, Cd treatment alone significantly increased ROS

levels in the roots and leaves of S. miltiorrhiza compared with

the control. In this case, the combined application of ALA and

Mn/Si achieved the maximum reduction of ROS accumulation,

which alleviated the adverse effects of excessive ROS on S.

miltiorrhiza plants. For example, the H2O2 content in leaves

increased by 51% under Cd treatment compared with untreated

plants. After ALA and Mn/Si treatments, H2O2 in roots and

leaves was significantly reduced compared to Cd stress

(Figures 2A, B). In terms of changes in (O−
2 ) content, in root

tissue, ALA and Mn alone or in combination significantly

reduced (O−
2 ) under Cd treatment, while Si had no significant

effect on it; for leaves, both ALA and Mn/Si alone or in

combination significantly reduced (O−
2 ) content. For example,

under ALA, Mn, Si, ALA+Si, and ALA+Mn treatments, the (O−
2 )

content in roots was reduced by 22%, 19%, 5%, 30%, and 34%,

and the (O−
2 ) content of leaves was reduced by 29%, 32%, 40%,

27%, and 33%, respectively, compared with the Cd treatment

(Figures 2C, D).

Similarly, ALA, Mn, Si, ALA+Si, and ALA+Mn reduced the
-OH content of roots by 16%, 12%, 40%, 53%, and 42%, and the
-OH content of leaves by 24%, 6%, 18%, 24%, and 26%,

respectively, compared with the Cd treatment. The combined

ALA and Mn/Si treatments were more significant than the single

treatment. For example, when ALA was applied together with

Mn or Si, the -OH content of roots was reduced by 22% and 34%,

respectively, compared with the Mn and Si treatment alone

(Figures 2E, F). Cd stress significantly increased MDA content in

both root and leaf tissues; however, this accumulation was

reversed by ALA and Mn/Si treatments (Figures 2G, H).

Further, ALA and Mn/Si application also had a significant
TABLE 1 Effects of ALA and Mn/Si application on the biomass (g) of root and leaf of Cd stressed plants.

Treatments Root (g) Leaf (g)
FW DW FW DW

CK 2.31 ± 0.12d 0.30 ± 0.02cd 1.74 ± 0.07b 0.22 ± 0.02c

ALA 4.23 ± 0.12a 0.54 ± 0.03a 2.37 ± 0.22a 0.35 ± 0.03a

Cd 1.58 ± 0.13f 0.19 ± 0.03g 0.97 ± 0.05e 0.13 ± 0.02f

Mn 1.79 ± 0.09ef 0.21 ± 0.01fg 1.08 ± 0.09e 0.14 ± 0.02ef

Si 1.72 ± 0.09f 0.23 ± 0.01efg 1.01 ± 0.08e 0.13 ± 0.02f

Cd+ALA 2.18 ± 0.12d 0.26 ± 0.04def 1.46 ± 0.05c 0.18 ± 0.01d

Cd+Mn 1.97 ± 0.12e 0.24 ± 0.03ef 1.28 ± 0.10d 0.18 ± 0.01de

Cd+Si 2.25 ± 0.08d 0.27 ± 0.02de 1.40 ± 0.07cd 0.22 ± 0.02c

Cd+Si+ALA 3.20 ± 0.16b 0.42 ± 0.03b 1.71 ± 0.05b 0.29 ± 0.01b

Cd+Mn+ALA 2.75 ± 0.13c 0.34 ± 0.01c 1.70 ± 0.07b 0.27 ± 0.01b
fro
Concentrations of Cd, ALA, Si and Mn were 30 mg kg-1 CdCl2, 10 mg L-1 ALA, 200 mg kg-1 Na2SiO3·9H2O and 100 mg kg-1 MnSO4, respectively. Data are the means of three replicates
(mean ± SE). Small letters indicate significant differences at P< 0.05 by Duncan’s multiple range tests. DW, Dry weight; FW, Fresh weight.
FIGURE 1

Effects of application of 5-aminolevulinic acid (ALA), silicon (Si),
manganese (Mn), ALA combined with Mn/Si on S. miltiorrhiza
plants growth under cadmium (Cd) stress. Concentrations of Cd,
ALA, Si and Mn were 30 mg kg-1 CdCl2, 10 mg L-1 ALA, 200 mg
kg-1 Na2SiO3·9H2O and 100 mg kg-1 MnSO4, respectively.
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synergistic effect on reducing ROS levels in S. miltiorrhiza under

Cd stress.
Antioxidant enzyme activities contents
under the application of ALA and Mn/Si

Antioxidant enzyme activities such as SOD, POD, CAT,

APX, and GR in roots and leaves of S. miltiorrhiza were

significantly reduced when plants responded to Cd stress.

However, exogenous ALA and Si/Mn application significantly

improved the activity of antioxidant enzymes in root and leaf

tissues, particularly when applied in combination (Figure 3). The

SOD activity was highest under Cd+Si+ALA treatment, which is

32% higher than that of plants treated with Cd. Compared with

Cd treatment, POD also increased significantly under ALA and

Si/Mn treatments, among which the activity of Cd+Si+ALA

treatment in roots increased the most, with a 1.59-fold increase

compared to Cd treatment. When ALA treated plants together

with Cd, Cd+Mn, and Cd+Si, it was found that CAT activity

gradually increased. APX showed the highest activity in the roots

and leaves under Cd+Si+ALA treatment. The activity of GR was

significantly increased in the plants treated with ALA. According

to the above data, the antioxidant enzyme activity of plants

treated with ALA and Mn/Si was higher than that in ALA-, Mn-,

and Si- treated plants under Cd stress.
Cadmium accumulation under the
application of ALA and Mn/Si

Under the application of ALA, Mn, and Si, the total BCQ of

Cd in S. miltiorrhiza tissue decreased by 3%, 25%, and 10%,

respectively, compared with Cd stress alone. Instead, spraying

ALA after adding Mn or Si to Cd-contaminated soil increased

the BCQ of Cd in S. miltiorrhiza tissue (Figures 4C, D). For

example, Si+ALA and Mn+ALA application to Cd-stressed

plants increased the total BCQ of Cd by 15% and 69%,

respectively, compared with the Cd treatment alone. Among
Frontiers in Plant Science 06
them, the BCQ in the roots increased by 13% and 63%, and in

the leaves by 21% and 90%, respectively. In addition, plants

subjected to Cd stress accumulated more Cd in roots and leaves

compared to the control. In the roots and leaves of Cd-stressed

plants, applying ALA and Si/Mn significantly reduced the Cd

content (Figures 4A, B). The application of Cd+Si+ALA

significantly reduced Cd content in roots and leaves more than

in other combinations. Therefore, ALA and Si combined

treatment significantly lowered Cd content.
Gene expression level and liquid
phase analysis under the application
of ALA and Mn/Si

In this study, we studied the expression levels of nine

different genes, including Cd transport-related genes (HMA3,

NRAMP1), Mn transport-related genes (CAX2, ECA1, ECA3,

PML3, MTP8, MTP11), ROS scavenged genes (APX1, CSD2,

FSD2, MSD1, MSD2, PPT), auxin-related genes (IAA4, AXR3,

AMI1, PIN3), ABA signalling pathway genes (LEW3, CDPK2,

RWA2), ethylene-related genes (COI1, XCT, ETR1, ERF73),

calcium channel genes (CPK4, CPK6, ACA2), MAPK cascade

reaction genes (MPK2, MPK17, MPK18, MMK2, PTPA) and S.

miltiorrhiza component related genes (PAL, C4H, DXS2, DXR,

HMGR3) (Figure 5 and Supplementary Table 2). The relative

expression of genes related to stress resistance in the root and

leaf of S. miltiorrhiza under several stress conditions has been

shown in Figures 6, 7. In the leaves of Cd-exposed plants,

application of ALA, Mn, Si, and Si+ALA significantly

improved the transcript level of HMA3 by 2.03, 1.95, 2.79,

4.03 folds, respectively, while reduced by 0.05 fold by Mn

+ALA treatment. In the roots of Cd-treated plants, application

of ALA, Mn, and Si significantly decreased the transcript level of

HMA3, while the addition of Si+ALA treatments increased the

transcription level of HMA3. In addition, the transcription level

of NRAMP1 under several treatments in roots was lower than

that under cadmium alone, and the transcription level in leaves

was higher only under Cd+Si+ALA treatment than under
TABLE 2 Effects of ALA and Mn/Si application on chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid of Cd stressed plants.

Treatments Chlorophyll a (mg g−1 FW) Chlorophyll b (mg g−1 FW) Total chlorophyll (mg g−1 FW) Carotenoid (mg g−1 FW)

CK 0.37 ± 0.020ab 0.13 ± 0.009ab 0.50 ± 0.028ab 0.09 ± 0.021a

ALA 0.40 ± 0.028a 0.14 ± 0.009a 0.54 ± 0.034a 0.08 ± 0.013a

Cd 0.19 ± 0.002d 0.07 ± 0.004d 0.26 ± 0.003d 0.04 ± 0.001b

Cd+ALA 0.23 ± 0.005c 0.10 ± 0.015c 0.33 ± 0.020c 0.05 ± 0.011b

Cd+Mn 0.22 ± 0.006c 0.08 ± 0.006cd 0.30 ± 0.001cd 0.05 ± 0.005b

Cd+Si 0.23 ± 0.024c 0.09 ± 0.006c 0.32 ± 0.031c 0.06 ± 0.003b

Cd+Si+ALA 0.34 ± 0.040b 0.12 ± 0.013b 0.46 ± 0.052b 0.10 ± 0.026a

Cd+Mn+ALA 0.35 ± 0.006b 0.15 ± 0.015a 0.50 ± 0.009ab 0.09 ± 0.006a
Concentrations of Cd, ALA, Si and Mn were 30 mg kg-1 CdCl2, 10 mg L-1 ALA, 200 mg kg-1 Na2SiO3·9H2O and 100 mg kg-1 MnSO4, respectively. Data are the means of three replicates
(mean ± SE). Small letters indicate significant differences at P< 0.05 by Duncan’s multiple range tests. FW, Fresh weight.
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cadmium alone. In addition, ALA reduced the relative

expression of genes related to S. miltiorrhiza, i.e., DXS2 and

C4H in Cd-treated plants, while Mn, Si, Si+ALA, Mn+ALA

increased their expression levels. The addition of ALA, Mn, Si, Si

+ALA, and Mn+ALA all significantly increased the relative

expression of PAL and DXR in Cd-treated plants. Compared

with the control, Cd stress reduced the contents of

cryptotanshinone, tanshinone I, and tanshinone IIA by 8%,
Frontiers in Plant Science 07
22%, and 1%, respectively, while the contents of salvianolic

acid B increased by 0.7% (Figure 8). Compared with Cd

treatment, spraying of ALA reduced these contents, and

applying Mn increased these contents. Compared with control,

Si+ALA treated plants accumulated 33%, 13%, and 19% more

cryptotanshinone, tanshinone I, and salvianolic acid B contents,

respectively, but tanshinone IIA accumulation was reduced by

8% (Figure 8).
A B

D

E F

G H

C

FIGURE 2

Effects of application of ALA and Mn/Si on levels of reactive oxygen species and lipid peroxidation in the roots and leaves of Cd stress plants.
Hydrogen peroxide (H2O2) in the roots (A) and leaves (B); superoxide radical (O−

2) in the roots (C) and leaves (D); hydroxyl ion (-OH) content in
the roots (E) and leaves (F); malondialdehyde (MDA) in the roots (G) and leaves (H). Concentrations of Cd, ALA, Si and Mn were 30 mg kg-1

CdCl2, 10 mg L-1 ALA, 200 mg kg-1 Na2SiO3·9H2O and 100 mg kg-1 MnSO4, respectively. Data are the means of three replicates (mean ± SE).
Small letters indicate significant differences at P< 0.05 by Duncan’s multiple range tests.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1011872
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sun et al. 10.3389/fpls.2022.1011872
Scanning electron
microscope observation

According to SEM results, MnSO4 particles were larger, and

a complete particle could be observed at 30 mm. Its surface

pictures were taken at a voltage of 3 kV, and a working distance

of 8.9 mm (Figure 9). The diameter of Na2SiO3·9H2O particles
Frontiers in Plant Science 08
was relatively small, and a complete Na2SiO3·9H2O particle

could be observed at 200 mm; these pictures were taken at a

voltage of 3 kV and a working distance of 8.1 mm.

Na2SiO3·9H2O has a larger particle size and surface area,

making it easier for heavy metals to be fixed in polluted soil. It

also improves soil pH, thus reducing the solubility of metals.

However, the surface of MnSO4 is relatively smooth, which is
A B

D

E F

G

I

H

J

C

FIGURE 3

Effects of application of ALA and Mn/Si on antioxidant enzyme activities in the roots and leaves of Cd stress plants. Superoxide dismutase (SOD)
in the roots (A) and leaves (B); peroxidase (POD) in the roots (C) and leaves (D); catalase (CAT) in the roots (E) and leaves (F); ascorbic acid
peroxidase (APX) in the roots (G) and leaves (H); glutathione reductase (GR) in the roots (I) and leaves (J). Concentrations of Cd, ALA, Si and Mn
were 30 mg kg-1 CdCl2, 10 mg L-1 ALA, 200 mg kg-1 Na2SiO3·9H2O and 100 mg kg-1 MnSO4, respectively. Data are the means of three
replicates (mean ± SE). Small letters indicate significant differences at P< 0.05 by Duncan’s multiple range tests.
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quite different from that of Na2SiO3·9H2O, which may differ

from their action mechanism. MnSO4 mainly reduces Cd

content in plants by competing with Cd for shared ion channels.
Discussion

In this study, the growth of S. miltiorrhiza under Cd stress

was obviously depressed. The spraying of ALA restored the

growth and increased the plant biomass (Figure 1). These

findings are consistent with the results of Xu et al. (2021).

They found that ALA could significantly increase the biomass

of sunflowers under Cd stress. Similarly, Ali et al. (2013a) also

reported the positive role of ALA in improving the antioxidant

defence ability of Brassica napus under Cd toxicity. The addition

of silicon made the combination of Cd and cell wall easier,

limiting the extra plastic transport of Cd and reducing Cd

toxicity to the cytoplasm (Ye et al., 2011). Moreover, it has

been stated that Si can improve the pH value of soil, change the

metal forms in soil and deposit toxic metals (Adrees et al., 2015).

SEM analysis shows that Na2SiO3·9H2O has a large surface area,

and there are many microporous structures on the surface,

which can chelate with heavy metals to fix heavy metal

Cd, which may have a similar effect to that of mussel shells

fixing nickel (Jia et al., 2017). The new emerging plant growth

regulator, ALA, can reduce ROS accumulation, lipid

peroxidation, and toxicity caused by heavy metals

by stimulating the activity of heme antioxidant enzymes
A B

DC

FIGURE 4

Effects of application of ALA and Mn/Si on Cd accumulation under Cd stress plants. Cd accumulation in the roots (A), Cd accumulation in the
leaves (B), Cd bioaccumulation quantity (BCQ) in the roots (C), Cd bioaccumulation quantity in the leaves (D). Concentrations of Cd, ALA, Si and
Mn were 30 mg kg-1 CdCl2, 10 mg L-1 ALA, 200 mg kg-1 Na2SiO3·9H2O and 100 mg kg-1 MnSO4, respectively. Data are the means of three
replicates (mean ± SE). Small letters indicate significant differences at P< 0.05 by Duncan’s multiple range tests.
FIGURE 5

Expression maps of nine resistance-related genes of S.
miltiorrhiza. Concentrations of Cd, ALA, Si and Mn were 30 mg
kg-1 CdCl2, 10 mg L-1 ALA, 200 mg kg-1 Na2SiO3·9H2O and 100
mg kg-1 MnSO4, respectively. Data are the means of three
replicates (mean ± SE). The expression level of the control group
was normalized as “1”. Drawing heat map using expression data
processed by log10.
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(Youssef and Awad, 2008). Spraying ALA on leaves can promote

plants’ metabolism and restore plants’ growth under abiotic

stress (Akram et al., 2012). ALA application to Cd-stressed rape

plants could reduce cadmium toxicity by increasing chlorophyll

content, photosynthesis and biomass accumulation (Ali

et al., 2013a).

The present findings demonstrated that under Cd stress, the

growth of S. miltiorrhiza was inhibited, and biomass decreased.

However, the combination of ALA and Si/Mn amended the harm

of Cd stress, promoted plant growth, and increased plant biomass.

The appropriate amount of ROS can improve the growth of plants
Frontiers in Plant Science 10
under adverse conditions. In contrast, a large amount of ROS

affects the metabolism of plants and causes different degrees of cell

damage (Ali et al., 2013b). Cadmium pollution caused the

accumulation of ROS and oxidative damage to cells and affected

the growth of plants (Figure 2), which is consistent with the

findings of Gheshlaghpour et al. (2021). The harm of ROS to

plants has been confirmed in many studies (Foyer and Noctor,

2005; Farooq et al., 2013; Adrees et al., 2015; Sabir et al., 2020).

Damaged plants can enhance antioxidant activity (SOD, POD,

CAT, APX, and GR; Figure 3) and form antioxidant defence

systems. In this study, ALA improved the stress tolerance in plants
FIGURE 6

Effects of ALA and Mn/Si application on the expressions of tolerant related genes in S. miltiorrhiza roots under Cd stress. Concentrations of Cd,
ALA, Si and Mn were 30 mg kg-1 CdCl2, 10 mg L-1 ALA, 200 mg kg-1 Na2SiO3·9H2O and 100 mg kg-1 MnSO4, respectively. Data are the means of
three replicates (mean ± SE). Small letters indicate significant differences at P< 0.05 by Duncan’s multiple range tests.
FIGURE 7

Effects of ALA and Mn/Si application on the expressions of tolerant related genes in S. miltiorrhiza leaves under Cd stress. Concentrations of Cd,
ALA, Si and Mn were 30 mg kg-1 CdCl2, 10 mg L-1 ALA, 200 mg kg-1 Na2SiO3·9H2O and 100 mg kg-1 MnSO4, respectively. Data are the means of
three replicates (mean ± SE). Small letters indicate significant differences at P< 0.05 by Duncan’s multiple range tests.
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under Cd stress conditions. As the precursor of photosynthesis,

ALA improved the activity level of heme molecules and

eliminated excessive ROS (Ali et al., 2013b). Applying Si and

Mn can also effectively reduce ROS levels, enhance antioxidant

defence ability, and improve the resistance to harmful metals

(Song et al., 2009; Farooq et al., 2013; Adrees et al., 2015). The

discovery that Si can reduce MDA and ROS level in S. miltiorrhiza

is consistent with previous findings in rice (Chen et al., 2019;

Huang et al., 2021a), wheat (Huang et al., 2019), and cotton

(Farooq et al., 2013). Application of ALA andMn/Si alleviated Cd

stress’s adverse effects by decreasing lipid peroxidation and

increasing antioxidant enzyme activities (Figures 2, 3).

In addition, the addition of ALA increased the resistance to

Cd stress in S. miltiorrhiza roots and leaves. Compared with the

control, Cd significantly reduced the chlorophyll concentration

in S. miltiorrhiza leaves (Table 2) due to the influence on its

metabolism level and the destruction of the photosynthesis

mechanism, thus affecting plant growth. However, ALA

significantly increased the chlorophyll concentration and

photosynthetic gas exchange capacity of S. miltiorrhiza, and

promoted plant growth (Table 2), which is consistent with

previous findings (Youssef and Awad, 2008; Ali et al., 2013a).

Adding Si can limit the transport of Cd from roots to leaves by

accumulating a high concentration of Si in plant cell walls, and

diluting the concentration of Cd by increasing biomass, thus

alleviating the Cd stress in plants (Zhang et al., 2008a; Shi et al.,

2013). Liang et al. (2005) showed that adding Si also increased

soil pH and reduced the effectiveness of soil Cd, thus decreasing

the Cd content in roots and leaves. Adding Mn improves the

water loss, yellowing, and nutrient imbalance of leaves under Cd

stress. Following the application of Mn in the soil, Mn hindered

the migration of Cd to the root system. It reduced the absorption
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of Cd by S. miltiorrhiza, thus reducing the accumulation of Cd in

plants (Figure 4). This is consistent with the findings of Huang

et al. (2021b) and Wang et al. (2021b). In addition, Mn reduced

the effectiveness of Cd in the soil and reduced the uptake and

internal movement of Cd by plants.

From the perspective of gene regulation, Cd transporter

proteins played a significant role in regulating cadmium

uptake and transport. For example, in rice, boron and silicon

downregulated the Cd transport genes, reduced the absorption

and transport of Cd by plants, and reduced the accumulation of

Cd in rice (Chen et al., 2019). TheHMA3 discussed in this paper

is a cadmium transporter, and its primary function is to isolate

cadmium from plant tissues to vacuoles. Previous studies have

shown that overexpression of HMA3 in tobacco plants can

significantly improve the tolerance of plants to Cd (Cai et al.,

2019). This is because vacuoles and vesicles of plants can contain

a lot of toxic metals, and excessive Cd is transported into

vacuoles or vesicles through transporter HMA3, thus reducing

Cd toxicity (Miyadate et al., 2011; Yan et al., 2016). Plants can

improve their resistance to adversity by chelating cytoplasmic

heavy metal cations and transporting them to vacuoles of root

cells. For S. miltiorrhiza, the use of ALA and Si/Mn both

increased the expression of the HMA3 gene under Cd

pollution, and HMA3 promoted a large amount of Cd to enter

vacuole and be isolated, thus reducing the pollution of S.

miltiorrhiza. In plants, Cd and Mn have a common transport

system, like the NRAMP family proteins involved in the

transport of Cd and Mn (Eruola, 2012; Ishimaru et al., 2012;

Socha and Guerinot, 2014). In the experiment of Chang et al.

(2020), knocking out the NRAMP1 gene in rice reduced the Cd

content in the plants, indicating that with the decrease of

NRAMP1 activity, the ability of plants to absorb Cd from the
FIGURE 8

Effects of ALA and Mn/Si application on cryptotanshinone, tanshinone I, tanshinone IIA and salvianolic acid B under Cd stress plants.
Concentrations of Cd, ALA, Si and Mn were 30 mg kg-1 CdCl2, 10 mg L-1 ALA, 200 mg kg-1 Na2SiO3·9H2O and 100 mg kg-1 MnSO4, respectively.
Data are the means of three replicates (mean ± SE). Small letters indicate significant differences at P< 0.05 by Duncan’s multiple range tests.
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soil also decreased. NRAMP1 gene is related to Cd absorption

and transportation, mainly expressed in plant roots. Under Mn

treatment, NRAMP1 expression in roots was down-regulated,

and Cd uptake by S. miltiorrhiza was reduced. In addition, in

this study, when ALA and Si were co-treated with Cd-

contaminated soil, the decrease in Cd content was more

significant compared to ALA and Si application alone, which

may be due to increased expression of HMA3, reduced Cd

uptake from roots, and reduced roots transport to leaves. In

contrast, the co-treatment of ALA and Mn increased the Cd

content in plants, possibly due to the down-regulation of HMA3

expression in leaves (Figures 6, 7). In the present study, ALA/Si/
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Mn treatment increased the expression of ethylene and growth

hormone-related genes (e.g., ERF73, AMI1, etc.) compared with

Cd treatment alone (Figures 6, 7), which helped to promote the

growth and development of the plants, and the growth of S.

miltiorrhiza plants was significantly improved under these

treatments. Combinations of ALA and Mn/Si to Cd stressed

plants activated ABA signalling pathway-related genes (such as

LEW3), enhancing the adaptability of plants to adverse

environments. In this study, ALA/Si/Mn treatment increased

the expression of Ca2+ channel-related genes, which may induce

the expression of plant essential enzyme genes and affect the

synthesis of secondary metabolites of S. miltiorrhiza.
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FIGURE 9

Scanning electron microscope (SEM) results of MnSO4 image at 30 mm (A), MnSO4 image at 10 mm (B), MnSO4 image at 2 mm (C),
Na2SiO3·9H2O image at 200 mm (D), Na2SiO3·9H2O image at 10 mm (E), Na2SiO3·9H2O image at 2 mm (F).
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Conclusion

The present findings showed that ALA could effectively

promote the growth of Cd-stressed plants, and there was a

good synergistic effect of Si/Mn. Under the joint treatment of

ALA and Si/Mn, the antioxidant level was increased, ROS and

MDA level was decreased, and the expression of genes related to

stress resistance was changed. Moreover, ALA and Si jointly

resisted Cd treatment and effectively reduced the Cd content in

S. miltiorrhiza, which provides an effective and feasible method

for reducing Cd accumulation in plants. Compared with ALA/

Mn alone, the combined action of ALA and Mn promoted the

accumulation of Cd, which provided a new idea for the

remediation of Cd-contaminated soil. This experiment also

shows that elements may interact with each other in some

way, which affects the absorption and accumulation of heavy

metals by plants and the resistance of plants to toxic

heavy metals.
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