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Bing Bai2, Golam Jalal Ahammed1,3,4*

and Shuangchen Chen1,3,4*

1College of Horticulture and Plant Protection, Henan University of Science and Technology,
Luoyang, China, 2Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen
University, Wageningen, Netherlands, 3Henan International Joint Laboratory of Stress Resistance
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Fusarium wilt, caused by Fusarium oxysporum f. sp. cucumerinum (Fo), is a

severe soil-borne disease affecting cucumber production worldwide,

particularly under monocropping in greenhouses. Silicon (Si) plays an

important role in improving the resistance of crops to Fusarium wilt, but the

underlying mechanism is largely unclear. Here, an in vitro study showed that 3

mmol·l-1 Si had the best inhibitory effect on the mycelial growth of F.

oxysporum in potato dextrose agar (PDA) culture for 7 days. Subsequently,

the occurrence of cucumber wilt disease and its mechanisms were investigated

upon treatments with exogenous silicon under soil culture. The plant height,

stem diameter, root length, and root activity under Si+Fo treatment increased

significantly by 39.53%, 94.87%, 74.32%, and 95.11% compared with Fo only.

Importantly, the control efficiency of Si+Fo was 69.31% compared with that of

Fo treatment. Compared with Fo, the activities of peroxidase (POD), catalase

(CAT), and ascorbate peroxidase (APX) significantly increased by 148.92%,

26.47%, and 58.54%, while the contents of H2O2, O
·−
2 , and malondialdehyde

(MDA) notably decreased by 21.67%, 59.67%, and 38.701%, respectively, in roots

of cucumber plants treated with Si + Fo. Compared with Fo treatment, the net

photosynthesis rate (Pn), stomatal conductance (Gs), transpiration rate (Tr),

maximum RuBisCO carboxylation rates (Vcmax), maximum RuBP regeneration

rates (Jmax), and activities of ribulose-1,5-bisphosphate carboxylase

(RuBisCO), fructose-1,6-bisphosphatase (FBPase), and glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) and the expression of FBPA, TPI, SBPase,

and FBPase in Si+Fo treatment increased significantly. Furthermore, Si

alleviated stomatal closure and enhanced endogenous silicon content
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compared with only Fo inoculation. The study results suggest that exogenous

silicon application improves cucumber resistance to Fusarium wilt by

stimulating the antioxidant system, photosynthetic capacity, and stomatal

movement in cucumber leaves. This study brings new insights into the

potential of Si application in boosting cucumber resistance against Fusarium

wilt with a bright prospect for Si use in cucumber production under

greenhouse conditions.
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Introduction

Cucumber (Cucumis sativus L.) is currently one of the vastly

cultivated and economically beneficial vegetables of the

Cucurbitaceae family in the world. However, its production is

increasingly being affected by fungal diseases, especially

Fusarium wilt, one of the three most serious fungal diseases of

cucumber plants (Raza et al., 2017). Fusarium wilt, caused by F.

oxysporum, is a destructive soil-borne fungal disease (Zhai et al.,

2021). The cucumber-specific type of F. oxysporum can colonize

the vascular bundles of cucumber rhizomes, preventing the

transportation of nutrients and water (Zhou et al., 2017),

resulting in the wilting of aboveground parts of cucumber

plants (Sun et al., 2021). Fusarium wilt significantly reduces

the photosynthesis capacity and photosynthetic enzyme activity

and can also cause a 15%–50% reduction in cucumber yield

(Ahammed et al., 2020). Since pesticides are still used to prevent

and control cucumber Fusarium wilt, the pesticide residue has

brought a great threat to human health and environmental

sustainability (Jain et al., 2022). Therefore, it is a hot topic in

recent years to find a pollution-free and effective method to

prevent cucumber wilt.

Silicon (Si) is a tetravalent chemical element, which is mainly

taken by plants in the form of monosilicic acid (H4SiO4) from

the soil (Shivaraj et al., 2022). Si is widely recognized as an

element beneficial to plant growth and biomass production.

Studies have demonstrated that exogenous Si treatment can

significantly improve the yield of rice, tomato, and other crops

(Hoffmann et al., 2020; Chaiwong and Prom-u-thai, 2022). Si

can thicken the main stems of plants, improve photosynthesis,

and enhance the development of vascular bundles involved in

the uptake and transport of nutrients (Pavlovic et al., 2021).

Moreover, Si can form a “keratin-silicon double-layer” physical

barrier on the plant leaf surface to resist insects and fungi

(Yoshid, 1965). Si is also known to effectively mitigate various

abiotic stresses such as heavy metal toxicities, salinity, drought,

chilling, and freezing stresses (Savvas and Ntatsi, 2015). The
02
application of Si increased the salt tolerance of tomato plants by

enhancing substomatal CO2, net photosynthetic rate,

photosynthetic water use efficiency, and mesophyll

conductance (Haghighi and Pessarakli, 2013). Si could alleviate

adverse effects of salt stress by reducing the Na+ concentration

and boosting antioxidant enzyme activities in Glycyrrhiza

uralensis, and these alleviating effects were dependent on Si

concentrations and the time of Si treatment (Li et al., 2016).

It is reported that Si addition to soil can significantly

enhance the resistance of plants against disease and increase

plant immune response. Supplying Si to tomato seedlings can

reduce the disease severity of Fusarium crown and root rot in

tomato; the increase in the Si content of roots was significantly

correlated with the reduction of disease severity of root, crown,

and stem (Huang et al., 2011). Furthermore, Si alleviated soil-

borne disease stress by adjusting soil microbial composition and

diversity, in which Si-added soil harbored a lower proportion of

Pseudomonas, Fusarium, and Faecalibacterium (Lin et al., 2020).

It was reported that exogenous Si and silicate salts significantly

stimulated systemic defense enzymes in onion and garlic plants

and decreased the incidence of white rot disease (Elshahawy

et al., 2021). Si treatment could increase the late blight resistance

of potato plants by increasing ethylene and jasmonic acid

metabolism in both detached leaves and intact plants (Xue

et al., 2021).

Application of Si is a preventive strategy against many soil-

borne fungal diseases, such as Pythium damping off in cucumber

(Al Sadi et al., 2010), Fusarium wilt in banana plants (Fortunato

et al., 2014), F. oxysporum on cotton (Whan et al., 2016), and

black pepper plants (D'Addazio et al., 2020). Silicon can induce a

higher lignin concentration in moderately resistant cultivars

than that in less resistant cultivars. However, the contribution

of antioxidant potential and the photosynthetic capacity of

cucumber to Si-mediated Fusarium wilt stress alleviation

remain unclear.

In the current study, we examined the effects of sodium

silicate (Na2SiO3·9H2O) treatment on the occurrence of
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cucumber wilt disease and its mechanisms. Our results revealed

that Si-induced enhanced resistance to Fusarium wilt was closely

related to the stimulation of photosynthetic capacity and

antioxidant system of cucumber leaves. The study suggested

the great potential of Si as a means of biological control of F.

oxysporum in cucumber plants that could not only reduce losses

caused by Fusarium wilt but also minimize the use of

chemical fungicides.
Materials and methods

Plant materials, fungal strains,
and treatments

In the present study, cucumber (Cucumis sativus L. cv. Jinyan

No. 4) which is susceptible to Fusarium wilt was used as plant

material (Liu et al., 2010). F. oxysporum f. sp. cucumerinum

isolates were cultured on Komada’s Fusarium-selective medium

(Isack et al., 2014) and confirmed on the basis of microscopic

studies of the shape and size of macro- and micro-conidia (Booth,

1971). Analytically pure sodium silicate (Na2SiO3·9H2O) was

purchased from Sangon Biotech Co., Ltd. (Shanghai, China).

The tested soil was imported peat soil from Germany K brand,

with soil organic matter content of 25.25 g/kg, alkali hydrolyzable

nitrogen content of 66.8 mg/kg, available phosphorus content of

12.37 mg/kg, available potassium content of 96.53 mg/kg, and pH

of 6.50. Seeds of cucumber were surface sterilized with 0.1%

potassium permanganate solution and germinated in peat:

vermiculite = 2:1 (v:v).
Screening of silicon concentrations

The in vitro plate culture method was used to evenly smear

the sterilized Na2SiO3·9H2O solution with concentrations of 1, 2,

3, 4, and 5 mmol L-1 Si on the surface of potato dextrose agar

(PDA) medium. F. oxysporum f. sp. cucumerinum was

inoculated on the culture medium with a 5-mm-diameter

punch. At the same time, the plate coated with distilled water

and inoculated with Fusarium was cultured as the reference

control. Each treatment was repeated three times. The mycelial

growth diameter was observed and recorded for 5–7 days. The

inhibition rate was calculated, and the differences were analyzed

to select the most suitable concentration of Si.
Experimental design

The experiment was performed in a greenhouse at Henan

University of Science and Technology, Luoyang, China
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(longitude 112°26′E and latitude 34°40′N), with the following

growth conditions: 28°C/20°C (day/night) temperatures, 85%

relative humidity, and a 12h photoperiod with an average

photosynthetic flux of 600 mmol m-2 s-1. The cucumber

seedlings at the four-leaf stage were irrigated with 100 ml (per

pot) of 3 mmol·l-1 Na2SiO3·9H2O, and the treatment was

repeated every 7 days (in total four times). The control was

irrigated with 100 ml of sterilized water. Then, one-half of Si-

treated seedlings and one-half of water-inoculated seedlings

were inoculated with F. oxysporum by adding a conidial

suspension of F. oxysporum into the nutrient solutions to

achieve a final concentration of 106 conidia per milliliter. The

details of the preparation of F. oxysporum suspension and

treatment have been described in our previous study

(Ahammed et al., 2020). To determine the changes in plant

height, stem diameter and root length were measured at 0 day

(the day when inoculation was performed) and at 9 days after

inoculation with F. oxysporum.
Gas exchange and chlorophyll
fluorescence measurements

Gas exchange analysis including the net photosynthetic rate

(Pn), stomatal conductance (Gs), intercellular carbon dioxide

concentration (Ci), and transpiration rate (Tr) of leaves was

conducted using an infrared gas analyzer-based portable

photosynthesis system (LI-6400; LI-COR, Lincoln, NE, USA)

on the fourth leaf of each plant. Asat was measured at an

ambient CO2 concentration of 360 µmol mol-1 and saturating

PPFD (1,000 µmol m-2 s-1) with a leaf temperature of 25 ± 1.5°C

and air relative humidity of 80%–90%. Assimilation versus

intercellular CO2 concentration (A/Ci) curves were measured

based on the method of von Caemmerer and Farquhar (1981).

The maximum RuBisCO carboxylation rates (Vcmax) and

maximum RuBP regeneration rates (Jmax) were estimated

from the A/Ci curves according to Ethier and Livingston (2004).
Determination of enzyme activity
involved in the Calvin cycle

Ribulose-1,5-bis-phosphate (RuBP) carboxylase/oxygenase

(RuBisCO) activity was measured spectrophotometrically by

coupling 3-phosphoglyceric acid formation with NADH

oxidation at 25°C, following the method described by Lilley

and Walker (1974). FBPase activity was determined by

monitoring the increase in A340 using an extinction coefficient

of 6.2 mM-1 cm-1 (Scheibe et al., 1986; Zhou et al., 2007). The

initial activity was assayed immediately after homogenization.

Total activity was assayed on aliquots of enzyme extract
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incubated for 20 min with 100 mM dithiothreitol, 2 mM Fru-

1,6-bisP, 10 mMMgCl2, and 0.1 M HEPES-NaOH (pH 8.0). The

measurement of GAPDH activity was according to the method

of Piattoni et al. (2013).
Estimation of antioxidant enzyme activity

The 0.5g sample was ground to a homogenate with 3 ml

precooled potassium phosphate buffer (50 mol l-1, pH = 7.0) in

an ice bath followed by centrifugation for 20 min at 10,000 g at 4°

C. Extracting solution was used to determine the superoxide

dismutase (SOD), guaiacol peroxidase (G-POD), catalase

(CAT), and ascorbate peroxidase (APX) activity. SOD activity

was examined by measuring the ability of SOD to inhibit the

photochemical reduction of nitro blue tetrazolium at 560 nm

(Aebi, 1984). CAT activity was determined via the reduction at

240 nm for H2O2 extinction (Giannakoula et al., 2010). APX

activity was measured based on the rate of AsA oxidation. A 0.1-

ml supernatant was mixed with 1 ml extracting solution (50 mol

l-1 potassium phosphate with pH = 7.0, 750 µmol l-1 AsA, and

100 mol l-1 H2O2). The absorbance at 290 nm was measured at

every 15-s interval for 3 min (Durner and Klessig, 1995). The

enzyme extracts of guaiacol peroxidase (G-POD) were isolated

following the method of Lamikanra and Watson (2001). G-POD

activity (EC 1.11.1.7) was determined by the enhancement in

absorbance at 470 nm (ϵ, 26.6 mM-1 cm-1) which resulted from

the oxidation of guaiacol (Cakmak and Marschner, 1992).
Biochemical quantification of
reactive oxygen species and
malondialdehyde levels

H2O2 content in roots was determined spectrophotometrically

by a peroxidase assay according toWillekens et al. (1997). TheO·−
2

production rate was measured according to the method of Elstner

and Heupel (Elstner and Heupel, 1976). The level of lipid

peroxidation in roots was determined by quantifying the

malondialdehyde (MDA) equivalents using 2-thiobarbituric acid

(TBA) as described by Hodges et al. (1999).
RNA extraction and qRT-PCR for gene
expression analysis

Total RNA was extracted from root tissues using TRIzol

reagent (Sangon, China) at 1 dpi with FO according to the

manufacturer’s instructions. Genomic DNA was removed by

DNase treatment (BBI, Canada). One milligram of total RNA

was reverse-transcribed using ReverTra Ace qPCR RT Kit

(Toyobo, Japan) according to the manufacturer’s instruction.
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The iCycler iQ™ real-time PCR detection system (Bio-Rad,

Hercules, CA, USA) was used for quantitative real-time PCR.

Twenty-five-microliter reaction mixtures consisted of 12.5 µl

SYBR Green PCR Master Mix (Takara, Japan), 1 µl of diluted

cDNA, and 0.2 µM of forward and reverse primers. The

conditions for PCR cycling were as follows: 95°C for 3 min

and 40 cycles of 95°C for 10 s 58°C for 45 s. The gene-specific

primers used for the amplification were determined on the basis

of gene or EST sequences and are listed in Supplementary Table

S1. mRNA levels were quantified according to the method of

Livak and Schmittgen (2001). To obtain a DCt value, the

threshold cycle (Ct) value of actin was subtracted from that

value of the gene of interest.
Statistical analysis

All data presented are mean values of three repetitions of

each treatment. Data were statistically analyzed using analysis of

variance (AVONA) and expressed as mean ± standard deviation

(SD). We used Tukey’s least significant difference test at 5% for

multiple pairwise comparisons.
Results

Screening of optimal silicon concentrations

Five concentration gradients of Na2SiO3·9H2O were used in

the in vitro test. After the culture of F. oxysporum f. sp.

cucumerinum on the PDA plate for 7 days, the mycelial

growth of Fusarium on the control plate reached close to the

full plate, while the mycelial growth in the plate coated with

Na2SiO3·9H2O was significantly inhibited.

The five concentrations of Si tested all had certain antifungal

effects on Fusarium growth in vitro. After 7 days of PDA culture,

3 mmol·l-1 Na2SiO3·9H2O showed the best inhibitory effect on

Fusarium growth, and the inhibition rate reached 23.4%

(Figure 1). Five millimoles per liter of Na2SiO3·9H2O had the

least inhibitory effect on Fusarium growth. Therefore, 3 mmol·l-1

Na2SiO3·9H2O was selected as the optimal Si concentration for

the following test.
Silicon enhances cucumber growth and
resistance to F. oxysporum

The plants treated with exogenous Si were more vigorous

than other treatments, and the plants have more roots. However,

the leaves of only Fo-treated plants showed leaf withering, and

the roots were gradually rotted. However, with Si application

to the roots (i.e., Si + Fo), the withering symptom of cucumber
frontiersin.org
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leaves and the rotted symptom of cucumber roots were

significantly alleviated (Figure 2).

Compared with the control, the plant height, stem diameter,

root length, and root activity of Fo treatment decreased by 39.86%,

54.47%, 49.32%, and 60.53%, respectively. However, the plant

height, stem diameter, root length, and root activity of Si+Fo

treatment increased significantly by 39.53%, 94.87%, 74.32%, and

95.11%, respectively, compared with Fo only (Table 1).

Additionally, exogenous Si application remarkably improved

various root traits (Table 2) Importantly, exogenous Si application

significantly decreased disease index and the control efficiency of Si

+Fo was 69.31% compared with that of Fo treatment (Table 3).
Silicon alleviates Fusarium wilt-induced
oxidative stress

To assess the effect of Fusarium inoculation on oxidative stress

markers, the contents of hydrogen peroxide (H2O2), superoxide

anion (O·−
2 ), and malondialdehyde (MDA) in the roots and leaves

were determined. Compared with the control, the H2O2, O
·−
2 , and

MDA contents in roots under Fo treatment increased by 0.56,
Frontiers in Plant Science 05
11.06, and 0.39 times, respectively, and the H2O2, O
·−
2 , and MDA

contents in leaves increased by 0.82, 10.85, and 3.21 times,

respectively (Figure 3). However, Si application significantly

decreased Fusarium wilt-induced reactive oxygen species (ROS)

accumulation in cucumber roots and leaves. Compared with Fo

treatment, the contents of H2O2, O
·−
2 , and MDA in roots of Si+Fo

treatment decreased by 21.67%, 59.67%, and 38.70%, while those

in leaves decreased by 35.98%, 66.02%, and 47.51%, respectively.
Exogenous silicon activates
antioxidant enzymes

As shown in Figure 4, the activities of antioxidant enzymes,

such as POD, CAT, SOD, and APX, in roots of cucumber treated

with Si significantly increased by 95.82%, 108.33%, 9.16%, and

546.67%, and in the meantime, those in leaves increased by

72.04%, 29.56%, 10.77%, and 278.82% compared with the

control, respectively. However, Fusarium decreased POD and

SOD activities in roots significantly by 36.41% and 12.98%,

respectively, compared with the control. Compared with Fo, the

activities of POD and APX in cucumber plants treated with Si +
B

A

FIGURE 1

Screening of optimal silicon (Si) concentrations against Fusarium oxysporum (f) sp. cucumerinum fungi. (A) Photographs of in vitro culture of
Fusarium fungi in five different silicon concentrations on PDA plates for 7 days. (B) Inhibition rate of five silicon concentrations on mycelial
growth of Fusarium when cultured for 7 days. CK or control, 0 mmol·l-1 Si; T1, 1 mmol·l-1 Si; T2, 2 mmol·l-1 Si; T3, 3 mmol·l-1 Si; T4, 4 mmol·l-1 Si;
and T5, 5 mmol·l-1 Si. Means denoted by the different lowercase letters indicate a significant difference according to Tukey’s test (P ≤ 0.05).
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Fo significantly increased by 148.92% and 115.26% in roots and

58.54% and 71.55% in leaves, respectively.
Silicon enhances photosynthesis rate,
Jmax, and Vcmax

Compared with the control, the net photosynthetic rate (Pn),

stomatal conductance (Gs), and transpiration rate (Tr) of
Frontiers in Plant Science 06
cucumber leaves in the Si treatment group were significantly

increased by 16.05%, 38.15%, and 11.49%, respectively, while the

intercellular carbon dioxide concentration (Ci) was significantly

reduced by 6.62%. Inoculation with Fo decreased Pn, Gs, and Tr

compared with control. Compared with Fo treatment, Pn, Gs,

and Tr increased by 40.02%, 28.70%, and 23.84%, while Ci

decreased by 6.92% in Si+Fo treatment. The results showed that

exogenous Si application could enhance the photosynthetic

capacity of cucumber leaves (Figure 5).
FIGURE 2

Phenotypes of cucumber plants under different treatments. Upper panels: whole plant phenotype, middle panels: root phenotype, and lower
panels: images of scanned roots under different treatments. CK or control: plants were irrigated with sterilized water; Si: plants were irrigated
with exogenous silicon (3 mmol·l-1 Si); FO: plants were only inoculated with Fusarium; Si+FO: plants were irrigated with exogenous silicon
followed by inoculation with Fusarium.
TABLE 1 Effects of exogenous silicon on root length, plant height, and stem diameter of cucumber as influenced by Fusarium wilt.

Treatments Height (cm) Stem diameter (cm) Root length (cm) Root activities (mg g-1 h-1 FW)

Control 14.3 ± 0.4b 0.257 ± 0.007b 14.6 ± 0.5b 0.78 ± 0.04b

Si 18.1 ± 1.3a 0.335 ± 0.016a 18.3 ± 1.6a 0.93 ± 0.05a

FO 8.6 ± 1.8d 0.117 ± 0.001d 7.4 ± 0.2c 0.32 ± 0.02c

Si+FO 12.0 ± 0.5c 0.228 ± 0.008c 12.9 ± 0.4b 0.65 ± 0.04b
Means (± standard deviation) denoted by the different lowercase letters in each column are significantly different according to Tukey’s test (P ≤ 0.05).
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Compared with the control, Vcmax and Jmax in Si treatment

increased by 16.82% and 20.56%, respectively. However, Vcmax

and Jmax in cucumber leaves decreased significantly after

inoculation with Fusarium for 14 days. Meanwhile, Vcmax

and Jmax in plants pretreated with Si and then inoculated

with Fusarium wilt were significantly increased by 40.97% and

27.07% compared with the cucumber plants inoculated with

Fusarium only (Figure 6).
Effects of exogenous silicon application
on activities of RuBisCO, FBPase, and
GAPDH in cucumber leaves

Exogenous Si treatment induced the activities of three

photosynthetic enzymes, namely, RuBisCO, FBPase, and

GAPDH. However, inoculation with FO decreased the

activities of RuBisCO, FBPase, and GAPDH. Furthermore, the

activities of RuBisCO, FBPase, and GAPDH of the plants

pretreated with Si and then inoculated with Fusarium

significantly increased by 71.51%, 53.96%, and 32.55%,

respectively, compared with the plants inoculated with

Fusarium only (Figure 7).
The effect of exogenous silicon on the
expression of Calvin cycle-related genes
in cucumber leaves

To further study the role of exogenous silicon in

photosynthesis, the expression of four genes involved in RuBP

regeneration was determined. As shown in Figure 8,
Frontiers in Plant Science 07
the expression of FBPA, TPI, SBPase, and FBPase of the plants

pretreated with Si increased significantly compared with that of

the control. On the contrary, the expression of FBPA,

TPI, SBPase, and FBPase of the treatments inoculated with Fo

decreased by 66.78%, 57.83%, 68.16%, and 49.59%, respectively,

compared with that of the control. Meanwhile, the expression of

FBPA, TPI, SBPase, and FBPase of the plants pretreated with Si

and then inoculated with Fusarium significantly increased 10.61,

6.60, 12.77, and 8.84 times, respectively, compared with the

plants inoculated with Fusarium only (Figure 8).
Exogenous silicon application alleviates
the stomatal closure of cucumber
caused by F. oxysporum

The stomatal opening of cucumber plants pretreated with Si

was significantly higher than in other treatments. The stomata of

the abaxial epidermis of cucumber leaves are almost completely

closed at 14 days after inoculation with F. oxysporum. However,

Si application alleviated the stomatal closure caused by F.

oxysporum, and the stomatal opening was 42.39% higher than

that of the plants inoculated with F. oxysporum only (Figure 9).
Effects of exogenous silicon application
on endogenous silicon content
in cucumber

The contents of endogenous Si in roots and leaves of

cucumber plants pretreated with Si were 4.41 times and 3.21

times higher than those of the control, respectively, which
TABLE 2 Effects of exogenous silicon application on root traits of cucumber plants as influenced by Fusarium wilt.

Treatments Control Si FO Si+FO

Length (cm) 742.56 ± 25.31b 924.61 ± 78.23a 573.47 ± 41.23d 664.54 ± 50.13c

SA (cm2) 143.46 ± 8.63b 178.84 ± 14.05a 118.85 ± 10.25c 134.94 ± 12.08c

PA (cm2) 44.32 ± 3.07b 57.25 ± 4.06a 36.188 ± 2.68c 43.31 ± 3.65b

VOL (cm3) 2.41 ± 0.21b 2.76 ± 0.19a 1.81 ± 0.23d 2.02 ± 0.18c

AvgD (mm) 0.65 ± 0.04b 0.72 ± 0.06a 0.56 ± 0.04d 0.62 ± 0.05c

Ntips (pcs) 1837 ± 163b 2019 ± 156a 1437 ± 109d 1595 ± 128c

Nforks (pcs) 7859 ± 418b 11060 ± 856a 6489 ± 492c 7184 ± 597bc
fr
Means (± standard deviation) denoted by the different lowercase letters in each column are significantly different according to Tukey’s test (P ≤ 0.05). Length: root length; SA: root surface
area; PA: total root projected unit area; VOL: overall volume; AvgD: root average diameter; Ntips: total number of root tips; Nforks: number of branches.
TABLE 3 Control effect of exogenous silicon on Fusarium wilt in cucumber plants.

Treatments Disease index Control effect

FO 89.67 ± 6.52a –

Si+FO 27.52 ± 1.59b 69.31 ± 3.46%
Means (± standard deviation) denoted by the different lowercase letters in each column are significantly different according to Tukey’s test (P ≤ 0.05).
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FIGURE 3

Effects of exogenous silicon application on the contents of H2O2, O
·−
2 , and MDA in cucumber roots. Means denoted by the different lowercase

letters are significantly different according to Tukey’s test (P ≤ 0.05); the mean represents the average of three replicates ± standard deviation
(SD). Control: plants were irrigated with sterilized water; Si: plants were irrigated with exogenous silicon (3 mmol·l-1 Si); FO: plants were only
inoculated with Fusarium; Si+FO: plants were irrigated with exogenous silicon followed by inoculation with Fusarium.
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FIGURE 5

Effects of exogenous silicon application on Pn, Ci, Gs, and Tr in cucumber leaves. Means denoted by the different lowercase letters are
significantly different according to Tukey’s test (P ≤ 0.05); the mean represents the average of three replicates ± standard deviation (SD).
Control: plants were irrigated with sterilized water; Si: plants were irrigated with exogenous silicon (3 mmol·l-1 Si); FO: plants were only
inoculated with Fusarium; Si+FO: plants were irrigated with exogenous silicon followed by inoculation with Fusarium..
FIGURE 4

Effects of exogenous silicon application on the activities of POD, CAT, SOD, and APX in cucumber roots. Means denoted by the different
lowercase letters are significantly different according to Tukey’s test (P ≤ 0.05); the mean represents the average of three replicates ± standard
deviation (SD). Control: plants were irrigated with sterilized water; Si: plants were irrigated with exogenous silicon (3 mmol·l-1 Si); FO: plants
were only inoculated with Fusarium; Si+FO: plants were irrigated with exogenous silicon followed by inoculation with Fusarium..
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indicated that cucumber roots can absorb Si from soil and

transport it to leaves. The content of endogenous Si in roots

and leaves in Fo treatment was 46.06% and 39.46%, respectively,

higher than those in the control. Compared with Fo treatment, the

content of endogenous Si in roots and leaves of Si+Fo treatment

increased by 3.756 times and 3.63 times, respectively (Figure 10).
Discussion

The exogenous application of Si has demonstrated an

efficient ability in reducing both soil and airborne fungal

diseases in a wide variety of crops (Kaushik and Saini, 2019;

Ahammed and Yang, 2021). Silicon induces disease resistance

via two key mechanisms. Firstly, the deposition of Si around the

cell wall fosters mechanical protection which prevents pathogen

penetration. In addition, Si forms complexes with organic

compounds in the epidermal cell wall which also strengthen
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the cell wall mechanically (Mvondo-She et al., 2021). Secondly,

Si induces systemic resistance by improving the upregulation of

genes involved in metabolism, signal transduction, defense, and

stress response against different plant pathogens (Kurabachew

et al., 2013). Moreover, silicon may interact with key plant stress

signal systems and eventually induce resistance to pathogens.

These mechanisms have been revealed in multiple plant species

including pepper and melon (Pozo et al., 2015), cucumber (Silva

et al., 2020), onion and garlic (Elshahawy et al., 2021), tomato

(Madany et al., 2020), and carrot (Ahamad and Siddiqui, 2021).

In the present study, we found that Si alleviated oxidative stress

and the inhibition of photosynthesis in cucumber caused by the

Fusarium wilt by activating the antioxidant system, thereby

improving the photosynthetic capacity of cucumber leaves.

Fusarium wilt of cucumber is one of the three major soil-

borne diseases, and its incidence rate is as high as 70%, which

reduces the yield of cucumber by 15% to 50%, thus severely

restricting the production of greenhouse cucumber (Raza et al.,
FIGURE 6

Effects of exogenous silicon application on Jmax and Vcmax of cucumber leaves. Means denoted by the different lowercase letters are
significantly different according to Tukey’s test (P ≤ 0.05); the mean represents the average of three replicates ± standard deviation (SD).
Control: plants were irrigated with sterilized water; Si: plants were irrigated with exogenous silicon (3 mmol·l-1 Si); FO: plants were only
inoculated with Fusarium; Si+FO: plants were irrigated with exogenous silicon followed by inoculation with Fusarium..
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FIGURE 7

Effects of exogenous silicon application on activities of Rubisco, FBPase, and GAPDH in cucumber leaves. Means denoted by the different
lowercase letters are significantly different according to Tukey’s test (P ≤ 0.05); the mean represents the average of three replicates ± standard
deviation (SD). Control: plants were irrigated with sterilized water; Si: plants were irrigated with exogenous silicon (3 mmol·l-1 Si); FO: plants
were only inoculated with Fusarium; Si+FO: plants were irrigated with exogenous silicon followed by inoculation with Fusarium.
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FIGURE 8

Effect of exogenous silicon on the expression of genes involved in the Calvin cycle in tomato leaves. Means denoted by the different lowercase
letters are significantly different according to Tukey’s test (P ≤ 0.05); the mean represents the average of three replicates ± standard deviation
(SD). Control: plants were irrigated with sterilized water; Si: plants were irrigated with exogenous silicon (3 mmol·l-1 Si); FO: plants were only
inoculated with Fusarium; Si+FO: plants were irrigated with exogenous silicon followed by inoculation with Fusarium..
B
A

FIGURE 9

Effects of exogenous silicon application on stomatal movement in the lower epidermis of cucumber leaves. (A) Microscopic photographs of
stomata in the lower epidermis, and (B) stomatal aperture as influenced by different treatments. Means denoted by the different lowercase
letters are significantly different according to Tukey’s test (P ≤ 0.05). CK or Control: plants were irrigated with sterilized water; Si: plants were
irrigated with exogenous silicon (3 mmol·l-1 Si); FO: plants were only inoculated with Fusarium; Si+FO: plants were irrigated with exogenous
silicon followed by inoculation with Fusarium.
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2017). Silicon application can inhibit fungal diseases by increasing

Si accumulation in silicified cells of the leaves of gramineous

plants, forming a “keratin-silicon double layer”, or inducing plants

to produce phytoalexins and antitoxins (Camargo et al., 2021). In

this study, the optimum Si concentration (3 mmol/l) was selected

from five different concentrations of Si based on their inhibitory

effects on Fusarium growth (Figure 1). Subsequent experiments

show that exogenous silicon can significantly increase the growth

of cucumber plants infected by F. oxysporum, which provides a

theoretical basis for the application of Si in the control of

Fusarium wilt in cucumber.

Photosynthesis-related factors play a crucial role in plant

metabolism and are involved in defense against pathogens

(Letousey et al. , 2010). Fungal diseases can inhibit

photosynthetic capacity by changing the chloroplast structure

and reducing the chlorophyll content and photosynthesis-

related enzyme activity (Fernandez-Martinez et al., 2013). In

the early stage of infection, Fusarium wilt induces decreases in

the light-saturated rate of CO2 assimilation, which are

accompanied by decreases in the maximum carboxylation rate

and the capacity for RuBP regeneration as well as increases in

stomatal limitation, in the absence of any significant

photodamage to photosystem II (Nogues et al., 2002). F.

oxysporum infection also induces a decrease in net

photosynthetic rate in the early stage in banana plants, which

is mainly resulted from stomatal limitation, and the damage to

chloroplasts contributes to the reduction in the photosynthetic

capacity in the later stages of infection (Dong et al., 2016). The
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supply of Si to rice plants played a central role in decreasing leaf

scald symptoms and enhanced the maximum electron transport

rate and RuBisCO activity (Pereira et al., 2020).

The expression of four Calvin cycle-related genes encoding

proteins such as FBPA, TPI, SBPase, and FBPase was repressed in

leaves of Fusarium-inoculated cucumber plants (Figure 8). The

repression of the gene expression was in agreement with the

reduction in the activity of Rubisco, FBPas, and GAPDH. Notably,

SBP and Rubisco are known to have an essential role in the control

of photosynthetic carbon fixation (Letousey et al., 2010),

suggesting that a metabolic alteration in photosynthetic reaction

occurred in leaves due to Fusarium inoculation in cucumber

plants. However, Si application significantly increased the Pn,

Gs, Tr, Vcmax, and Jmax activities of RuBisCO, FBPase, and

GAPDH and the expression of related genes such as FBPA, TPI,

SBPase, and FBPase in cucumber leaves and reduced Ci. It

indicated that the decline in photosynthetic capacity caused by

F. oxysporum was not only related to the decrease in stomatal

conductance and the obstruction of CO2 supply but also related to

the non-stomatal factors that led to the decrease in photosynthetic

rate caused by the decrease in photosynthetic activity of mesophyll

cells (Ahammed et al., 2020). Moreover, non-stomatal limitations

of photosynthesis often involve disruptions in metabolic pathways

of photosynthesis and are common in response to biotic stress

(Letousey et al., 2010). In view of the close relationship between

the disease resistance effect of Si and the photosynthetic

physiology of plant leaves, the photosynthetic rate of leaves can

be used as a reference index for screening the Si effect.
FIGURE 10

Effects of exogenous silicon application on endogenous silicon content in cucumber plants. Means denoted by the different lowercase letters
are significantly different according to Tukey’s test (P ≤ 0.05); the mean represents the average of three replicates ± standard deviation (SD).
Control: plants were irrigated with sterilized water; Si: plants were irrigated with exogenous silicon (3 mmol·l-1 Si); FO: plants were only
inoculated with Fusarium; Si+FO: plants were irrigated with exogenous silicon followed by inoculation with Fusarium..
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Silicon application has been shown to have a dose-dependent

effect on enhancing plant resistance to diverse pathogens (Kaushik

and Saini, 2019; Ahammed and Yang, 2021). The shoot Si content

was negatively correlated with the severity of red crown rot caused

by Calonectria ilicicola in soybean (Win et al., 2021). Moreover,

aboveground biomass and seed yield at harvest increased with

increasing Si concentration in soil (0.0–3.0 g Na2SiO3 kg
-1 soil).

However, a certain high dose of Si (6.0 g Na2SiO3 kg
-1 soil) could

reduce seed yield (Win et al., 2021). There were also some

opposite reports. Silicon application significantly reduced the

incidence of white rot and improved the growth of onion and

garlic plants (Elshahawy et al., 2021). However, there were no

significant differences between some treatments at 0.1%, 0.2%, and

0.3% of silicon and silicate salts. In the present study, the silicon

concentration of 3 mmol/l had the best effect on the improvement

of photosynthesis, but when the silicon concentration increased to

5 mmol/l, the effect was largely decreased. This might be

correlated with the alterations of the homeostatic network of

mineral elements (Etesami and Jeong, 2018).

More evidence showed that Si may participate in the

metabolic process to enhance plant disease resistance through a

series of physiological and biochemical reactions and signal

transduction (Ahammed and Yang, 2021). Enhanced resistance

is achieved by activating host defense genes and inducing the

production of a series of low molecular weight metabolites. Firstly,

Si can enhance the activities of protective enzymes to improve

disease resistance (Etesami and Jeong, 2018). Silicon was

associated with increased activity of superoxide dismutase in

shoots and roots and increased tissue concentrations of

phenolics, proline, and antioxidants, but reduced levels of H2O2
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(Moradtalab et al., 2018). Secondly, Si can improve host resistance

to diseases by inducing the production of some secondary

metabolites or antibacterial substances such as phytoalexin,

lignin, phenols, and pathogen-related proteins (Ahammed and

Yang, 2021). Notably, the induction of antioxidant defense is often

associated with ROS generation under stress conditions,

particularly in response to pathogen attack. In the present study,

Si application (3 mmol/l) significantly increased the antioxidant

enzyme activities and decreased H2O2, O
·−
2 , and MDA contents in

leaves of cucumber under the stress caused by F. oxysporum

inoculation, thus mitigating oxidative damage.

In conclusion, in the current study, we screened out effective

concentrations of Si that could significantly inhibit the mycelial

growth of Fo and revealed the plant defense mechanisms

triggered by exogenous silicon in response to Fo inoculation in

cucumber plants. Exogenous Si (3 mmol l-1) application

combined with Fo inoculation substantially boosted plant

growth, root activity, and antioxidant enzyme activity but

reduced ROS accumulation and lipid peroxidation compared

to Fo alone (Figure 11). Silicon treatment also increased

photosynthetic capacity by alleviating both stomatal and

non-stomatal limitations, particularly by attenuating stomatal

closure and increasing activities of CO2 assimilation-related

enzymes such as RuBisCO. Taken together, our study

suggests that exogenous silicon can increase cucumber

resistance to Fusarium wilt by increasing antioxidant defense,

photosynthetic capacity, and stomatal opening. However,

further studies are still required to better understand how

silicon regulates plant signal transduction to enhance plant

resistance against pathogenic fungi.
FIGURE 11

A working model depicting the mechanism of silicon-mediated alleviation of Fusarium wilt stress as revealed in the present study.
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