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Improper optimization of the rates and ratios of nitrogen application reduces

grain yields and increases the nitrogen loss, thereby affecting environmental

quality. In addition, scarcer evidence exists on the integrative approach of

nitrogen, which could have effects on the biochemical and physiological

characteristics of wheat. Treatments were arranged as nitrogen (N) rates of

00, 75, 150, 225, and 300 kg ha−1 in the main plots, and different nitrogen ratios

were organized in subplots at 5:5:0:0 and 6:4:0:0, which were applied at the

sowing, jointing, flowering, and grain filling stages. The results revealed that 225

kg N ha−1 significantly enhanced the stomatal conductance (Gs),

photosynthetic rate (Pn), intercellular CO2 (Ci), transpiration rate (Tr), and total

chlorophyll by 28.5%, 42.3%, 10.0%, 15.2%, and 50%, receptively, at the jointing

stage in comparison to the control (0 kg N ha−1). Nitrogen application of 225 kg

ha−1 increased the soil–plant analysis development (SPAD) value and the

chlorophyll a, chlorophyll b, and carotenoid contents of winter wheat under

the 6:4:0:0 ratio. The trend of the photosynthetic characteristics was observed

to be greater at the 6:4:0:0 fertilization ratio compared to that at 5:5:0:0. The

photosynthetic rate was significantly associated with the biochemical and

physiological characteristics of winter wheat. In conclusion, the nitrogen

dose of 225 kg ha−1 and the ratio of 6:4:0:0 (quantity applied at the sowing,

jointing, flowering, and grain filling stages) effectively promoted the

photosynthetic and other physiological characteristics of winter wheat.
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Introduction
Nitrogen management is considered one of the most vital

factors affecting wheat growth (Chowdhury et al., 2021),

phenology, and grain yield (Sabagh, 2021). Nitrogen fertilizer,

when supplied at appropriate rates, plays a significant role in

enhancing crop productivity (Chandio et al., 2022). Good

nitrogen fertilization practices, including recommended

methods and rates, are extremely vital not only for increasing

the crop productivity but also for preserving the soil and eco-

friendly health (Panhwar et al., 2019; Shah et al., 2019).

However, insufficient application of synthetic fertilizers, mainly

nitrogenous fertilizers, has a negative impact on the growth and

yield of crops; it is expected that cumulative N fertilization may

cause an enhancement of 23%–60% of N2O emissions by 2030

(FAO and WHO, 2009). Combining the physiological, chemical,

and morphological traits responsible for inherent or

environment-induced differences in the plant growth or yield

requires thorough growth analysis (Hawkesford et al., 2013;

Yingkui et al., 2016). The hypothetical higher limit for the active

productivity of plant photosynthesis has been expected from a

comprehensive stepwise investigation of the biophysical and

biochemical substitute practices to be approximately 4.6% for

C3 and 6.0% for C4 plants (Shi and Yu, 2008). These assessments

adopted a leaf temperature of 30°C, as well as an atmospheric

CO2 of 387 ppm, and were calculated comparative to the

occupied planetary spectrum at the Earth’s surface. These

productivities would be marginally more than twofold when

calculated relative to simply the photosynthetically active

emission (i.e., 400–700 nm) (Jialing and Wu, 2018). A plant’s

pigment system is a foundation for the photosynthetic alteration

of solar energy to biochemical bond energy. The major

photosynthetic pigments are chlorophylls, while carotenoids

(Car) hand over extra energy to chlorophylls (light-collecting

funct ion) and take off surplus energy from them

(photoprotective function) (Hawkesford et al., 2013; Zuliang

et al., 2018). Photosynthesis is the critical source of biomass in

plants (Jialing and Wu, 2018). The biomass of plants is also

related to the leaf area index because of its impact on light

capture (Man et al., 2015; Mingnanet et al., 2017).

One of the acknowledged global changes as a result of rising

CO2 is how it interacts with a plant’s features, such as a decrease

in the transpiration rate or stomatal conductance and an

increase in light usage efficiency (Li., 2018). According to data

provided, CO2 caused a 31% increase in the saturated light

needed for leaf photosynthesis and a 28% regular adjustment to

photosynthetic carbon. However, full stress conditions such low

and nitrogen depletion caused the stomatal conductance to fall

and the net photosynthetic rate to decrease (Zuliang et al., 2018).

For plant species such as maize, sorghum, sugarcane, and cereal

grains including wheat, rice, and barley, a similar trend of 20%

lower stomatal conductance was evident. In wheat, nitrogen
Frontiers in Plant Science 02
fertilization boosted the net photosynthetic rate and improved

the photosynthetic pigment characteristics. Previous research

has shown a correlation between the leaf nitrogen content and

the photosynthetic capacity (Li et al., 2018; Fan et al., 2011).

Studies have been conducted on the growth and biomass

characteristics of winter wheat (Svetla et al., 2016; Xu et al., 2018;

Hirel et al., 2011); however, studies on the integrative

approaches of the effects of the rates and ratios on their

biochemical and physiological traits are scarce (Yang et al.,

2017; Oldfield et al., 2019; Skudra and Raza 2017). It is also

interesting that the leaf chlorophyll content in plant leaves

provides an enhanced approximation of the potential yield

compared to the nitrogen concentration of leaves (Xing et al.,

2018; Sahar et al., 2012). A few pieces of evidence exist regarding

the effect of nitrogen management on photosynthetic

characteristics, total dry biomass, and grain yield, as well as

the relationship between grain yield and photosynthetic

characteristics. Additionally, the economic impact of nitrogen

management on the biomass production, chlorophyll content,

photosynthetic rate, and nitrogen uptake efficiency of winter

wheat crop has rarely been examined. Hence, this study was

conducted to explore the effects of the nitrogen percentages and

ratios on the biochemical and physiological characteristics of

winter wheat.
Materials and methods

Experimental locations

Field trials were conducted during two consecutive sowing

seasons, 2017–2018 and 2018–2019, at the Taigu experimental

farming station of Shanxi Agricultural University, Shanxi

Province, China (N 37°25′, E 112°33′). The research area has a

temperate continental monsoon climate with a mean yearly

temperature of 12°C–13°C and a mean yearly rainfall of 442–

600 mm. The potential evapotranspiration is from 1840.2 to

1872.2 mm, while the sunlight period is determined as 2,672–

2,697 h. The research area is a mountainous arid field with a

semiarid climate in the Northeast Loess Plateau, where 60%–

70% of rainfall followed in the seasonal months through the

fallow season (from July to August). The soil texture at the

research site is clay loam. Details of the soil nutrients status is

presented in Table 1. Weather data, including the minimum,

maximum, and mean temperature, and the monthly average

rainfall and rainy days are presented in Figure 1.
Treatment detail

The trials were arranged in a split-plot design with three

replications. The main plots included a control (no

fertilizerapplied) means 0 (zero) and plots with total nitrogen
frontiersin.org
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(N) levels of 75, 150, 225, and 300 kg ha−1. Subplots received the

following nitrogen ratios: 5:5 (50%, 50%) and 6:4 (60%, 40%).

The labeling was as follows: 50%:50%:0% 0% (labeled as 5:5:0:0),

50%:0%:50%:0% (labeled as 5:0:5:0), and 50%:0%:0%:50%

(labeled as 5:0:0:5) and 60%:40%:0%:% (labeled as 6:4:0:0),

60%:0%:40%:0% (labeled as 6:0:4:0), and 60%:0%:0%:40%

(labeled as 6:0:0:4). The nitrogen fertilizer was applied as

bottom and topdressing during the different growing stages of

winter wheat in two ways: one was at 50% sowing time + 50% at

jointing, 50% sowing time + 50% at the flowering stage, and 50%

sowing time + 50% at the grain filling stage, while the other was

at 60% at sowing time + 40% at the jointing stage, 60% at sowing

time+ 40% at the flowering stage, and 60%at sowing time+ 40% at

the grain filling stage. There were 75 plots, with the size of each

experimental plot being 30 m2 (6 m × 5 m). Each treatment had

three replications.Urea (46.4%)was used as the nitrogen source for

the experimental field and was applied before sowing of the crop.

Phosphorus was applied as triple super phosphate (16%) at 120 kg

ha−1 and potassium applied as potassium chloride (45%) at 60 kg

ha−1 during the sowing period. Before sowing, winter wheat (Jintai

182 variety) was cultivated during the experimental study, and the

sowing rate was 95 kg ha−1. Winter wheat was planted on

September 31, 2017 and on October 1, 2018, while harvesting was

done on June 15, 2018 and June 21, 2019, respectively. Data were

collected from the field with an interval of 20–25 days during the

months of March, April, and May. All other agricultural practices,
Frontiers in Plant Science 03
such as weed control, irrigation, disease, and pesticide application,

were accomplished timely on the basis of crop growth stage and

demand according to the conventional practices adopted in

Shanxi Province.
Physiological traits of photosynthesis

As described by Ahmed et al. (2018), the photosynthetic rate

(Pn), stomatal conductance (Gs), intercellular CO2 absorption

(Ci), and the transpiration rate (Tr) of winter wheat under the

nitrogen levels, nitrogen ratios, and N timings were examined

using the Li-6400 convenient photosynthesis method (LI-COR

Inc., Lincoln, NE, USA), prepared with a LED leaf chamber. To

determine the photosynthesis traits in each treatment, two fully

prolonged flag leaves per plot of winter wheat crop were selected

at different stages, i.e., jointing, flowering, and grain filling. All

the calculations were conducted from 10:00 to 11:10 a.m. on a

clear sunny day under a CO2 concentration of 400 mol mol−1.
Determination of chlorophyll content
measured with SPAD 502

Soil–plant analysis development (SPAD) readings were

taken with a Minolta SPAD-502 m (relative value from 0 to
FIGURE 1

Monthly rainy days, rainfall, minimum temperature, maximum temperature, and mean temperature in 2017–2018 and 2018–2019 at Shanxi
Agricultural University.
TABLE 1 Soil properties prior to the experiments at the farming station of Shanxi Agricultural University.

Year Total N (g kg−1) Total P (g kg−1) Total K (g kg−1) SOM (g kg−1) pH

2017–2018 51.12 19.34 143.26 7.98 7.7

2018–2019 49.09 16.21 134.06 7.56 7.2
frontiersin
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100). The winter wheat leaf was dignified from the tip angle of

the leaf to the leaf sheath, and the chlorophyll content was

measured. The leaf was repeated three times. The average can be

roughly measured as chlorophyll content.
Spectrophotometric method

Winter wheat was harvested with two leaves instantly placed

into a sealed bag, each processing collection of three, in time

with measurements of photosynthesis. A weight of 0.08 g was

precisely taken, added into a 25-ml volumetric flask with 80%

acetone before sealing, and then left in the dark for 24 h. A

Shimadzu UV-1800 UV–Vis spectrophotometer was used to

measure the absorbance at 470, 663, 645, and 652 nm. The

contents of four pigments, namely, chlorophyll A, chlorophyll B,

total chlorophyll, and carotenoid, were calculated in accordance

with Wang (2018).

Ca ¼ 13:95A665  − 6:88A649 (Eq: 1)

Cb ¼ 24:96A649  − 7:32665 (Eq: 2)

Cx:c ¼ ð1,000A470  − 2:05Ca-114CbÞ=245 (Eq: 3)

Ct  =  Ca+Cb (Eq: 4)

Where Ca and Cb are the chlorophyll a (Chl a) and

chlorophyll b (Chl b) contents, respectively; Cx.c is the

carotenoid content, and Ct is the total chlorophyll content.

A665, A649, and A470 denote the absorbance at 665, 649, and

470 nm, correspondingly.
Statistical analysis

The data presented in this study were the mean of three

replicates. All data were analyzed using ANOVA with

randomized complete block design (RCBD). The significance

of each source was determined with an F-test. Duncan’s

multiple range test (DMRT) was conducted using a post-hoc

mean separation test (p< 0.05). Comparisons between

treatments were made on the basis of a significant change

in the least significance difference (LSD; p< 0.05). The

Shapiro–Wilk test was used to evaluate the normality of

variance before carrying out the ANOVA. Microsoft Excel 365

was used for data calculation. All statistical analysis was

completed using SPSS version 19.0 and SAS 9.3 (SAS Institute,

Cary, NC, USA).
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Results and discussion

Effect of nitrogen ratios and nitrogen
timing on physiological traits

Nitrogen treatments significantly influenced the net

photosynthetic rate (Pn), stomatal conductance (Gs),

intercellular CO2 concentration (Ci), and the transpiration rate

(Tr) in both study years (Figures 2–5). The maximum values for

Pn, Gs, Ci, and Tr during the different growth stages were

recorded for 300 kg N ha−1, followed by 225 kg N ha−1.

Higher values of these traits were noted during the flowering

stage, followed by the jointing stage at the 6:4 ratio. However,

300 kg N ha−1 showed statistically the same or a lesser difference

compared to 225 kg N ha−1. However, minimum values of Pn,Gs,

Ci, Tr were noted for 0 kg N ha−1, followed by 75, 150, and 225 kg

N ha−1. In comparison to the control, 300 kg N ha−1 increased

the Pn by 30% and 25.24%, Gs by 50% and 35%, and Ci by 28%

and 23.50% in 2018 and 2019, respectively, during the flowering

stage at the 6:4 ratio. On the other hand, the highest values of Tr

observed were 8.69 and 9.39 mmol H2Om−2 s−1 at 225 kg N ha−1

during the jointing stage of winter wheat in 2018 and 2019,

respectively, compared to the control. There was no significant

variance between the nitrogen ratios of 6:4 under treatment with

225 kg N ha−1 and of 5:5 under treatment with 300 kg N ha−1.

Analysis of variance showed that the N rates and ratios had a

considerable impact on the photosynthetic traits (Table 2).

Increased values of Pn, Gs, Tr, and Ci of the physiological

traits of winter wheat were observed in our current study, which

could be due to the optimal temperature and rainfall throughout

its growing stages. The photosynthetic rate was affected by

nitrogen fertilization and appropriate consumption of nitrogen

fertilizer significantly increased the grain yield of the winter

wheat crop (Du et al., 2019; Ziadi et al., 2010). Treatment with

225 kg N ha−1 revealed higher Pn, Gs, Tr, and Ci values at the

jointing, flowering, and filling stages when nitrogen was added at

the jointing stage. The application time clearly affected the Pn or

Gs of winter wheat, and a higher Pn rate was found at the growing

stage when the application was done during the flowering stage

and grain filling stages, which could be related to the higher

transmittance at the early growing stages, assisting winter wheat

crops with increasing their leaf area and accumulating additional

sunshine. This might be due to the climate conditions and the

higher chlorophyll contents (Weih et al., 2016), leaf area index

(Wolf et al., 2003), and the net photosynthetic rate (Peltonen,

1992). In the present study, the values of Pn, Tr, Ci, and Gs were

enhanced with the increase of nitrogen, and maximum values

were recorded with the 300- and 225-kg N ha−1 treatments. The

results of this study suggested that nitrogen application at 225 kg

ha−1 is the most favorable for the stomatal gas exchange and

photosynthetic traits. Some published findings also confirmed

that the photosynthetic rates of leaves increase with nitrogen
frontiersin.org
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enhancement until a threshold level is reached (Aranda et al.,

2004; Long et al., 2006).
Effect of nitrogen fertilizer on soil–plant
analysis development

The SPAD value during the first year significantly increased

and decreased in the second year with the increase of the

nitrogen rates at the different growth stages (Figure 6).

Maximum results were observed with treatment of 225 kg N

ha−1 at the 6:4 ratio. The average increases were from 18.41% to

20.00% at the jointing stage, from 10.89% to 13.62% at the

flowering stage, and from 11.48% to 10.06% at the grain filling

stage. These results demonstrated that a high amount of nitrogen
Frontiers in Plant Science 05
fertilizer will prime the decline of chlorophyll content in the flag

leaf of winter wheat. The SPAD value was basically consistent

with the chlorophyll content, which exhibited a tendency of an

increase first and then a decline with the increase of the nitrogen

rates. The differences among the treatments were measured at

the<0.05 probability levels.

Numerous investigations have noted a strong link between

SPAD and the N levels (Tahir and Nakata, 2005). For many plant

species, the relationships between the total chlorophyll content

and SPAD studies have been identified (Du et al., 2019; Mielke

et al., 2012). Our results showed that pre-sowing and topdressing

nitrogen application significantly augmented the SPAD. The

SPAD value in treatment with 225 kg N ha−1 at a 6:4 ratio,

when N was applied at the jointing stage, was significantly higher

than that in treatment with 150 kg N ha−1 at a ratio of 5:5 when
FIGURE 2

Effect of nitrogen fertilizer management on the photosynthetic rate of winter wheat. JS, jointing stage; FS, flowering stage; GF, grain filling stage.
Different letters in above bars indicate a significant difference (p>0.05).
frontiersin.org
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the fertilizer was applied at the flowering stage in both years as

compared to 300 kg N ha−1 (Figures 2–10). Our finding is in line

with those of studies in cereal crops by Wang (2018), Hawkesford

et al. (2013), and Yingkui et al. (2016). At the initial growth

periods from tillering to jointing, chlorophyll analyses usually

indicated non-significant differences across the ecotypes and

nitrogen application rates. Gao et al. informed that a grain yield

response in winter wheat might be estimated for meter analyses of

less than 42; the authors discovered that SPADmeasurements did

not differ at the jointing stage, prior to topdressing nitrogen

application (Gao et al., 2018). In our investigation, the nitrogen

applications increased dramatically in the various growth stages at

the 6:4 ratio. When compared to control treatment CK, the winter

wheat SPAD values with the 225-kg N ha−1 treatment and the 6:4

ratio were higher than those under the 5:5 ratio, which were
Frontiers in Plant Science 06
18.41%, 10.89%, and 11.48% and 20.00%, 13.62%, and 10.06%,

respectively, in both years (Figures 2–10). The results matched

those of a previous study by Kim et al., in which the leaf greenness

of SPAD was significantly related to Chl a absorption in two rice

varieties with diverse leaf colors. Therefore, fluctuations in leaf

greenness are probably due to the absorption of chlorophyll. The

variances in leaf greenness determined by the SPAD values have

also been described in field crops (Weih et al., 2016;

Papastylianou, 1984). The results from our study generally

suggest that SPAD measurements at a crucial time are

undoubtedly influenced by the plant nitrogen status and are

related to the leaf area index, nitrogen content, and grain

production in winter wheat plants. A recommendation for

nitrogen application based on the SPAD results may be

challenging; however, as key SPAD assessments may differ
FIGURE 3

Effect of nitrogen fertilizer management on the stomatal conductance of winter wheat. JS, jointing stage; FS, flowering stage; GF, grain filling stage.
Different letters in above bars indicate a significant difference (p>0.05).
frontiersin.org
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between years, the N timings, N ratios, and the soil characteristics

and biochemical traits are affected by nitrogen fertilizer.
Effect of nitrogen fertilizer on
chlorophyll a, chlorophyll b, and total
chlorophyll contents

The contents of Chl a and Chl b of winter wheat leaves were

significantly greater with 300 and 225 kg N ha−1 in both years

when compared to the control (Figures 7, 8). In comparison to the

control treatments, 225 kg N ha−1 increased the contents of Chl a

and Chl b by 68.57% and 250%, respectively, at the jointing stage,

followed by the flowering stage under the 6:4 ratio. Our outcomes

designated that the Chl a process is superior to that of Chl b parallel

to the control. The application of nitrogen fertilizer significantly
Frontiers in Plant Science 07
improved Chl a, and the capability of the jointing stage under the

growth process was higher than that of the flowering and filling

stages because, at the jointing stage, plants were healthy and strong

and chlorophyll was available in higher quality.

Compared with the control, fertilizer treatment at 225 kg

ha−1 significantly increased the total chlorophyll (Figure 9). The

overall trend in total chlorophyll was consistent between

treatments and ratios. Initially, the total chlorophyll increased

from the jointing stage and then declined over starting with the

grain filling stage. Subsequently, the total chlorophyll contents

increased with treatment of 225 kg N ha−1 at the ratio of 6:4, with

overall increases of 85.89%–109.22%, 75.21%–80.78%, and 57.5–

105.82% under 300, 150, and 75 kg N ha−1, respectively, in both

years. However, ratios of 5:5 at the jointing stage under

treatment with 300 kg N ha−1 and 6:4 at the jointing stage

under treatment with 150 kg N ha−1 showed no significant
FIGURE 4

Effect of nitrogen fertilizer management on the intercellular CO2 concentration of winter wheat. JS, jointing stage; FS, flowering stage; GF, grain
filling stage. Different letters in above bars indicate a significant difference (p>0.05).
frontiersin.org
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difference in the total chlorophyll content. These results

demonstrated that, with nitrogen application during different

stages, a higher chlorophyll content can be preserved at the

radical growing stages of winter wheat and that the flag leaf stage

is the optimal stage for topdressing the fertilizer. Variance
Frontiers in Plant Science 08
analysis showed that the nitrogen application rate and ratios

had significant effects on the total chlorophyll content and that

their interaction was also significant (Table 2).

Overall, the leaves in the experimental units differed

significantly in color, ranging from shaded green to light
FIGURE 5

Effect of nitrogen fertilizer management on the transpiration rate of winter wheat. JS, jointing stage; FS, flowering stage; GF, grain filling stage.
Different letters in above bars indicate a significant difference (p>0.05).
TABLE 2 Significance of the F-value from ANOVA of the various parameters of winter wheat affected by nitrogen management.

Parameter N rates (N) Ratios (R) N × R

Photosynthetic rate 101.01*** 2.95* 4.80***

Stomatal conductance 115.55*** 30.74*** 8.56***

Intercellular CO2 1,445.33*** 39.82*** 71.46***

Transpiration rate 23.92*** 10.15*** 3.05***

SPAD 7.73*** 0.88 NS 1.87**

Chl a content 35.09*** 1.10 NS 1.03 NS

Chl b content 21.62*** 0.50 NS 0.63 NS

Total chlorophyll 71.05*** 5.75*** 2.10**

Carotenoids 18.65*** 0.49 NS 0.29 NS
frontie
*, **, and *** represent significance levels at alpha 0.05, 0.01, and 0.001, respectively, obtained using honestly significant difference (HSD) test.
NS, non-significant; SPAD, soil–plant analysis development.
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brown and yellowish at the time of measurement. The results

demonstrated that, in winter wheat plants on different ratios and

N timings, the contents of Chl a, Chl b, total chlorophyll, and

carotenoid first increased with the increase of the nitrogen rate

and then decreased in both years as compared to those of CK

(Figures 2–10). Chlorophyll was the main pigment in winter

wheat plants and ranged from 5.82 to 6.96 mg/g fresh weight

(FW), with Chl a ranging from 1.74 to 2.86 mg/g FW and Chl b

from 7.56 to 9.75 mg/g FW. The Chl a-to-Chl b ratio was usually

approximate to the various nitrogen treatments and ratios and

the N timing. The Ct content was in the mean range of 1.74–2.47

mg/g FW under the ratio of 6:4 with treatment (225 kg N ha−1)

from the jointing to the grain filling stage, when nitrogen was

applied during the jointing stage in both years, as compared to

CK. According to Mielke et al. (2012), Wang (2018), and Sicher

and Bunce (2001), winter wheat plants have higher Chl a, Chl b,
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and carotenoid levels than CK during the jointing to the grain

filling stage. Numerous investigations on various types of crops

have described comparable outcomes (Gao et al., 2018; Baig

et al., 2005). The numerous uses of nitrogen include promoting

photosynthesis, enhancing tissue strength, and reducing plant

transpiration rates.

Our results are in agreement with those of Gao et al. (2018),

whose significance analysis confirmed that the chlorophyll

content of winter wheat leaves significantly increased at the

jointing and booting stages compared with that in the control

(p< 0.05) (Gao et al., 2018; Tian et al., 2014; Yang et al., 2017).

Skudra and Ruza (2017) has revealed that the leaf chlorophyll

contents during jointing and flag leaf at diverse periods were

increased by 3.3%–6.8% and 3.0%–23.4%, correspondingly,

compared to those during the early flowering stage. When

nitrogen was applied at the jointing stage, the Chl a and Chl b
FIGURE 6

Effect of nitrogen fertilizer management on the SPAD 502 of winter wheat. SPAD, soil–plant analysis development; JS, jointing stage; FS,
flowering stage; GF, grain filling stage. Different letters in above bars indicate a significant difference (p>0.05).
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contents decreased slowly with the growing process by

withholding nitrogen up to the flowering stage. Chlorophyll is

essential in photon concentration, diffusion, and transportation

and is closely associated with the Pn in leaves (Xing et al., 2018).

Increasing the quantity of the nitrogen fertilizer can increase the

chlorophyll content in plant leaves, elongating the period in

which the photosynthetic rate is higher and consequently

improving photosynthetic performance (Ahmed et al., 2018;

Wang, 2018). In our study, pre-sowing and topdressing

nitrogen applications significantly augmented the chlorophyll

content of winter wheat plants. Under the jointing stage, the

chlorophyll content was greater than that during the flowering

and grain filling stages. Moreover, the 6:4 ratio with N timing

during the jointing stage was higher than the 5:5 ratio under

treatment with 225 kg N ha−1. This outcome demonstrated that
Frontiers in Plant Science 10
topdressing nitrogen application to closely compete with the

nitrogen supplies of both the N timing and treatments and ratios

of winter wheat finally contributes to dry matter accumulation,

subsequently to a greater N supply in the leaves, finally leading to

significantly greater grain yields.
Effect of nitrogen fertilizer on carotenoid
content

The carotenoid contents of winter wheat in all nitrogen

treatments and ratios were significantly greater than that of the

control at the jointing stage. Higher results were obtained with

the ratio of 6:4 at 225 kg N ha−1 in the jointing and flowering

stages (Figure 10). The carotenoid contents following from the
FIGURE 7

Effect of nitrogen fertilizer management on the Chl A content of winter wheat. FW, fresh weight; JS, jointing stage; FS, flowering stage; GF, grain
filling stage. Different letters in above bars indicate a significant difference (p>0.05).
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jointing to the grain filling stage at the different growth stages

were increased by 78.88%–62.89% and 11.45%–53-94%,

respectively, with 225 kg N ha−1, while nitrogen was

suppressed until the grain filling stage. The ANOVA results

showed that nitrogen treatment had a significant effect on the

carotenoid content, while the N ratio and the interaction of the

nitrogen level and ratio were not significant (Table 2).

Carotenoids are essential pigments in photosynthesis and

provide an indication of the leaf function and structure when

several environmental factors are at work (Liu et al., 2019;

Ahmed et al., 2018). Favorable climatic conditions and greater

chlorophyll concentrations can possibly be of concern (Tian

et al., 2014; Nikolic et al., 2002; Megda, 2009). Carotenoids are

critical pigments of photosynthesis and are good indicators of

leaf functions under the harmful influence of different

environmental agents (Zhang et al., 2010); they comprise a

crucial parameter for observing the uptake of nitrogen in

winter wheat (Papastylianou, 1984). Some published findings

also confirmed that leaf carotenoids increase with increasing

nitrogen doses.
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Conclusions

Nitrogen application of 225 kg ha−1 at a ratio 6:4:0:0

significantly influenced the photosynthetic traits, leaf

chlorophyll, and physiological characteristics of winter wheat.

The splitting of the 225-kg ha−1 dose of nitrogen at a 6:4:0:0

ratio, 60% before sowing + 40% during the jointing stage,

effectively improved the SPAD value, the Chl a, Chl b, total

chlorophyll, and carotenoid contents, and the stomatal

conductance (Gs), photosynthetic rate (Pn), intercellular CO2

(Ci), and transpiration rate (Tr) of winter wheat crops. The

findings of the present study could be useful to developing the

best nitrogen rate under appropriate N ratios for winter wheat

production. The results support knowledge of nitrogen fertilizer

management to maximize winter wheat productivity

considering the conditions qualified in the current growing

season. This study is the first attempt on the effects of

applying different nitrogen ratios and timings during the

growth stages on the physiological and biochemical traits of

winter wheat in Shanxi, China. Additionally, the nitrogen doses
FIGURE 8

Effect of nitrogen fertilizer management on the Chl B content of winter wheat. FW, fresh weight; JS, jointing stage; FS, flowering stage; GF, grain
filling stage. Different letters in above bars indicate a significant difference (p>0.05).
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FIGURE 9

Effect of nitrogen fertilizer management on the total chlorophyll content of winter wheat. FW, fresh weight; JS, jointing stage; FS, flowering
stage; GF, grain filling stage. Different letters in above bars indicate a significant difference (p>0.05).
FIGURE 10

Effect of nitrogen fertilizer management on the carotenoid content of winter wheat. JS, jointing stage; FS, flowering stage; GF, grain filling stage.
Different letters in above bars indicate a significant difference (p>0.05).
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and ratios could meritoriously increase the photosynthetic

characteristics, ultimately improving the grain yield of

winter wheat.
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