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Crop Wild Relatives (CWR) are a valuable source of genetic diversity that can be

transferred to commercial crops, so their conservation will become a priority in

the face of climate change. Bizarrely, in situ conserved CWR populations and the

traits one might wish to preserve in them are themselves vulnerable to climate

change. In this study, we used a quantitative machine learning predictive

approach to project the resistance of CWR populations of lentils to a common

disease, lentil rust, caused by fungus Uromyces viciae-fabae. Resistance is

measured through a proxy quantitative value, DSr (Disease Severity relative),

quite complex and expensive to get. Therefore, machine learning is a convenient

tool to predict this magnitude using a well-curated georeferenced calibration

set. Previous works have provided a binary outcome (resistant vs. non-resistant),

but that approach is not fine enough to answer three practical questions: which

variables are key to predict rust resistance, which CWR populations are resistant

to rust under current environmental conditions, and which of them are likely to

keep this trait under different climate change scenarios. We first predict rust

resistance in present time for crop wild relatives that grow up inside protected

areas. Then, we use the same models under future climate IPCC

(Intergovernmental Panel on Climate Change) scenarios to predict future DSr

values. Populations that are rust-resistant by now and under future conditions

are optimal candidates for further evaluation and in situ conservation of this

valuable trait. We have found that rust-resistance variation as a result of climate

change is not uniform across the geographic scope of the study (the

Mediterranean basin), and that candidate populations share some interesting

common environmental conditions.

KEYWORDS

crop wild relatives, climate change, machine learning, rust resistance, lentils, in situ
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1 Introduction

In the coming decades, food security will be seriously

compromised by the lack of adaptive resilience to climate

change of cultivars currently used in crops (Smith et al.,

2017; Wiebe et al., 2019; Anderson et al., 2020). This lack of

adaptive resilience is caused by the low genetic diversity that is

inherent to most modern cultivars (Rauf et al., 2010; Van de

Wouw et al., 2010; Rufo et al., 2019). Indeed, it has been

estimated that major crops are likely to experience sensible

yield reductions in the coming decades. In their review of 2015

for Eastern Africa, Adhikari et al. depict a gloomy scenario for

main staples by the end of this century. They predict a 72%

drop for wheat, around 40% for other cereals, and 10% for

potatoes (Adhikari et al., 2015). A recent study predicts a drop

that ranges from 3% to 12% by 2050 and from 11% to 25% by

2090 for rice and soybeans (Wing et al., 2021). This will be the

result of losses caused by the arrival of new pests and

pathogens, the intensification of the effects of those active

right now, and potential mismatches to the new climate

regimes, including increasing temperature and drought and

higher incidence of extreme events (e.g., hail, strong winds,

floods, etc). Anyway, those statistical projections could hide the

fact that climate change may result beneficial for some crops

and regions (Ray et al., 2019).

Crop wild relatives (CWR) are one of the most important

sources of genetic diversity to transfer key adaptations to crops, a

relevant fact in the context of climate change (Heywood et al.,

2007; Maxted, 2008; Zhang et al., 2017). For example, they have

been effectively used in plant breeding in crops such as sunflower

(Helianthus annuus L.) (Seiler et al., 2017), narrow−leafed lupin

(Lupinus angustifolius L.) (Mousavi-Derazmahalleh et al., 2018),

durum wheat (Triticum turgidum subsp. durum (Desf.) Husn.)

(El Haddad et al., 2021) or pea (Pisum sativum L.) (Rubiales

et al., 2020).

Interestingly, the genetic diversity of crop wild relatives is, at

the same time, being severely eroded mainly due to habitat

modification and destruction by human activities (Iriondo et al.,

2008; Khoury et al., 2022). A recent survey of 600 species of crop

wild relatives in the United States, estimated that more than one-

half are endangered and 7% in a critical condition (Khoury et al.,

2020). As a result, a global effort is being made to promote the

establishment of genetic reserves or the in situ conservation of

crop wild relatives (Maxted et al., 2008; van Treuren et al., 2017;

Labokas et al., 2018).

In the process of deciding which populations of a given crop

wild relative should be selected for in situ conservation, there are

a number of considerations that must be taken into account. On

one hand, genetic reserves should be representative of the range

of genetic diversity present in the species (Dempewolf et al.,

2017). The best way of characterizing genetic diversity is through

sequencing as it provides complete information about the

genome and its cost is drastically decreasing. Nevertheless, the
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characterization of hundreds or thousands of populations that a

given crop wild relative might have is a highly time-consuming

task that would require huge human and economic resources as

well. Ecogeographic information arises as a useful tool that

provides a proxy to estimate among-population genetic

diversity and helps in the selection of representative

populations (Vincent et al., 2019). Plant breeders are often

interested in identifying and conserving candidates that

display a targeted phenotypic trait (e.g., resistance to a

pathogen). Once again, ecogeographic information associated

with the CWR populations is critical to identifying these

candidate populations given the impossibility of conducting

evaluation experiments with plant material from so many

sites. In this sense, predictive characterization techniques

based on FIGS (Focused Identification Germplasm Strategy)

have been applied to identify wheat resistance to stem rust,

caused by the fungus Puccinia graminis (Endresen et al., 2012;

Bari et al., 2014), and barley resistance to leaf rust, caused by

Puccinia hordei (Amouzoune et al., 2022). Different

methodological approaches predicted phenotypic traits

through a calibration approach, using as a starting point a set

of training data where the targeted trait of a set of populations is

known and the corresponding ecogeographic information may

be retrieved from public repositories (Endresen, 2010; Sánchez

et al., 2019). In the search for resistance to pathogens, several

researchers have followed qualitative approaches in which the

material is previously evaluated as resistant or non-resistant

(Bari et al., 2012; Rubio Teso et al., 2022). However, resistance to

pathogens could be evaluated using numerical variables as well

(Arojju et al., 2018; Ren et al., 2021). Predictive characterization

of quantitative resistance traits such as DSr (Disease Severity

relative) to lentil rust (Uromyces vicia-fabae (Pers.) Schröt), is

likely to benefit from machine-learning models with quantitative

dependent variables (Rubiales et al., 2013).

The second aspect of great relevance when identifying the

most appropriate CWR populations relates to the adequacy of

the site for the long term in situ conservation. The land use of the

site has to be compatible with the long-term viability and

persistence of the candidate population (Hunter, 2012; Hunter

et al., 2012). Those within protected areas are less vulnerable to

human disturbance and are, therefore, preferred in this context

(Maxted et al., 2012). In any case, the in situ conservation of

CWR in genetic reserves may also be feasible in other instances

(e.g., farms), whenever there is a long-term commitment by the

landowners (Maxted and Kell, 2009).

Ex situ conservation is the best and most adequate approach

for conserving and utilizing plant genetic reserves. One of the

main benefits of complementing it with in situ conservatio of

CWR is that in situ conserved wild populations are constantly

evolving as a result of changing biotic and abiotic environmental

factors (Fu, 2017). Adapting to such changes favours genotypes

that maximize their fitness under current and potentially future

environmental conditions (Meilleur and Hodgkin, 2004). On the
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contrary, the germplasm conserved ex situ in genebanks allows

rapid access to genetic variation but represent a static genetic

diversity of the population in the moment of sampling

(Castañeda-Álvarez et al., 2016) that, in any case can be useful

in recovering populations. In the identification of the most

appropriate CWR populations for in situ conservation, one

must take into account not only the environmental conditions

currently present in the target population but also those expected

to occur in the future as a result of climate change, and whether

those future conditions are compatible with the preservation of

the population or the targeted traits. The vulnerability of

protected areas to the effects of climate change is starting to be

assessed in terms of global biodiversity or emblematic species

but has not been studied in the context of CWR in situ

conservation (Hannah, 2010; Triviño et al., 2018).

In this study we used a predictive characterization approach,

based on machine learning, to quantitatively project the rust

resistance of crop wild relative populations of lentils (Lens

culinaris subsp. culinaris) in the Mediterranean basin. Rust is a

severe foliar disease in lentils (Rubiales et al., 2011). Breeding

with CWRs to increase rust resistance of cultivars is a convenient

method for this disease control in legume crops (Barilli et al.,

2009; Rubiales et al., 2011; Negussie and Pretorius, 2012; Sillero

et al., 2017).

Climate change is expected to unevenly affect agriculture in

different parts of the world (Howden et al., 2007). There is large

variation in climatic conditions, soils, land use, infrastructure,

and political and economic conditions across the European

continent (Olesen and Bindi, 2002; Cramer et al., 2018;

Fellmann et al., 2018). These differences are expected to

influence the responsiveness of CWR populations to climate

change. Here we apply climate change projections and Shared

Socio-Economic Pathways (SSPs) to predictive characterization

in order to compare the potential changes in rust-resistance of

lentil CWR populations in Europe and Turkey (Dufresne et al.,

2013; Voldoire et al., 2013; O’Neill et al., 2014; Wu et al., 2014).

We, then, aimed to identify a set of rust-resistant candidate

populations that could be designated for in situ conservation in

genetic reserves, searching for those that occur in protected areas

and selecting those with the lowest vulnerability to changes in

the environment that might result in the loss of this trait.

The results of the calibration method of the predictive

characterization techniques should answer the following

questions: (i) which variables are the most important to

predict rust resistance? (ii) which CWR populations are likely

to show strong resistance to rust under present time

environmental conditions? and (iii) which of them are likely to

keep this trait under forthcoming climate change scenarios? We

expect selected populations to have evolved to develop rust

resistance over time and consider them to be a valuable asset

under present and future conditions.
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2 Data description

Lentil was cultivated for the first time in the Fertile Crescent

around 5000 BP (Zohary et al., 2012). It probably spread out

through the Mediterranean basin, the Indian subcontinent, and

the Horn of Africa at a relatively fast pace driven by its high yield

(Liber et al., 2021). Thus, it didn’t face the selective pressure of its

wild relatives, the subspecies orientalis and odemensis and the

three species Lens nigricans (M. Bieb.) Godr., Lens ervoides

(Brign.) Grande and Lens lammotei. Czefr. We considered in

our study all Lens taxa naturally occurring in Europe and

Turkey. These are L. ervoides, L. nigricans and L. lammotei, as

well as L. culinaris subsp. orientalis (Boiss.) Ponert. and L.

culinaris subsp. odemensis. (Ladiz.). Lens taxa distribution data

were extracted from a database of crop wild relative populations

in Europe and Turkey generated for the Farmer’s Pride project

(www.farmerspride.eu) (Rubio Teso et al., 2020). Due to the

imbalance in the number of samples ofthe original database (443

populations of L. nigricans found in 12 countries, 145 of L.

ervoides in 9 countries, 29 of L. lamottei and 9 of L. culinaris

subsp. orientalis), we decided to build a unique model and

exclude the species as an input variable. We made this choice

to avoid overfitted models, being aware that there is a loss of

input information, but taking into account that the four taxa

belong to the same genus.

Raw data downloaded were further cleaned and filtered as

indicated in (Rubio Teso et al., 2022). The calibration dataset

holding rust evaluation data has 351 samples of five Lens taxa,

both wild and cultivated (L. culinaris, L. culinaris subsp.

culinaris, L. culinaris subsp. orientalis, L. ervoides and L.

nigricans). Each sample is georeferenced and its DSr value is

the mean of four years’ field trials. Each field trial followed a

complete block design with 3 replications, artificially inoculating

the samples and including frequent rows of susceptible checks to

act as spreaders to ensure a high and uniform disease pressure.

Disease Severity on mature plants in the field is assessed as a

visual estimation of the leaf area covered by rust pustules, which

is influenced by environmental factors. This value (DS) is

standardized each year by expressing each DS value as a

percentage of the highest one in each location that is set at

100% (DSr) (Sillero et al., 2017).

Each record of the filtered lentil CWR distribution database

and of the calibration dataset was associated to the values of 65

bioclimatic, 35 edaphic and 18 geophysic variables at 2.5 arc-min

resolution, corresponding to the sites of the populations. This

information was obtained from the ecogeographic database of

CAPFITOGEN3 (Parra-Quijano et al. 2020). Latitude and

longitude were also added to the variable selection procedure.

SelecVar function of CAPFITOGEN3 was used to estimate

variable importance according to the random forest

classification (RFC) and detected redundant variables through
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bivariate correlation analysis (Garcia et al., 2017). The first 15

variables of each bioclimatic, edaphic and geophysic component

with the highest Mean Decrease Accuracy (MDA) values (Cutler

et al., 2007; Rubio Teso et al., 2022) were checked for colinearity.

Pairs of variables with Pearson correlation coefficient > |0.50|

and p-value< 0.05 in the same ecogeographical component were

identified and the variable with the lowest MDA removed.

Hence, in the bioclimatic component, only annual mean

temperature (°C) and annual precipitation (mm) were kept. In

the edaphic component, four non-correlated variables were

selected: bulk density (fine earth) of topsoil, topsoil available

soil water capacity until wilting point, topsoil total exchangeable

bases and topsoil sand fraction. Finally, in the geophysic

component, three non-correlated variables were selected:

annual solar radiation (kJ/m2perday), December solar

radiation, and longitude. Further information and details

about the generation and characteristics of this environmental

database can be found in (Rubio Teso et al., 2022).

To identify the populations of lentil, crop wild relatives of

Europe and Turkey that occur within protected areas, we

considered the protected areas registered at the World Database

of Protected Areas (WDPA) for this territory and those included

in the Natura 2000 network. The file with the polygons of the

WDPA was downloaded in April 2021 from the website ‘Explore

the World’s Protected Areas’ (protectedplanet.net). The polygons

of the Natura 2000 network were downloaded from the European

Environment Agency website (https://www.eea.europa.eu/data-

and-maps/data/natura-11/natura-2000-spatial-data/natura-2000-

shapefile-1, last accessed 2021/07/20). The shapefile polygons

from N2000 and WDPA obtained were merged into a single

shapefile that contained all available protected areas in Europe and

Turkey, using the function ‘join vector layers’ in QGIS

v.3.18.2-Zürich (QGIS Org, 2021). All protected areas in the

resulting shapefile were considered for the selection of

candidate populations.

The dataset of lentil CWRs comprises 583 populations of

four Lens taxa; 236 out of them grow inside a protected area

(Supplementary Table S1).
3 Climate change models

Considering that climate change is expected to influence the

evolutionary dynamics of CWR populations, one of the aims of

this study was also to apply predictive characterization under

future climate conditions. To do so, we incorporated climate

change projections and Shared Socio-Economic Pathways (SSPs)

to assess whether the environmental conditions that are likely to

promote at present the presence of rust resistance in wild

populations still remain in the forthcoming future. According

to this, we combined the ecogeographic variables with the

projected temperature and precipitation to quantitatively
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project the rust resistance of crop wild relative populations in

future climate scenarios. A potential role of the results extracted

here is their applicability in the selection of candidate

populations (Stockwell and Peterson, 2002; Guisan and

Thuiller, 2005; Araújo and Guisan, 2006).

The future climate Geographical Information System (GIS)

layers were downloaded from the Worldclim database (http://

www.worldclim.org/) at 2.5 arc-min resolution (around 5x5

km). From the available periods, we selected the 2021-2040 as

the future climate scenario. We chose three global circulation

models (GCMs) for climate change projections, produced by the

Coupled Model Intercomparison Project Phase 6 (CMIP6)

(O’Neill et al., 2016). For every GCM, we analysed three

different shared socioeconomic pathways(SSPs), the most

“pessimistic” or “conservative” scenario, a “balanced” scenario

and an “optimistic” scenario, so we can cover the range of

expectations to do a sensitivity analysis. Only the two bioclimatic

variables that had been previously selected (Annual mean

temperature and Annual mean precipitation) were considered.
4 Methods

4.1 Predictive characterization for
evaluation accessions

In this study, we rely on the evaluated accessions that

constituted the calibration dataset to carry out a quantitative

predictive characterization using a machine learning regression

approach. This dataset includes, on the one hand, the

continuous range of the DSr as the dependent variable and the

selected ecogeographical variables, at present time.

Rubio Teso et al. addressed the issue of predicting resistance

to rust by means of the calibration method and a qualitative

strategy with the same dataset (Rubio Teso et al., 2022). This

method consisted of the binarization of DSr numerical values

into qualitative values (resistant, susceptible), prior to

prediction. According to this, accessions with the lowest DSr

values were classified as rust-resistant, i.e., those located in the

first decile of the distribution. The binarized levels of expression

(0 = susceptible; 1 = resistant) were used as the dependent

variable. Ecogeographical variables were the inputs to predict the

binarized DSr resistance through nine classification algorithms.

Then, the best predictor model was projected on the non-

evaluated populations.

We followed a different path in this research, predicting the

numerical value of DSr. We built and evaluated three different

families of predictive models with the present time

environmental values and DSr values for evaluated accessions:

Ridge Regression (Hoerl, 1962, Random Forest (Breiman et al.,

1984) and XGBoost (eXtreme Gradient Bosting) (Friedman,

2001; Chen and Guestrin, 2016).
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4.1.1 Regression models
DSr quantitative prediction is a regression problem with

tabular data. We have implemented in Python the three

regression models to tackle the task to identify populations

potentially resistant to lentil rust.

Initially, we used the calibration dataset at present to train

the models. From this dataset, we carry out a cleaning process in

which we discard duplicate values and samples with incomplete

variables, leaving us with a total of 255 samples. Considering the

small sample size situation, in order to avoid cross-validation

overfitting Ng et al. (1997) and achieving robust predictions for

the different scenarios proposed, we address the following

approach. We build 500 models that only differ in the random

split of training and testing sets, including all variables.

According to this, the dataset was split into different random

train and test subsets, set to a 70/30 ratio. We train the model

using the training subset and then we perform the predictions

with the test subsets. Once the 500 models had been trained

we collected all the predictions to better understand

their distribution.

For visualization purposes we used the R programming

language. A full list of the packages used is provided at the

end of the methods section.

Ridge Regression is the simplest choice to achieve a balance

between interpretability and precision. Since linear regression

establishes a relationship between dependent variable and one or

more independent variables that might be correlated, Ridge

Regression imposes a penalty term on the size of the

coefficients to overcome this issue, which is called

multicollinearity (Gruber, 1998).

The aim of both Ordinary Least Squares (OLS) and Ridge

Regression coefficients is to minimize the residual sum of

squares (Saleh et al., 2019) and thus, the MSE. According to

this, the penalty hyperparameter must be tuned so that model

coefficients change in order to optimize the model error, by

decreasing the residual sum of squares. As well as linear

regression, the Ridge regressor explains the outcome as a

function of multiple input variables. Thus, as a result, each

input variable has an associated weight that will be positive or

negative depending on its contribution to the model.

As well as linear regression, the Ridge regressor explains the

outcome as a function of the multiple input variables. Thus, as a

result, each input variable has an associated weight that will be

positive or negative depending on its contribution to the model.

Random Forest Regression (RFR) is a tree-based ensemble

method and belongs to the family of Classification and

Regression Trees (CART). An ensemble method is a technique

that combines the predictions from multiple machine learning

algorithms together to make more accurate predictions than any

individual model (Breiman, 2001).

RFR operates by constructing a multitude of decision trees,

which are trained with a random subset of samples that have

been drawn with replacement from the training sample. The
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number of variables included in each tree is limited to a

percentage of the total variables that must be initially set. This

ensures that the ensemble model does not rely too heavily on any

individual variable, and makes fair use of all potentially

predictive variables. As a result, the output estimation is the

mean prediction of the individual trees.

Regarding interpretability, it is known that decision trees can

be easily converted into rules which increase human

interpretability of the results and explain why a decision was

made. However, in the case of Random Forest it is not

straightforward to find out the contribution of each of the

variables (Rogers and Gunn, 2005). In Random Forests each

Decision Tree is a set of internal nodes and leaves. In the internal

node, the selected variable is used to make decision how to divide

the data set into two separate sets with similar responses within.

The variables for internal nodes are selected with some criterion,

which for regression tasks is variance reduction. We can measure

how each variable decrease the impurity of the split (the variable

with highest decrease is selected for internal node). For each

variable we can collect how on average it decreases the impurity.

The average over all trees in the forest is the measure of the

variable importance.

XGBoost (eXtreme Gradient Boosting) is another ensemble

method that relies on the concept of gradient tree boosting.

Boosting is a sequential algorithm that makes predictions for

several rounds on the entire training sample and iteratively

improves the performance of the algorithm with the

information from the prior round’s prediction accuracy.

However, XGBoost produces black box models, hard to

visualize and tune compared to RFR (Agarwal and Das, 2020).

Note that our aim is not to compare performance across a wide

range of modelling techniques, but to show how different

modelling approaches ranging from simple Ridge regression to

more complex XGBoost can be explored within our framework.

4.1.2 Variable engineering
To optimize the regressors, we followed a three-step process.

In particular, we proceeded as follows:
I. Variable selection. The environmental variables that

might be the most relevant for explaining lentil taxa

distribution were identified using a modified R script

developed for the SelecVar tool from CAPFITOGEN3

(Parra-Quijano et al. 2020).

II. Data normalization. Machine learning regressors

typically require variables to have a close scale

(Kotsiantis, 2011). The scale difference between

variables can influence the performance of a ML

regressor. Hence, we performed a data normalization

scenario, namely standardization.

III. Variable Importance. For the three regression models

(Ridge Regression, Random Forests, and XGBoost), we

ran a procedure after the training process to estimate
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Fron
variable importance. The importance of variables

explaining rust resistance was carried out by

analysing the weights assigned to the predictors for

each model during the training step.
4.1.3 Model evaluation
To assess the performance of regression models we

computed the Root Mean Square Error (RMSE). Although

Pearson correlation coefficient is widely used in quantitative

genetics (González-Recio et al., 2014), Mean Squared Error

(MSE) and RMSE yield better performance in model selection

when the sample size is small and there is a high variance in the

outcome variable (Oliveira et al., 2018; Waldmann, 2019). RMSE

is a distance between the vectors of recorded values (yi) and

predicted values (ŷ i) (Chai and Draxler, 2014).

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

n

i=1
(yi − ŷ i)

2

s
(1)
4.2 Non-evaluated projections under
current conditions

As it was previously mentioned, regression models were

initially trained using present time data for rust-resistance

evaluated accessions. After that, we applied the best performing

model to non-evaluated populations. This dataset had the same

present-time ecogeographic variables than the calibration dataset.

We used the trained regression model to perform DSr

projections on crop wild relative populations. Thus, we can

identify those wild populations that are most likely to be

resistant according to their predicted DSr value. Those

populations for which DSr projection falls within the first

quartile for the continuous range of rust-evaluated populations

(DSr ≤ 30.48) and which are located in a protected area were

selected as candidates to the long term in situ conservation.
4.3 DSr variation under climate change

Climate change models provide the future estimations for

average temperature and yearly precipitation. According to this,

we replaced both bioclimatic variables with future climate

projections and applied these datasets as inputs to the predictive

model. Those candidate populations to in situ conservation whose

projected DSr under future climate conditions still falls within the

first quartile of DSr distribution at present time were considered to

be the populations most likely to retain the rust resistance trait,

and, therefore, were selected as the most valuable populations for

the establishment of genetic reserves.
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List of statistical packages used

Python: python 3.8.8 (Van Rossum and Drake, 1995),

matplotlib 3.3.4 (Hunter, 2007), numpy 1.20.1 (Harris et al.,

2020), pandas 1.2.4 (Wes McKinney, 2010), seaborn 1.11.1

(Waskom, 2021), scikit-learn 0.24.1 (Pedregosa et al., 2011),

verde 1.6.1 (Uieda, 2018), xgboost 1.4.2 (Chen and Guestrin,

2016). R: r-base 4.1.0 (R Core Team, 2020), countrycode 1.2.0

(Arel-Bundock et al., 2018), dplyr 3.4.0 (Wickham et al., 2022),

forcats 0.5.1 (Wickham, 2021), gensysr 1.0.0 (Obreza, 2019),

ggplot2 3.3.3 (Wickham, 2016), maps 3.3.0 (Brownrigg, 2018),

readxl 1.3.1 (Wickham and Bryan, 2022), rgbif 0.9.8

(Chamberlain et al., 2017), scico 1.3.0 (Pedersen and Crameri,

2021), seewave 2.2.0 (Sueur et al., 2008).
5 Results

5.1 Predictive characterization

The training models generated with the three regression

models rendered similar global results. Figure 1A shows the

RMSE distributions for each of the three predictive models at

present time, evaluated for the samples whose DSr values were

known in advance. The Ridge model yielded the lowest median

value, however this measure of centrality is not the only criterion

to decide which is the most appropriate predictive model. Thus,

the Ridge model showed a larger error spread than Random

Forest, and, in addition, it was less accurate for small DSr values,

precisely those corresponding to the most resistant samples and,

therefore, the most valuable for conservation purposes

(Figure 1B, Supplementary Table S2). Finally, a visual

comparison of the distribution of the actual values and those

predicted by the three methods reveals that the Ridge

model tends to overpredict in the intermediate value range.

Figures 1C–E include the values of the Kolmogorov-Smirnov

distance which measures how the predicted and the evaluated

values differ. Although the value of this difference is slightly

lower for XGB than for Random Forest (0.114 vs. 0.116), the

RMSE distribution of XGB showed a greater median value and

error spread. For all these considerations, we selected Random

Forest as the most suitable model to predict the DSr value of

non-evaluated populations both at present and under different

climate change scenarios.

We run the Variable Importance method for the Random

Forest predictor, where results show that annual precipitation

(mm) is the second most relevant, after Longitude. This fact

becomes relevant specially when introducing the Climate

Change models (Table 1), since annual precipitation was a

variable susceptible to be modified, as well as annual average

temperature that was at the fifth position in the variable

importance ranking.
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5.2 DSr variation under climate change

One of the main questions of this research is to assess how

climate change may impact the ability of populations to

maintain resistance to rust. An interesting result when

comparing projections under current conditions and under

climate change scenarios is that the global distribution of DSr

values doesn’t drift in a clear direction. Figure 2A shows that the

distribution of the DSr value is very similar for the present and

future predictions under the BCC370 model. The median

remains almost unchanged, going from 33.70 to 33.85.

We have built the Random Forest predictor for all the

climate change models described in methods. In what follows
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we always refer to the Random Forest regression under the

conditions of change of the BCC370 model.

The variation in annual precipitation is weakly positive, with

a median increase of 6 mm (Figure 2B). This change is highly

concentrated around the median with -9 mm variation at the

limit of the first quartile and 22 mm at the limit of the third

quartile. In other words, locations with the lowest precipitation

tended to lower their precipitation even further, whereas the

other locations increased their precipitation, especially those

which initially had the highest precipitation. Average annual

temperature increases, on the other hand, are remarkable with

values 1.28 °C, 1.56 °C and 1.71 °C for the first quartile, the

median and the third quartile (Figure 2C).

The highest values of sensitivity to rust are found in some

locations in the interior of the Iberian Peninsula, in regions with

very hot and dry summers where rust cannot thrive (Figure 3A).

Something similar occurs in the interior of France, but in this

same country there is a cluster of potentially resistant populations

in the final course of the Rhone, an area with much higher

humidity conditions. Proximity to sea seems to foster

populations with low DSr, as it happens in Greece, the

Anatolian shoreline and Southern Crimea. Figure 3B shows the

map of DSr variation with respect to the present time for the same

wild accessions using Model BCC_370 instead. Spatial patterns

are easy to spot. According to this, DSr values will decrease in the

mountains of the Iberian Peninsula, but will be higher in the

Rhone region and Southern Greece (See Supplementary Figures

S2 and S3 for details). Annual precipitation is the main driver of
TABLE 1 Variable importance for the Random Forest predictor.

Variable Importance

Longitude 0.2916

Annual precipitation 0.1623

Bulk density topsoil 0.0917

Available soil water capacity until wilting point 0.0866

Average annual temperature 0.0708

Topsoil sand fraction 0.0697

Topsoil total exchangeable bases 0.0651

Annual solar radiation 0.0615

Latitude 0.0548

Solar radiation December 0.0455
A B

D EC

FIGURE 1

(A) RMSE of predicted DSr for evaluated samples for each of the three methods, average values are marked as color-filled diamonds. (B) The
cumulative RMSE per sample is the sum of RMSE over the number of evaluated samples, and its value is equal to the average value for the last one.
Random Forest is the best performer for low values of DSr. (C–E) plots compare the evaluated data distribution of DSr to the predicted one.
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these changes, with a general trend to drought. Figure 3C shows

the variation of precipitation according to the BCC_370 model.

Supplementary Table S1 shows the number of populations

whose present DSr value falls under the first quartile for the

present time (DSr ≤ 30.48) and are inside a protected area: 14

belong to Lens ervoides and 36 to Lens nigricans. Out of these 51

populations there are 16 that have a DSr value under 30.48 under

the BCC370 hypothesis of Climate Change, 7 of Lens ervoides

and 9 of Lens nigricans. They are encircled in magenta in

Figure 3B. They are the most valuable populations for in situ

conservation and are listed in Table 2.
6 Discussion

In this study, we addressed the pressing problem of the lack of

adaptive resilience in modern cultivars in the context of climate

change and the need to identify crop wild relative populations that

might provide the genetic diversity needed to obtain specific traits.

Rust is a severe disease for lentil production and breeding with

resistant CWRs is a convenient way to reduce this problem but

systematic straight identification of wild samples that have evolved

to resist the fungus is not possible because of the expensive and

time-consuming method to estimate Disease Severity. We tackled

this problem by building a Machine Learning model using a rich

dataset of calibrated samples grown under controlled

environmental conditions. We used the model to predict the

sensitivity to rust of a set of samples of wild relatives of Lens

culinaris subsp. culinaris, in the present time and under 9 scenarios

of Climate Change. As DSr is a quantitave measurement, we have

gone straight to a regressive model instead of a qualitative binarized

approach as in previous works. Our goal was to identify natural
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CWR populations in protected areas, that are likely to be resistant to

rust at present time and to maintain this trait in the future due to

themaintenance of selective pressures (i.e., have a projected lowDSr

at present time and in the future scenarios of climate change

models). A quantitative estimation is better suited for the purpose

of finding extremely resistant accessions.

With this methodological approach we aimed to answer three

questions. The first one is which variables have more impact the

model. Variable importance analysis revealed that Longitude is the

most relevant one. This fact comes as no surprise given the East-

West distribution of lentil wild species populations across the

Mediterranean basin (Ladizinsky et al., 1983; Ladizinsky et al.,

1984), and the evidences of westward migration from Near East of

other wild Fabaceae like wild peas (Smỳkal et al., 2017; Hellwig

et al., 2022) or wild lupins (Mousavi-Derazmahalleh et al., 2018).

Rust sensitivity is higher in the West Mediterranean basin, with

extreme values in inner areas of the Iberian Peninsula and France,

where the conditions are less prone to rust development. These

results are in line with (Singh et al., 2014) who experimentally

evaluated 405 wild lentil accessions and identified 27 promising

rust-resistant populations which were mostly located in the

Eastern Mediterranean (Syria and Turkey). Besides longitude,

annual precipitation, bulk density topsoil, available soil water

capacity and annual average temperature are the most relevant

for the RFR predictor.

In response to the second question we identify 51

populations whose DSr values are under the first quartile in

present time and grow inside a protected area. These are good

rust-resistant candidate populations which should be evaluated

for this trait and could be easily conserved in situ.

The third question constituting a relevant landmark of this

work was to identify which of those 51 populations are likely to
A B

C

FIGURE 2

(A) Histogram of DSr prediction using Random Forest for non-evaluated wild populations in present time and in the future under BCC370
climate change model. Vertical lines mark the median value of each distribution. (B), (C) Histograms of variation of average annual precipitation
and average annual temperature between present time and future conditions under BCC370 climate model.
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maintain the environmental conditions that are favourable for the

occurrence of rust-resistant genotypes under the projected Climate

Change scenarios. Although longitude is the variable with the

greatest weight in the prediction of our model, this variable is

constant through time and not affected by climate change. Annual

precipitation and average annual temperature were the variables

that had an impact in the different scenarios on the future sensitivity

to rust. The effect on the variation of DSr was similar for them all

(Supplementary Figure S1; Supplementary Table S3), possibly

because of the short span over which the change is projected

(year 2040). Locations with the lowest precipitation tended to

lower their precipitation even further, whereas the other locations

increased their precipitation, especially those which initially had the

highest precipitation. Average annual temperature increases, on the
Frontiers in Plant Science 09
other hand, are remarkable with values 1.28 °C, 1.56 °C and 1.71 °C

for the first quartile, the median and the third quartile. This could

suggest that rust resistance is not affected by the changes in annual

precipitation and mean temperature, but quite the opposite, we

found clear patterns of DSr variation by geographic area. Annual

precipitation was found to be the main driver of change and those

regions with increased precipitation were associated to conditions

more favourable for rust-resistant populations (lower DSr values).

In particular, the accessions of South Crimea, the Iberian plateaus

and Western France would be the ones that experiment a greater

increase in precipitation and consequently a decrease in projected

DSr. Just the opposite would happen on the Southern shore of

Anatolia, where precipitation is going to decrease sharply reducing

the chances of finding rust resistant genotypes in those locations.
A

B

C

FIGURE 3

(A) DSr predicted median value, using Random Forest, for wild accessions under present climate conditions. (B) Variation of the same parameter
according to BCC370 model. Encircled samples in (A) show a low DSr (first quartile) both in present time and in the future and are located
inside a protected area. (C) Variation of annual precipitation.
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We identified 16 populations in protected areas with DSr

values below 30.48 (first quartile of the distribution of the DSr

projection) at the present time and under the future

environmental conditions (Table 2). Eight populations are

located in the Eastern Mediterranean basin (6 belonging to Lens

ervoides and 2 to Lens nigricans). In the Western basin, 7

populations are in the South of France (all of them belonging to

Lens nigricans) and only 1 is in the Iberian Peninsula (Lens

ervoides). There is a remarkable difference among the CWR

species. While 7 out of 14 populations of Lens ervoides selected

at present time will remain of high interest in the future from the

rust-resistance point of view, only 9 of 37 populations of Lens

nigricans fall within this category. They all share a common

geographic feature, they are very close to the coast, and 5 of

them are on islands (Rhodes, Zakhyntos, Crete and Cyprus).

There are not populations of Lens lamottei and Lens culinaris

subsp. orientalis in the selected subset of high interest populations

for in situ conservation, but the initial number of populations for

these species was small compared to the other species. This fact

suggests an interest for focusing future field work on these

underrepresented taxa.
7 Conclusion

Crop Wild Relatives of Lens culinaris subsp. culinaris are a

source of genetic resistance to a commonrust disease caused by the

fungus Uromyces viciae-fabae. The quantitative field evaluation of

rust resistance is a hard, expensive, and time-consuming task. The

use of Machine Learning approaches provided a way to mitigate

this obstacle, using a carefully built calibration set. Our results
Frontiers in Plant Science 10
identified 16 populations that are likely to be resistant to rust,

occur in protected areas, and are expected to be resilient under

predicted Climate Change conditions. Thus, they are sound

candidates for the establishment of genetic reserves for in situ

conservation. Further characterization by field evaluation of these

populations is needed to check the validity of Machine Learning

predictions and improve the genetic value of the calibration set.

The same method may be extended to predict pest and pathogen

resistance traits of CWRs of other crops.
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et al (2020). CAPFITOGEN3. A Toolbox for the Conservation and Promotion of
the use of Agricultural Biodiversity. (Bogotá, Colombia: Universidad Nacional de
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Civantos-Gómez et al. 10.3389/fpls.2022.1010799
Rufo, R., Alvaro, F., Royo, C., and Soriano, J. M. (2019). From landraces to
improved cultivars: Assessment of genetic diversity and population structure of
mediterranean wheat using snp markers. PloS One 14, e0219867. doi: 10.1371/
journal.pone.0219867

Saleh, A. M. E., Arashi, M., and Kibria, B. G. (2019). Theory of ridge regression
estimation with applications. 285 (Oxford (UK): John Wiley & Sons).

Sánchez, R. M. G., Parra-Quijano, M., Greene, S., and Iriondo, J. M. (2019).
Predictive characterisation identifies global sources of acyanogenic germplasm of a
key forage species. Crop Pasture Sci. 70, 546–554. doi: 10.1071/CP18346

Seiler, G. J., Qi, L. L., and Marek, L. F. (2017). Utilization of sunflower crop wild
relatives for cultivated sunflower improvement. Crop Sci. 57, 1083–1101. doi:
10.2135/cropsci2016.10.0856

Sillero, J. C., Rojas-Molina, M. M., Emeran, A. A., Kharrat, M., Winkler, J., Khan,
H. R., et al. (2017). Identification and multi-environment validation of resistance to
rust (Uromyces viciae-fabae) in vicia faba. Crop Pasture Sci. 68, 1013–1023. doi:
10.1071/CP17099

Singh, M., Bisht, I. S., Kumar, S., Dutta, M., Bansal, K. C., Karale, M., et al.
(2014). Global wild annual lens collection: a potential resource for lentil genetic
base broadening and yield enhancement. PloS One 9, e107781. doi: 10.1371/
journal.pone.0107781

Smith, P., Howden, M., Krug, M-D, Mbow, C., Pörtner, H.O., Reisinger, A., et al
(2017). Special report on climate change, desertification, land degradation,
sustainable land management, food security, and greenhouse gas fluxes in
terrestrial ecosystems (sr2). Geneva: IPCC, 650
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