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association study
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Zhengwu Zhao1*, Leiyue Geng3,4*, Di Cui2* and Longzhi Han2*
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Chongqing Normal University, Chongqing, China, 2Institute of Crop Sciences, Chinese Academy of
Agricultural Sciences, Beijing, China, 3Institute of Coastal Agriculture, Hebei Academy of Agriculture
and Forestry Sciences, Tangshan, China, 4Tangshan Key Laboratory of Rice Breeding,
Tangshan, China
Salt stress affects rice seed germination and seedling formation, seriously

restricting rice production. Screening salt-tolerant rice varieties and analyzing

the genetic mechanisms underlying salt tolerance are therefore very important

to ensure rice production. In this study, 313 Oryza sativa ssp. japonica

germplasm were used to conduct a genome-wide association study (GWAS)

using 1% NaCl as a salt stress treatment during germination stage. The

germination potential (GP) on different days and the germination index (GI)

under salt stress were used as salt tolerance indicators. The results of

population structure analysis showed that the 313 germplasm studied could

be divided into two subpopulations, consistent with the geographical origins of

the materials. There were 52 loci significantly related to salt tolerance during

germination, and the phenotypic contribution rate of 29 loci was > 10%. A

region on chromosome 11 (17049672–17249672 bp) was repeatedly located,

and the candidate gene LOC_Os11g29490, which encodes a plasma

membrane ATPase, was identified in this locus. Further haplotype analysis

showed the GP of germplasm with different haplotypes at that locus

significantly differed under salt stress (p < 0.05), and germplasm carrying

Hap2 displayed strong salt tolerance during the germination stage. Two

other promising candidate genes for salt tolerance were identified:

LOC_Os01g27170 (OsHAK3), which encodes a potassium transporter, and

LOC_Os10g42550 (OsITPK5), which encodes an inositol 1, 3, 4-trisphosphate

5/6-kinase. The results of this study provide a theoretical basis for salt-tolerant

gene cloning and molecular design breeding in rice.
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Introduction

Approximately 30% of the rice-growing area in the world is

affected by salt damage (Prasad et al., 2000; Takehisa et al., 2004).

Data from the United Nations Science, Education and Food and

Agriculture Organization show that China has 9,913 hectares of

salinized land (He and Luo, 2021). Salt stress is one of the main

abiotic stress factors that restricts stable rice production (Hu et

al., 2012). Salt stress mainly causes osmotic stress, ion toxicity,

and nutrient deficiency, which ultimately lead to yield reduction

(Yang and Guo, 2018a; Yang and Guo, 2018b). Grattan et al.

(2002) showed that the presence of 0.37% salt content caused a

50% decrease in rice yield. Therefore, screening salt-tolerant rice

varieties and analyzing the genetic mechanisms of salt tolerance

in rice are very important to ensure adequate rice production.

Salt tolerance in rice is a quantitative trait controlled by

multiple genes and is susceptible to environmental factors (Roy

et al., 2014). In recent years, quantitative trait locus (QTL) and

association analyses have identified many QTLs for salt

tolerance (Liu et al., 2019; Yuan et al., 2020; Kong et al., 2021;

Nakhla et al., 2021; Nayyeripasand et al., 2021). Bonilla et al.

(2002) used a recombinant inbred line population (F8)

constructed from ‘IR29’ and ‘Pokkali’. They located Saltol

between chromosome 1 RM23 and RM140 that accounted for

39.2%, 43.9%, and 43.2% of the total phenotypic variation in Na+

content, K+ content, and the Na+/K+ ratio, respectively. Wang

et al. (2011) studied 150 recombinant inbred lines (RILs) (F2:9)

generated by crossing the salt-tolerant japonica landrace

‘Jiucaiqing’ and the salt-sensitive indica variety ‘IR26’. They

detected 16 QTLs related to imbibition rate and germination

potential under 100 mM NaCl stress at the germination stage.

Zeng et al. (2021) used a BC1F2 population constructed from

‘Wujiaozhan’ (‘WJZ’) and ‘Nipponbare’ (‘Nip’). They located

nine QTLs related to germination rate and germination index

under 300 mM NaCl salt stress at the germination stage; the

main QTL qGR6.2 was finely mapped to a 65.9-kb region. Shi

et al. (2017) used 478 rice materials as associated groups. From a

total of 6,361,920 single nucleotide polymorphisms (SNPs), they

identified 22 that were significantly related to salt tolerance using

the stress susceptibility index (SSIS) of vigor index (VI) and

mean germination time (MGT) as salt tolerance evaluation

indexes. Yu et al. (2018) used 1.65 million SNPs or insertion/

deletion mutations (indels) to conduct a GWAS with 295 rice

varieties at the germination stage, and identified 17 genes that

may be related to salt tolerance. Naveed et al. (2018) used

395,553 SNP markers to carry out GWAS on 208 rice

varieties, identifying six quantitative trait nucleotides (QTNs)

that affected salt tolerance at the germination stage and 14 at the

seedling stage. Islam et al. (2022) used the 2.8 M high-density

SNP genotype map generated by the 3000 Rice Genomes Project
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(3KRGP) to identify 21 sites associated with salinity stress

during the seed germination stage.

Some major QTLs identified from QTL and association

analyses have been cloned. Lin et al. (2004) used the F2
population derived from the salt-tolerant variety ‘Nona bokra’

and the salt-sensitive variety ‘Koshihikari’ to locate the main

QTL qSKC-1, which controls K+ content in stems and leaves; this

locus accounts for 40.1% of the total phenotypic variation. Ren

et al. (2005) isolated a gene encoding a high-affinity potassium

transporter (HKT), SKC1 (OsHKT1;5), through map-based

cloning. SKC1 regulates the dynamic balance of K+/Na+ under

salt stress. He et al. (2019) used chromosome segment

replacement lines (CSSLs) derived from the japonica line

‘Jiucaiqing’ and the indica line ‘IR26’ to locate the main QTL

qSE3, which promotes seed germination and seedling formation

under salt stress. Through map-based cloning, they also isolated

OsHAK21, which encodes a potassium transporter. In a GWAS,

Campbell et al. (2017) used 390 rice germplasm to locate a QTL

related to Na+ content in roots, RNC4, on chromosome 4. They

identified a candidate gene, OsHKT1;1, which plays an

important role in regulating Na+ content in rice roots. In

addition, (Fukuda et al., 1999; Fukuda et al., 2004) cloned the

Na+/H+ antiporter OsNHX1 in the vacuolar membrane of rice

and found that OsNHX1 overexpression improves salt tolerance

in transgenic rice. Horie et al. (2001) isolated OsHKT2;1, which

encodes a high-affinity sodium transporter. Wei et al. (2021)

found that OsHKT2;1 is located downstream of OsPRR73 and

controls salt tolerance in rice by regulating sodium ion

homeostasis and active oxygen levels. Tian et al. (2021) found

that OsAKT2/OsK3.1 encodes a Shaker family potassium

channel protein, which contributes to maintenance of the

overall Na+/K+ homeostasis in plants under salt stress; it

enhances salt tolerance in rice by regulating K+ redistribution.

Some salt tolerance genes have also been obtained through

reverse genetic studies, including SNAC1, SNAC2, ZFP252,

ZFP182, and OsNAP (Hu et al., 2006, Hu et al., 2008; Xu et al.,

2008; Huang et al., 2012b; Chen et al., 2014). So far, most of

studies have focused on salt tolerance QTLs at the germination

stage (http://gramene.org/). However, little is known about

genetic mechanisms of salt tolerance at the germination stage,

and there is a lack of salt-tolerant candidate genes available for

molecular design breeding. Therefore, it is crucial to elucidate

the genetic mechanisms of salt tolerance and identify salt-

tolerant candidate genes at the germination stage.

In the present study, we used a GWAS approach with 313

temperate japonica germplasm and two traits: germination

potential on multiple days and germination index under 1%

NaCl stress at the germination stage. This allowed us to explore

candidate salt tolerance genes and provide a theoretical basis for

salt-tolerant gene cloning and molecular design breeding in rice.
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Materials and methods

Materials

We selected 313 temperate japonica germplasm as the study

population for GWAS. These comprised 27 germplasm from

Heilongjiang, China; 82 from Jilin, China; 120 from Liaoning,

China; and 80 from Japan (Table S1). The raw sequence data

reported in this paper have been deposited in the National

Genomics Data Center (NGDC), part of the China National

Center for Bioinformation (CNCB), under accession codes

CRA004238 (https://ngdc.cncb.ac.cn/). The average sequencing

depth and average genome coverage of these data were 25.60×

and 90.29%, respectively (Cui et al., 2022).
Identification of salt tolerance at
germination stage

For each rice line, 30 seeds were dried at 50°C for 2 days to

break seed dormancy. The seeds were disinfected with 1.4%

sodium hypochlorite solution for 15 minutes, then washed with

distilled water three times. Seeds were placed in a petri dish with

two layers offilter paper and 10 mL 1%NaCl solution was added.

In the control, the filter paper was soaked with 10 mL distilled

water. Seeds were incubated in a growth chamber at 30°C under

dark and the solution was replaced every day to maintain the

NaCl concentration and the distilled water volume. Seed

germination was measured on days 3 through 7; germination

was defined as occurring when the bud length reached half of the

seed length. There were two independent replicates of this

experiment. Germination potential (GP) and germination

index (GI) were used as salt tolerance indexes. GI was

calculated as follows:

GI =  S ðGt=TtÞ (Wang et al., 2010)

where Gt is the number of germinated seeds on day t and Tt

is the time corresponding to Gt in days. Gangyuan8 (a tolerant

line) was used as a positive control in our study and Koshihikari

(a sensitive line) was used as a negative control in our study (Lin

et al., 2004).
Statistical analysis of phenotypic data

Phenotypic variation analysis, correlation analysis,

generalized heritability (h2B), and Student’s t-tests were

conducted in IBM SPSS v26. Among them, Student’s t-tests

is mainly conducted on the GP between the treatment and the

control, and the GP and GI among different subpopulations

under salt stress. The diversity index (H’) was calculated as

described by Xu et al. (2020) in Excel 2019. The GP on different
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days under salt stress was divided into 10 grades with a

gradient of 10%, and the GI under salt stress was divided

into six grades with a gradient of five. H’ was calculated for

different characters using the improved Shannon-Wiener

diversity index as follows:

H 0 = ( − SPilnPi)=lnN (Xu et al., 2020)

where Pi refers to the percentage of varieties in the ith grade

of a trait in all varieties and N refers to the total number of all

varieties. A phenotypic frequency distribution map was drawn in

R. Violin plots were generated with the ‘ggplot2’ (Wickham,

2016) package in R.
Population structure and genetic
diversity analysis

PLINK (v1.90) (Purcell et al., 2007) was used to obtain 65,025

SNPs with a sliding window using the command with “– indep-

Pairwise 100 10 0.2”. ADMIXTURE (v1.3.0) (Alexander et al.,

2009) was then used to calculate the population structure, and

Evanno’s (Evanno et al., 2005) method was used to calculate DK.
SNPs were selected using thresholds of minor allele frequency

(MAF) > 0.05 and missing rate ≤ 0.2. PopLDdecay (Zhang et al.,

2019) was used to calculate the genome-wide average linkage

disequilibrium (LD). After genetic distance was calculated with

PLINK (Purcell et al., 2007), Phylip (v3.697) (Retief, 2000) was

used to construct a phylogenetic tree using the neighbor-joining

method. GCTA (v1.26.0) (Yang et al., 2011) software was used to

calculate kinship and perform principal component analysis

(PCA). VCFtools (v0.1.13) (Danecek et al., 2011) was used to

calculate genetic diversity (p) and genetic differentiation index

(FST). A partial Manhattan map and an LD heatmap were drawn

with LDBlockShow (v1.40) (Dong et al., 2021).
GWAS

The mixed linear model (MLM) method was used in tassel

(v5.0) (Bradbury et al., 2007) to perform GWAS for GP on

different days and GI under salt stress. There were 1,291,609

SNPs used for genotyping with MAF > 0.05 and missing rate ≤

20%. Covariates were included based on the population structure

at K = 2. The significance threshold (p = 1.12 × 10-6) of the

GWAS was determined using Bonferroni correction based on

the estimated effective number of independent SNPs (Li et al.,

2012) and we have determined p < 1 × 10-6 as the GWAS

threshold. A QTL interval was classified as the region 100 kb

upstream and downstream of a significant SNP site. Candidate

genes were then explored in that interval. The location results of

GP on different days and GI under salt stress were completely

overlapped/partially overlapped, which was co-location/overlap
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interval. Manhattan plots were generated using the ‘CMplot

package’ (Yin, 2020) in R.
Results

Genetic population structure

Population structure analysis showed that the maximum DK
was at K = 2, so the 313 germplasm were divided into two

subpopulations, named G1 (TeJ1) and G2 (TeJ2), respectively

(Figure S1; Figure 1A and Table S2). G1 was composed of 113

materials, 103 of which were from Jilin and Liaoning, China. G2

was composed of 200 materials, most of which came from Japan

and Heilongjiang, China. PCA showed that the first two principal

components explained 22.10% of the genetic variation, and the

germplasm in the G2 subpopulation were clustered significantly

closer together than those in the G1 subpopulation (Figure 1B).

The phylogenetic tree showed that the G1 and G2 subpopulations

had significant genetic differentiation, consistent with the results

of the population structure and PCA (Figure 1C). LD analysis

showed that the LD attenuation distances of all germplasm (All),

G1, and G2 were 399 kb, 489 kb, and 268 kb, respectively

(Figure 1D). Kinship was > 0.3 for 19.95% of the materials,

indicating that the genetic relationship between the studied

materials was relatively close (Figure 1E). The genetic diversity

of the G1 subpopulation (p = 1.6 × 10-3) was higher than that of
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the G2 subpopulation (p = 9.4 × 10-4). The FST between G1 and

G2 was 0.1386 (Figure 1F).
Phenotypic variation in the
study population

In this study, we screened 313 accessions with germination

rate of more than 90% for control condition and salt stress

treatment, respectively. We found there was extremely

significant difference of GP between control and days 3

through 7 of treatment (Figure S2). The GP across days and

the GI under salt stress were used as evaluation indicators of salt

tolerance for GWAS. The GP across days and the GI were

continuously distributed under salt stress. (Figures S3A-F),

demonstrating a typical quantitative character. The average GP

values on days 3 through 7 under salt stress were 16.21%,

46.90%, 64.17%, 71.45%, and 74.82%, respectively (Figure S4).

The mean GI value under salt stress was 15.77, with a range of 0–

27.72. The coefficient of variation (CV) of GP on different days

and GI under salt stress ranged from 25.39% to 92.54%. The CV

of germination was highest on day 3 (92.54%) and lowest on day

7 (25.39%). Comparing the GP and GI under salt stress between

G1 and G2 showed that the average GP value of G2 was

significantly higher than that of G1 on day 6 (p < 0.05). There

was no significant difference in GP on any other day or GI

between the two subpopulations (Figure 2). The H’ of GP under
B

C D

E

F

A

FIGURE 1

Population structure and genetic diversity in 313 japonica rice germplasm. (A) Population structure plot (K = 2). (B) PCA plot of the first two
principal components. (C) Phylogenetic tree based on genetic distance. (D) Genome-wide average LD map of all germplasm (All) and the G1
and G2 subpopulations. (E) Kinship plot. (F) Genetic diversity and subpopulation differentiation of 313 germplasm. Circle size and the number
within each circle represent the genetic diversity (p) of each group. The arrows indicate that all germplasm are divided into two subpopulations;
the number on the straight horizontal line represents FST between the two subpopulations.
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salt stress was highest on day 4 (0.38), indicating that the

phenotypic variation was the most abundant for that

parameter. h2B ranged from 78.74% to 98.09%. The h2B of GP

under salt stress was highest on day 3 (98.09%) and lowest on

day 6 (78.74%) (Table 1). Correlation analysis showed that there

was a very significant positive correlation between GP values on

different days and between GP and GI under salt stress. The

correlation coefficient was highest between GP on day 6 and GP

on day 7 (r = 0.960**), followed by the correlation coefficient

between GP on day 5 and GI (r = 0.947**). The lowest

correlation coefficient was between GP on day 3 and GP on

day 7 (r = 0.358**) (Table 2).
GWAS results

GWAS of GP on different days and GI under salt stress

yielded 52 significant loci (p < 1 × 10-6) (Figure 3 and Table S3).
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A total of five loci were located on chromosomes 1 and 4 that

were significantly related to GP on day 3 (3dGP): q3dGP1-1,

q3dGP1-2, q3dGP1-3, q3dGP1-4, and q3dGP4. The phenotypic

contribution rates varied from 9.34% to 10.31%. There were

four QTLs related to GP on day 5 (5dGP); the phenotypic

contributions of q5dGP6 and q5dGP10 were largest, at 10.11%

and 11.66%, respectively. There were 14 and 27 loci related to

GP on day 6 (6dGP) and GP on day 7 (7dGP), respectively. Of

those loci, there were six and 18, respectively, with phenotypic

contribution rates > 10%. There were two loci discovered for GI,

qGI6 and qGI11, with phenotypic contributions of 9.37% and

10.00%, respectively. Co-location/overlap intervals were

identified for GP on different days and for GI (Table S3).

Specifically, chromosome 4 contained the co-loci q6dGP4-1/

q7dGP4-1 and q6dGP4-3/q7dGP4-6; chromosome 6 contained

the co-loci q6dGP6-2/q7dGP6-3, q6dGP6-3/q7dGP6-5, and

q6dGP6-6/q7dGP6-9; chromosome 9 contained the co-loci

q6dGP9/q7dGP9; chromosome 10 contained the co-loci
B C

D E F

A

FIGURE 2

Phenotypic distribution of germination potential (GP) and germination index (GI) within subpopulations G1 and G2 under salt stress. (A) GP on day
3 (3dGP). (B) GP on day 4 (4dGP). (C) GP on day 5 (5dGP). (D) GP on day 6 (6dGP). (E) GP on day 7 (7dGP). (F) GI. *p < 0.05 (Student’s t-test).
TABLE 1 Statistical analysis of germination potential (GP) on different days and germination index (GI) under salt stress.

Trait Mean ± SD Range CV H’ h2B

3dGP 16.21% ± 0.15 0%-71% 92.54% 0.25 98.09%

4dGP 46.90% ± 0.22 0%-94% 46.91% 0.38 84.73%

5dGP 64.17% ± 0.20 0%-99% 31.17% 0.35 79.83%

6dGP 71.45% ± 0.19 0%-100% 26.59% 0.34 78.74%

7dGP 74.82% ± 0.19 0%-100% 25.39% 0.32 79.65%

GI 15.77 ± 5.23 0-27.72 33.16% 0.26 82.06%
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q6dGP10-1/q7dGP10-4 and q5dGP10/q6dGP10-2/q7dGP10-5;

chromosome 11 contained the co-loci q5dGP11/q6dGP11/

q7dGP11/qGI11; chromosome 12 contained the co-loci

q6dGP12/q7dGP12; chromosome 4 contained the overlapping

loci q6dGP4-2/q7dGP4-4; and chromosome 6 contained the

overlapping loci q6dGP6-1/q7dGP6-2, q6dGP6-4/q7dGP6-6,

and q5dGP6/q6dGP6-5/q7dGP6-8/qGI6 (Table S3).
Discovery of candidate salt
tolerance genes

GWAS revealed a significant SNP (GP_Chr11_Pos

17149672, p < 1 × 10-6) related to 5dGP, 6dGP, and 7dGP

within a large LD region (> 300 kb) on chromosome 11
Frontiers in Plant Science 06
(17049672–17249672 bp) (Figure 4A). There were nine

candidate genes with nonsynonymous mutations in this

region. One was LOC_Os11g29490, which was 6,856 bp in

length, containing 12 exons and encoding a plasma membrane

ATPase. Previous studies have shown that the plasma

membrane H+-ATPase is the key factor of SOS1 (an Na+/H+

antiporter) in response to salt stress (Yang et al., 2019). Further

haplotype analysis showed that a nonsynonymous mutation

(Lys!Glu) was due to an A!G substitution at site

chr11:17109866, in an exon of LOC_Os11g29490 (Figure 4B).

This mutation could be used to divide the germplasm in this

study into two haplotypes. There were significant (p < 0.05)

differences in the GP between germplasm carrying the different

haplotypes (Figure 4C). Hap2 was found to be the superior

haplotype, and germplasm carrying Hap2 displayed strong salt
B

C D
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A

FIGURE 3

Results for GWAS of germination potential (GP) on different days and germination index (GI) under salt stress. (A) GP on day 3 (3dGP). (B) GP on
day 4 (4dGP). (C) GP on day 5 (5dGP). (D) GP on day 6 (6dGP). (E) GP on day 7 (7dGP). (F) GI.
TABLE 2 Correlation analysis of germination potential (GP) on different days and germination index (GI) under salt stress.

3dGP 4dGP 5dGP 6dGP 7dGP GI

3dGP 1.000

4dGP 0.776** 1.000

5dGP 0.565** 0.856** 1.000

6dGP 0.377** 0.649** 0.892** 1.000

7dGP 0.358** 0.621** 0.872** 0.960** 1.000

GI 0.774** 0.936** 0.947** 0.838** 0.818** 1.000
frontiersi
**p < 0.01.
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tolerance during the germination stage. Hap2 accounted for 8%

of all germplasm, but for 18% and 2% of G1 and G2,

respectively (Figure 4D). This haplotype thus has great

potential for breeding salt tolerance in rice.

The candidate gene LOC_Os01g27170 (OsHAK3),

which encodes a potassium transporter, was identified in a

region on chromosome 10 containing loci for GP on days 5

through 7, and a homolog (LOC_Os01g70490/OsHAK5) has

been shown to enhance salt stress tolerance in rice (Horie et al.,

2011). OsHAK3 is thus a promising candidate gene for salt

tolerance. Similarly, a locus significantly related to 3dGP was

identified on chromosome 1. The gene LOC_Os10g42550

(OsITPK5) was present in this site and encodes inositol 1, 3,

4-trisphosphate 5/6-kinase; its homolog, LOC_Os03g12840

(DSM3/OsITPK2), can enhance salt tolerance in rice (Du

et al., 2011), making OsTIPK5 a strong candidate for

breeding salt tolerance (Table 3).
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Discussion

Salt tolerance of rice during germination

Salt stress is one of the main abiotic stresses affecting rice

yield (Wang et al., 2012; Liang et al., 2014; Shi et al., 2017; Ganie

et al., 2019). In recent years, identification of salt tolerance genes

and genetic analyses of salt tolerance traits in rice have attracted

extensive attention from researchers (Mardani et al., 2014; Cui

et al., 2015; Campbell et al., 2017; He et al., 2019). The effects of

salt stress on rice seed germination mainly include osmotic stress

and ion accumulation (Na+ and Cl-). In addition, the

accumulation of Na+ leads to the imbalance of plant

hormones, the generation of reactive oxygen species (ROS),

and the change of cell membrane permeability (El Moukhtari

et al., 2020). Because rice seed germination begins with water

absorption, salinity prevents water absorption and ultimately
TABLE 3 Candidate genes related to salt stress at the germination stage.

Significant SNP locus Physical Interval(bp) MSU ID Physical Interval(bp) Function annotation

chr01_15145289 15045289-15245289 LOC_Os01g27170 15151960-15157245 Potassium transporter, putative, expressed

chr10_22899368 22799368-22999368 LOC_Os10g42550 22943495-22945212 Inositol 1, 3, 4-trisphosphate 5/6-kinase, putative, expressed

chr11_17149672 17049672-17249672 LOC_Os11g29490 17108744-17114115 Plasma membrane ATPase, putative, expressed
B

C D

A

FIGURE 4

LOC_Os11g29490 haplotype significance analysis. (A) Partial Manhattan map (top) and LD heatmap (bottom) around the peak of chromosome
11. The red dot indicates the position of a missense variation in LOC_Os11g29490. (B) Gene structure and polymorphism in LOC_Os11g29490.
(C) Significance analysis of Hap1 and Hap2 among germination potential (GP) for all germplasm (All). (D) Distribution of Hap1 and Hap2 in All and
in subpopulations G1 and G2. *p < 0.05 (Student’s t-test).
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inhibits seed germination (Othman et al., 2006). Wang et al.

(2011) and Al-ansari and Ksiksi (2016) found that GP and GI are

the best combinations for evaluation of salt tolerance phenotypes

at the germination stage. In the present study, GP over several

different days and GI in response to 1% NaCl stress were used as

the evaluation indexes for salt tolerance. The genetic basis of salt

tolerance was analyzed in rice at the germination stage using a

population comprising 313 temperate japonica germplasm. In

this study, we identified some salt-tolerant germplasm, such as

Nonglin22, Liaogeng5, Shengnong265, Shangzhou, Churichu,

and some salt-sensitive germplasm, such as Songgeng3,

Fangzhu, Kendao10, Zhaori, Aoyu305.
Population structure and
genetic diversity

Population structure analysis in this study showed that the 313

rice germplasm could be divided into two subpopulations, G1 and

G2. Members of the two groups clustered together in a manner

consistent with the geographical origin of the materials and with the

prior results of Cui et al. (2013). In this study, the LD decay

distances we calculated in our study for all germplasm (All), G1, and

G2 were 399 kb, 489 kb, and 268 kb, respectively, which were longer

than that of a set of 809 indica rice accessions (Xie et al., 2015) and

3k rice population (Wang et al., 2018). The difference in LD decay

distance between our investigation and the previous ones may be

due to the possibly lower genetic diversity of rice accessions used in

our study. Our findings indicate that the LD decay distance can vary

in rice depending on the assayed germplasm set. The genetic

diversity (p = 1.3 × 10-3) of all germplasm in this study was

lower than previously described by Huang et al. (2012a) for Oryza

rufipogon (p = 3.0 × 10-3) and O. sativa (p = 2.4 × 10-3), which may

be because all materials used in this study were japonica breeding

varieties. Genetic diversity was higher in the G1 than in the G2

subpopulation; 91.15% of the germplasm in subpopulation G1 were

from Jilin and Liaoning, China, whereas most of the germplasm in

subpopulation G2 came from Japan and Heilongjiang, China.

Previous studies have shown that japonica varieties from Jilin and

Liaoning have higher levels of introgression of indica consanguinity

from the breeding process than japonica varieties from Japan and

Heilongjiang do (Cui et al., 2022). Thus, the genetic diversity of

subpopulation G1 was higher due to the introgression of a higher

proportion of indica consanguinity. Based on Wright’s (1978)

interpretation of FST, there are four ranks of genetic

differentiation: mild (FST = 0–0.05), moderate (0.05–0.15), severe

(0.15–0.25), and large (> 0.25). FST was calculated as 0.1386 between

G1 and G2, indicating a moderate degree of genetic differentiation

between the two subpopulations. This was smaller than the genetic

diversity identified by Luong et al. (2021) (FST = 0.167) in

interspecific genetic differentiation of landraces in Northern

Vietnam, which may be because the materials in this study were

Northern japonica germplasm.
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Co-located loci with previously reported
salt tolerance QTLs/genes

The salt stress tolerance traits analyzed by GWAS in this

study were GP on different days and GI under salt stress. A total

of 52 significant loci were located, of which 17 (33%) were novel

loci (Figure 3, Table S3). Among them, the phenotypic

contributions of q5dGP10 and q7dGP4-4 was more than 11%,

which were major QTLs. Notably, q5dGP11, q6dGP11 and qGI11

were co-location loci. In addition, 67% of all the loci were co-

located with previously reported salt tolerant QTLs/genes

(Figure 3, Table S3), it might confirm the reliability of the

positioning results of this study.

One was previously mapped by Yang et al. (2009) between

chromosome 4 RM335 and RM551 (0.17–0.68 Mb) as a QTL

(QSst4) for the level of leaf salt damage at the seedling stage. That

study used a high-generation bidirectional backcross import line of

the japonica variety ‘Lemont’ and the indica variety ‘Teqing’ as

parents, andQSst4 overlapped with q7dGP4-1 and q7dGP4-2 in this

study. The QTL QSkc4b, which was associated with aboveground

K+ concentration, was mapped by Yang et al. (2009) between

chromosome 4 RM261 and RM417 (6.57–19.42 Mb); that QTL

overlapped with q7dGP4-5 and q7dGP4-7 in this study. Zang et al.

(2008) constructed a BC2F8 import line using ‘IR64’ (indica) and

‘Binam’ (japonica) andmapped a QTL (QSnc6) associated with Na+

concentration in the seedling stage to a region between

chromosome 6 RM527 and RM3 (9.86–19.49 Mb). This region

overlapped with q5dGP6, q6dGP6-5, and q7dGP6-5 in this study.

Wang et al. (2012) mapped a QTL, qDSW6.1, related to dry bud

weight at the seedling stage between chromosome 6 RM6818 and

RM6811 (16.58–29.22 Mb) from RILs (F1:9) obtained by crossing

the salt-tolerant variety ‘Jiucaiqing’ with the salt-sensitive variety

‘IR26’. This region overlapped with q5dGP6, q6dGP6-5, and

q7dGP6-7 identified in the present study. The QTL qDRW6,

which was associated with root dry weight at the seedling stage,

was mapped between chromosome 6 RM5531 and RM3183 (7.17–

12.44 Mb) in a previous study (Wang et al., 2012); that region

overlapped with q6dGP6-1 and q7dGP6-1 in the present study. In

addition, the known salt stress-related gene OsHSP1 was co-located

with the q6dGP4-1 and q7dGP4-1 loci identified here. Moon et al.

(2014) found that Arabidopsis plants overexpressing OsHSP1 are

more sensitive to salt and osmotic stresses.
Candidate salt tolerance genes

Activation of SOS1 under salt stress requires activation of

SOS2 (an serine/threonine-protein kinase) and the

establishment of a proton gradient generated by H+-ATPase in

the plasma membrane (Haruta and Sussman, 2012). The

interaction between the plasma membrane Ca2+-ATPase and

Cry1Ab/c may affect the salt resistance of the transgenic rice line

‘Huahui-1’ (‘HH1’) by reducing Ca2+-ATPase activity under salt
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stress (Fu et al., 2021). The candidate gene LOC_Os11g29490

identified in the present study encodes a plasma membrane

ATPase, and a single A to G mutation (at chr11:17109866) in the

exon caused significant changes in GP between different

haplotypes. Hap2 is the superior haplotype conferring stronger

salt tolerance and has great potential in breeding applications. In

the future, CRISPR/Cas9 could be applied to further verify the

function of this gene and apply it in molecular breeding of salt-

tolerant rice.

Du et al. (2011) found that there are six genes in the inositol

1,3,4-triphosphate 5/6-kinase (ITPK) family in rice, and that

optimal expression ofDMS3/OsITPK2 is critical in salt tolerance.

Bañuelos et al. (2002) found that there are 17 HAK family

members in the rice genome. OsHAK5 enhances rice tolerance

to salt stress by balancing K/Na (Horie et al., 2011; Yang et al.,

2014), and oshak1 mutants have increased sensitivity to salt

stress (Chen et al., 2015). Therefore, the candidate genes

LOC_Os01g27170 (OsHAK3) (which encodes a potassium

transporter) and LOC_Os10g42550 (OsITPK5) (which encodes

an ITPK) identified in this study may also play important roles

in rice salt stress tolerance; mutants for homologous genes are

known to have phenotypes related to salt tolerance. Further

studies are required to understand the specific molecular

mechanisms by which these genes confer salt tolerance in rice.
Conclusion

In the present study, two evaluation indicators were used to

assess salt tolerance in rice at the germination stage: GP on

different days and GI under salt stress. These were used as traits

for GWAS under salt stress, which yielded 52 significant

association sites. The phenotypic contribution rate of 29 loci

was > 10%. Five previously identified QTLs for salt tolerance

overlapped with loci identified in this study, and one known

salt stress-related gene (OsHSP1) was also detected. Based on

gene annotations and data from the literature, three promising

candidate genes for salt tolerance were identified:

LOC_Os01g27170 (OsHAK3), LOC_Os10g42550 (OsITPK5),

and LOC_Os11g29490. The results of this study provide a

theoretical basis for cloning, functional analysis, and

molecular design breeding of salt tolerance in rice at the

germination stage.
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SUPPLEMENTARY FIGURE 1

DK plot for K = 2–9.

SUPPLEMENTARY FIGURE 2

Average germination potential (GP) on different days under treatment and

control. GP on day 3 (3dGP). GP on day 4 (4dGP). GP on day 5 (5dGP). GP
on day 6 (6dGP). GP on day 7 (7dGP). **p < 0.01 (Student’s t-test).

SUPPLEMENTARY FIGURE 3

Distribution of germination potential (GP) on different days and

germination index (GI) under salt stress. (A) GP on day 3 (3dGP). (B) GP
Frontiers in Plant Science 10
on day 4 (4dGP). (C) GP on day 5 (5dGP). (D) GP on day 6 (6dGP). (E) GP on
day 7 (7dGP). (F) GI.

SUPPLEMENTARY FIGURE 4

Average GP on days 3 through 7 under salt stress.

SUPPLEMENTARY FIGURE 5

Results for Q-Q plot of germination potential (GP) on different days and

germination index (GI) under salt stress. (A) GP on day 3 (3dGP). (B) GP on

day 4 (4dGP). (C) GP on day 5 (5dGP). (D) GP on day 6 (6dGP). (E) GP on
day 7 (7dGP). (F) GI.
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