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Variable application by wind is an efficient application technology 

recommended by the Food and Agriculture Organization (FAO) of the United 

Nations that can effectively improve the deposition effect of liquid medicine 

in a canopy and reduce droplet drift. In view of the difficulty of modelling 

wind forces in orchard tree canopies and the lack of a wind control model, 

the wind loss model for a canopy was studied. First, a three-dimensional 

wind measurement test platform was built for an orchard tree canopy. The 

orchard tree was located in three-dimensional space, and the inner leaf 

areas of the orchard tree canopy and the wind force in different areas were 

measured. Second, light detection and ranging (LiDAR) point cloud data of 

the orchard tree canopy were obtained by LiDAR scanning. Finally, classic 

regression, partial least squares regression (PLSR), and back propagation (BP) 

neural network algorithms were used to build wind loss models in the canopy. 

The research showed that the BP neural network algorithm can significantly 

improve the fitting accuracy of the model. Under different fan speeds of 1,381 

r/min, 1,502 r/min, and 1,676 r/min, the coefficient of determination (R2) of 

the model were 81.78, 72.85, and 69.20%, respectively, which were 19.38, 7.55, 

and 12.3% higher than those of the PLSR algorithm and 21.48, 22.25, and 24.3% 

higher than those of multiple regression analysis. The comparison showed 

that the BP neural network algorithm obtains the highest model accuracy, but 

because the model is not intuitive, PLSR has the advantages of intuitive and 

simple models in the three algorithms. In practical applications, the wind loss 

model based on a BP neural network or PLSR can be selected according to the 

operational requirements and software and hardware conditions. This study 

can provide a basis for wind control in precise variable spraying and promote 

the development of wind control technologies.
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Introduction

Pesticide spraying can effectively control diseases and pests 
and improve fruit quality and fruit yield (Eugen et  al., 2017; 
Nuyttens et al., 2017; Gu et al., 2020). At present, continuous and 
undifferentiated application is widely used for pesticide 
applications in orchards, which presents a series of economic and 
ecological problems such as large amounts of pesticide spraying, 
low utilization rates, excessive pesticide residues in agricultural 
products, and environmental pollution (Abbas et  al., 2020; 
Manandhar et  al., 2020; Song et  al., 2020). Accurate variable 
spraying can be utilized according to information on crop canopy 
characteristics, realizing pesticide application according to the 
presence or absence of crops, canopy volume, and density and 
effectively addressing problems in existing application operations 
(Zhou et  al., 2017; Colaço et  al., 2018), which can effectively 
promote sustainable agricultural economy and ecology.

Variable wind applications can disturb leaves, enhance the 
ability of droplets to penetrate and deposit in the canopy, and 
improve spray operation quality (Gu et al., 2014). This approach 
is an internationally recognized technical means to effectively 
improve the utilization rate of pesticides (Chen et al., 2017; Li 
et al., 2017). At present, research on wind regulation is in the 
primary stages of development, the regulation method is not 
mature, and there is a lack of effective control models. Whether 
wind control is appropriate during the application process directly 
affects the operational effect (Al-Jumaili and Salyani, 2014; Chen 
et al., 2017; Song et al., 2017). If the wind force is too small, the 
chemical solution cannot penetrate the surface of the canopy and 
deposit inside the canopy, resulting in incomplete disease 
prevention and control, increasing the occurrence of diseases. 
Excessive wind force will cause the drifting of liquid medicine, 
polluting the soil and the surrounding environment and 
endangering humans and livestock. Khot et al. (2012) studied 
variable spraying under different wind conditions and walking 
speeds. Their test results showed that a 70% air-assisted spray was 
more effective than the 100% air-assisted spray, which can 
effectively reduce droplet drift. Wind regulation methods have 
mainly focused on wind regulation technologies and sprayer 
devices, the establishment of distribution methods for wind and 
fog fields outside a canopy, and so on. There is less research on the 
distribution of wind fields and wind demand and loss models in 
orchard tree canopies (Zhai et al., 2018). Accurately regulating the 
wind force of a spray and studying the influence law of wind force 
on fog droplets in a canopy is the focus of this current research.

Wind regulation includes wind direction, wind speed, and 
wind volume. The basis of wind regulation is to control the 
direction of air supply consistent with the direction of spray (Duga 
et al., 2015b). Wind speed and wind volume are the main research 
topics of wind regulation, and the two are coupled relationships. 
Through the coordinated regulation of the air inlet and outlet of a 
sprayer fan, wind force regulation can be achieved to provide 
appropriate wind force for an orchard tree canopy and ensure that 
the liquid medicine evenly covers the fronts and backs of leaves 

and the surfaces of orchard tree branches. The distribution of wind 
power in space and the canopy of an air-delivered sprayer is 
mainly studied through computational fluid dynamics (CFD) 
simulation technology. CFD technology can reduce the cost of 
wind prediction, and it is an important means to study the wind 
fields of sprayers. Dekeyser et al. (2013) used CFD to simulate a 
wind field outside the air outlet of a horizontal axis sprayer, 
distribution sprayer, and independent nozzle air sprayer. Through 
experimental verification, it was concluded that the CFD 
simulated wind field can better fit the experimental data. Duga 
et al. (2015a) studied the influence of external wind force and 
spray type on spray distribution in different orchards by 
establishing three-dimensional numerical models of tree crowns 
for four orchard trees using CFD modeling and orchard test 
verification methods and improved the quantitative understanding 
of spray design, wind force, and canopy structure interaction. In 
the above research, through CFD modeling, the wind field 
distribution of the sprayer was found to be mostly the wind field 
outside the canopy. There has been less research on wind fields 
inside a canopy. Hong et  al. (2017) used CDF technology for 
modeling by using virtual porous media instead of actual trees. It 
was found that canopy size and canopy density have a great impact 
on air entering the canopy, and the air velocity will decrease with 
increasing canopy thickness, tree height, and canopy density. They 
established a CFD model for the distribution of wind forces in a 
canopy but did not obtain an effective mathematical model that 
could directly calculate the wind force in a canopy.

The wind regulation model is the basis of wind regulation. 
The wind force is affected by the canopy thickness and canopy 
density during canopy penetration. Most of the existing studies 
have focused on modern orchards, and the research objects were 
characterized by small canopy thicknesses, dense branches and 
leaves, and uniform distribution. The wind loss model can make 
the wind force regulation reasonable. Through the wind loss 
model, the wind loss can be  calculated through the canopy 
information, and then the wind speed served by the sprayer can 
be  known. Reasonable wind for spray can improve the 
uniformity of pesticide deposition and the efficacy. Research on 
a wind field and wind loss model in a traditional thick canopy 
has not been carried out. Due to the large changes in canopy 
thickness and density in different areas of orchard tree canopies, 
the distribution of wind forces in different areas of a canopy has 
the characteristics of large differences in change rules and  
is difficult to measure and quantify, which hinders the 
establishment of wind control models.

At present, research on variable wind spraying technology has 
achieved variable spray volume control and wind direction 
control, and variable spray technology has been preliminarily 
achieved. However, there is a lack of research on the law of wind 
change in orchard tree canopies. To study the law of wind loss 
under different influencing factors in orchard tree canopies, based 
on previous canopy volume detection (Gu et al., 2021a) and the 
fitting model of LiDAR point cloud data and the leaf area (Gu 
et al., 2021a, 2022). By gridding the tree canopy, the wind was 
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measured outside and inside the canopy. The wind loss model in 
canopies based on the wind speed at the entrance of the canopies, 
canopy thickness, and canopy leaf area/LiDAR point cloud data 
are evaluated in this study. The classic regression, PLSR, and BP 
neural network algorithms are used to establish the wind loss 
model in canopies, which provides an effective basis for wind 
regulation for accurate variable spraying and plays an important 
role in achieving pesticide reduction and increased efficiency.

Materials and methods

Test platform

We designed a three-dimensional measurement platform of 
orchard tree canopies, enveloped a whole orchard tree canopy in 
the platform, and achieved the positioning of canopies in three-
dimensional space. Figure 1 shows a schematic diagram of the 
wind measurement process in a canopy. The sprayer sends air 
through the air supply system. The sprayer applies the pesticide on 
one side of the orchard tree when working between rows, and then 
spray on the other side when the row changed. According to the 
operation mode of the sprayer, only one side of the orchard tree 
canopy was studied. In the wind measurement of canopy, the 
outermost side of the tree is the wind inlet measurement point, 
and the central line of the tree row is the wind outlet measurement 
point. The wind force at the canopy inlet (black measurement 

point) and outlet (red measurement point) is measured by a wind 
meter, and L is the distance (2 M) from the wind supply center of 
the sprayer to the position of the orchard tree row during the wind 
measurement process. A Langshan 3 WGF-300D air-driven 
orchard applicator is used for air supply. The working pressure of 
the applicator is 1.2–1.5 MPa, the flow of the medicine pump is 60 
l/min, the fan speed is 0–2,800 r/min, the volume of the medicine 
box is 300 l, and the overall dimension is 2.5 × 1.3 × 1.16 M.  
Moreover, the spray width is greater than or equal to 20 M, the 
spray height is greater than or equal to 7 m, and the operation 
speed is 3–4.2 km/h. The thermal anemometer is used to measure 
the wind force in the canopy. The model is gm8903, the 
measurement range is 0–30 m/s, and the resolution is 0.001 m/s. 
The canopy between the measurement points of the canopy inlet 
and canopy outlet is the wind measurement canopy area 
(green area).

According to the distribution of the orchard tree canopy in the 
grid area, the canopy is divided into different measurement areas 
by dividing lines. The number of measurement areas is the same 
as the number of applicator nozzles, and the measurement area is 
divided into 0.2 × 0.2 M (Figure 2), realizing the positioning of 
different measurement areas in the canopy area. Marking the 
positions of wind measurement points at the entrance and exit of 
the canopy with label paper is conducive to the smooth progress 
of wind speed measurement in the canopy. In Figure 2, the red 
point is the measurement position mark point, and the green 
frame is the measurement division area.

FIGURE 1

Schematic diagram of the canopy wind measurement.
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Test orchard tree

The selected orchard tree in the test is shown in Figure 3. 
The test site is the Xiaotangshan National Precision Agriculture 
Research Demonstration Base in Changping District, Beijing. 
The test tree was one Fuji apple tree, and the tree was 5 years 
old. The tree used in the research is open center tree shape 
(Gao et  al., 2015). It has the advantages of obvious middle 
trunk, main branch, and natural stratification. During the 
processes of growth, the tree pruning amount is light, growth 
and formation are fast, and bearing of fruits early. The height 
of the tree was 2.3 M, the lower edge of the canopy was 0.8 M 
from the ground, and the crown was 1.5 M high and 2.5 M 
wide. The row spacing is 4 M and the plant spacing is 3.5 M. The 
experimental research time was October 11, 2020. According 
to the definition of the growth stage of mono- and 
dicotyledonous plants (Bleiholder et al., 2001), the apple tree 
is in the final stage of the principal growth stage: maturity of 
the fruit and seed; fruit ripening for consumption; and fruit 
achieving typical taste and firmness. At this time, the apples are 
mature with typical taste and hardness. Apple trees in the 
orchard have no fallen leaves, and the distribution of the leaf 
area in the canopy has not changed.

Test method of wind in the canopy and 
natural wind measurement

Before the test, the air supply width of different wind forces of 
the sprayer was determined, the measurement position was set to 
1, 1.5, and 2 M away from the fan outlet, and the air supply width 
range of the wind force from the sprayer outlet to the measurement 
position was measured based on a position 1 M away from the 
horizontal ground in the vertical direction. During the 

measurement process, different applicator fan speeds were set, the 
wind speed boundary was measured as 2 m/s, the horizontal 
displacement between the measurement position and the left and 
right sides of the air outlet was recorded, and the wind supply 
width of the sprayer was determined.

The wind measurement points were laid out on a three-
dimensional measurement test bench, as shown in Figure 2, and 

FIGURE 2

Canopy grid division and measurement point marking for the airflow test.

FIGURE 3

Test orchard tree.
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the wind speed measurement points were marked at the entrance 
and exit of the canopy with label paper (Figure 4A). The air supply 
width was determined according to the results. Before the test, the 
moving distance of the applicator was calibrated. After each 
measurement, the wind speed at the corresponding canopy 
position at the air outlet of a group of sprayers moved forward  
and continued to measure the next test unit, as shown in 
Figure 4B. During the experiment, the sprayer is in the middle of 
tree row. The center of sprayer from the center line of tree row is 
2 M, and consistent with the distance of the fruit farmers’ 
planting operation.

During the measurement of the wind speed at the wind inlet 
and outlet at the marked position of the canopy, to detect the wind 
force at different positions in the canopy and reduce artificial 
interference, an anemometer measuring probe was fixed on the 
1.5 M probe rod (Figure 5), the probe was placed at the measuring 
point in the canopy through the probe rod, the wind speed was 
measured, and the wind value at each measuring position was 
read 3 times.

When the orchard experiment was conducted, the nature 
wind speed was measured. We  set up a WindSonic portable 
weather station which was used to measure natural wind speed in 
the orchard. The data was obtained once per minute.

Data processing method of the wind 
measurement test in the canopy

During the test, the fan speeds of the sprayer were set to 1,381, 
1,502, and 1,676 r/min, and the wind speeds at the inlet and outlet 
of the wind were obtained to conduct an experimental study on 
the wind loss in the canopy. The three levels of spray fan speed 
represent different air-supplied conditions for the diversity of test 
conditions. The wind loss model is different with different air 
supply speed. The canopy wind loss rate was calculated using the 

inlet and outlet wind speeds of the canopy wind, and the 
calculation formula is:

 ( )
anopy

anopyIN anopyOUT anopyIN/
C

C C C

SpeedLoss
Speed Speed Speed

=
−

 
(1)

where,
SpeedLossCanopy - wind speed loss rate.
SpeedCanopyIN - inlet wind speed, m/s.
SpeedCanopyOUT - outlet wind speed, m/s.

Due to the influence of the location of air inlets and outlets 
and the external natural wind, any unreasonable data groups need 
to be removed in the process of calculating the wind loss. First, 
according to the wind blowing process, the wind speed at the 
canopy outlet should be able to continuously disturb the leaves 
(Dai, 2008), ensure that the liquid medicine is evenly deposited on 
the fronts and backs of the leaves at the canopy outlet, and remove 
the measurement points where the wind speed at the canopy wind 
outlet is zero. Due to the influence of natural wind, the 
measurement points where the wind speed at the canopy inlet is 
less than that at the canopy outlet are removed. Due to the small 
canopy thickness and density of branches and leaves at individual 
positions of the canopy, the data of measurement points with 
equal wind speed at the entrance and exit of the canopy are 
removed. Using the above process, effective data for the study of 
the wind loss model of the orchard tree canopy are obtained.

Measurement of canopy thickness and 
leaf area

Before the wind measurement test, the canopy thickness and 
leaf area of different areas of the orchard tree canopy were 
measured. The canopy thickness measurement adopted the 

A B

FIGURE 4

Canopy airflow measurement test. (A) Layout of canopy airflow test points. (B) Canopy airflow measurement test.

https://doi.org/10.3389/fpls.2022.1010540
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Gu et al. 10.3389/fpls.2022.1010540

Frontiers in Plant Science 06 frontiersin.org

canopy volume detection method CMC (canopy meshing profile 
characterization; Gu et al., 2021b) obtained in previous research 
to calculate the thickness of different canopy positions.

The measurement method for the canopy leaf area adopts a 
non-destructive statistical measurement method to calculate 
the leaf area for different areas in the canopy (Figure 6). To 
manually measure the leaf area of apple trees in different areas, 
a three-dimensional measurement grid frame of canopy leaf 
area is used to divide the apple tree canopy into different areas. 
It is necessary to count the number of leaves in the three grades 
of large, medium, and small leaves in the measurement area, 
multiply the calculated average value of leaf area in each grade 
by the number of leaves in each grade, and sum the leaf area 
calculated in each grade to obtain the sum of the leaf area in this 
area. The leaf area obtained by statistical analysis was compared 

with the total leaf area measured by the leaf area instrument one 
by one, and the relative error was 1.8% (Gu et al., 2022). The 
accuracy is high and is feasible and appropriate for this 
experimental study.

Wind loss model

To obtain the wind speed at the entrance of the canopy, the 
wind stroke in the canopy, the leaf area/LiDAR point cloud data 
in different areas of the canopy, and the wind loss rate in the 
canopy under different wind conditions, multiple regression, 
PLSR, and BP neural network algorithms that can perform 
regression analysis on multiple dependent variables and multiple 
independent variables were used.

Classic regression analysis was carried out using Minitab 
software; the appropriate relationship model was selected, the 
regression statistics were stored, the residual analysis and 
confidence interval were tested, and a lack-fit test was carried 
out. When creating regression equations, the PLSR algorithm 
considers extracting the principal components of dependent 
variables and independent variables (principal component 
analysis: PCA) and extracting the maximum correlation between 
principal components (canonical correlation analysis: CCA). 
This is the product of three basic algorithms, PCA, CCA, and 
multiple linear regression, which can remove the redundancies 
among data to the greatest extent. The BP neural network 
regression algorithm can carry out more accurate regression on 
multiple influencing factors and obtain an accurate model. 77 
sets of data were obtained in the research. To prevent the 
obtained model from fitting the training set well, the fitting effect 
of data other than the training data is inconsistent. 70% of the 
data are used for model establishment, and the remaining 30% 

FIGURE 5

Airflow measurement in the canopy.

FIGURE 6

Leaf area measurement by statistical analysis.
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of the data are used for model verification. The data set was 
disorganized in the process, and the training and test set was 
randomly extracted.

Results

In this study, the selected object is orchard trees that are 
widely planted in Chinese apple orchards and have large canopy 
thicknesses. During the experiment, the natural wind speed range 
was 0.2 m/s-0.9 m/s, less than 1 m/s. Since the air-assisted sprayer 
supplied high-intensity wind, the interior of the tree canopy would 
not be affected by the natural wind. The concept of canopy zoning 
is used to study the wind loss model, which meets the actual 
requirements of orchard pesticide application.

The sprayer ranges of the air delivery 
width

Table 1 shows that there is a large gap between the first group 
and the second group at the fan speed range of 490 r/min. The 
reason is that the natural wind force interferes with the wind force 
measurement resulting in the wind turbine wind force 
measurement process. At fan speeds of 1,207 and 1,280 r/min, the 
measured fan speed range is relatively uniform. The measured 
values in Table 1 indicate that the air supply range of the sprayer 
can be set to 0.2 M. This is consistent with the wind grid size of  
0.2 × 0.2 M set in this study.

Normality test of the residual of the wind 
measurement experimental data

Before the multiple regression analysis of the data, a residual 
normal analysis of the test data is required (Figure 7). The normal 
probability diagram of the residual is approximately a straight line, 
indicating that the data are randomly distributed, have good 
fitting to the random error, and can extract all the predictable 
data ranges.

Correlation analysis of the research 
factor interaction items

During the modeling process, in addition to the influencing 
factors of experimental research, data interaction is key to an 
accurate model. Table 2 shows a correlation analysis between the 
two factors of the overall canopy data under different fan speeds. 
According to Table 2, the correlation between the influencing 
factors under different fan speeds is generally less than 0.5, which 
shows that the above factors are independent of each other. 
During wind loss model research on the data, the interactions 
between the factors were not considered.

Research on wind loss models in 
canopies based on classic regression 
algorithms

Based on the canopy leaf area group data and LiDAR point 
cloud data group, a multiple regression model within the canopy 
was constructed by using the classic regression method, and the 
model was evaluated. The canopy inlet wind speed, canopy 
thickness, canopy leaf area, and canopy wind loss model under 
different wind conditions were calculated, and the canopy inlet 
wind speed, canopy thickness, LiDAR point cloud data, and 
canopy wind loss rate model were evaluated. Formulas 2–7 are 
the regression models of 1,381 r/min canopy leaf area, 1,381  
r/min canopy LiDAR point cloud, 1,502 r/min canopy leaf area, 
1,502 r/min canopy LiDAR point cloud, 1,676 r/min canopy leaf 
area and 1,676 r/min canopy LiDAR point cloud data set in turn:

 
anopy1

2 5
1 2 30.303 1.59 10 0.403 1.4 10

CSpeedLoss
x x x− −
=

− × + − ×  
(2)

 
anopy2

2 6
1 2 40.301 1.64 10 0.401 3 10

CSpeedLoss
x x x− −
=

− × + − ×  
(3)

 
anopy3

2 5
5 2 30.341 2.77 10 0.284 2.4 10

CSpeedLoss
x x x− −
=

+ × + − ×  
(4)

 
anopy4

2 5
5 2 40.335 3.16 10 0.286 1.8 10

CSpeedLoss
x x x− −
=

+ × + − ×  
(5)

 
anopy5

2 6
6 2 30.277 1.12 10 0.283 9 10

CSpeedLoss
x x x− −
=

+ × + − ×  
(6)

 
anopy6

2 6
6 2 40.274 1.2 10 0.285 6 10

CSpeedLoss
x x x− −
=

+ × + − ×  
(7)

TABLE 1 The measurement range of the air delivery width of the sprayer.

Fan speed  
(r/min)

Measurement 
position from wind 

outlet (m)
Wind supply width (m)

490 1 0.18 0.1

1.5 0.32 0.09

2 0.33 0.078

1,207 1 0.23 0.1

1.5 0.4 0.1

2 0.21 0.23

1,280 1 0.25 0.12

1.5 0.2 0.13

2 0.11 0.14
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where:
SpeedLossCanopy1—Wind loss rate based on canopy leaf area at 

1381 r/min.
SpeedLossCanopy2—Wind loss rate based on the LiDAR point 

cloud of the canopy at 1381 r/min.
SpeedLossCanopy3—Wind loss rate based on canopy leaf area at 

1502 r/min.
SpeedLossCanopy4—Wind loss rate based on the LiDAR point 

cloud of the canopy at 1502 r/min.
SpeedLossCanopy5—Wind loss rate based on canopy leaf area at 

1676 r/min.
SpeedLossCanopy6—Wind loss rate based on the LiDAR point 

cloud of the canopy at 1676 r/min.
x1—wind speed at canopy inlet at 1381 r/min, m/s.
x2—canopy thickness, m.

x3—canopy leaf area, cm2.
x4—LiDAR point cloud data of canopy, PCs.
x5—1,502 r/min, wind speed at canopy inlet, m/s.
x6—1,676 r/min, wind speed at canopy inlet, m/s.

Table 3 shows the R2 of the above regression model (Formulas 
3–8), and it is clear that the R2 range of the canopy regression 
model at different speeds is 45–60.4%. The difference between the 
leaf area and LiDAR point cloud data group in the regression 
model R2 is small, which can be ignored in the range of 0 ~ 0.2%, 
indicating that the leaf area data and LiDAR point cloud data have 
the same impact on the wind loss model, and they have a strong 
correlation. Consistent with the research results of Sanz-Cortiella 
et al. (2011); Zhang et al. (2017) and Gu et al. (2021a) on the 
relationship between LiDAR point cloud data and canopy leaf 

A B

C

FIGURE 7

Normal distribution of residuals in the canopy leaf area data set at different sprayer fan speeds. (A) 1381 r/min data set. (B) 1502 r/min data set. 
(C) 1676 r/min data set.

TABLE 2 Correlation analysis of all data before and after the canopy at different speeds.

Fan speed (r/min) Canopy thickness × 
inlet wind speed

Canopy thickness × 
leaf area

Inlet wind speed × 
leaf area

Canopy thickness × 
LiDAR point cloud 

data

Inlet wind speed × 
LiDAR point cloud 

data

1,381 0.487 0.416 0.374 0.498 0.490

1,502 0.351 0.400 0.352 0.475 0.541

1,676 0.226 0.412 0.238 0.487 0.404
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area, when calculating the canopy wind loss model, the leaf area 
data and LiDAR point cloud data are selected to build the wind 
loss model. Because LiDAR point cloud data are easier to obtain 
than the leaf areas of different canopy areas, LiDAR point cloud 
data are used to replace the canopy leaf area data.

Table 4 analyses the significance of various test factors on the 
regression process of the model. In the variance calculation 
process, the p value distribution of LiDAR point cloud data and 
canopy leaf area in the model is 0.281–0.851, which are both 
greater than 0.1 and indicate that these two factors have no 
significant impact on the model. Based on previous research on 
the distribution of wind fields in a canopy (Hong et al., 2017), it is 
concluded that density is the main factor affecting the distribution 
of wind fields in a canopy because the research object is modern 
orchards, which are characterized by thin canopies and dense leaf 
distributions. The orchard trees selected in this study are 
traditional thick canopy orchard trees, and the leaves in the 
canopy are unevenly distributed, which has little impact on the 
wind loss under the action of wind. Through the above analysis, 
the canopy leaf area and LiDAR point cloud data are removed, and 
the wind loss model of canopy inlet wind speed and overall 
canopy thickness is further studied. The model of the wind loss 
rate in the canopy under different rotating speeds of 1,381, 1,502, 
and 1,676 r/min (Formulas 8–10) are calculated.

 
2

anopy7 1 20.3 1.74 10 0.4CSpeedLoss x x−= − × +
 

(8)

 
2

anopy8 5 20.335 2.53 10 0.278CSpeedLoss x x−= + × +
 

(9)

     
2

anopy9 6 20.274 1.07 10 0.281CSpeedLoss x x−= + × +
 

(10)

where:
SpeedLossCanopy7—Wind loss rate based on canopy thickness at 

1381 r/min.
SpeedLossCanopy8—Wind loss rate based on canopy thickness at 

1502 r/min.
SpeedLossCanopy9—Wind loss rate based on canopy thickness at 

1676 r/min.

The R2 values of the obtained model are 60.3, 50.6 and 44.9% 
at 1381 r/min, 1,502 r/min and 1,676 r/min, respectively. Through 
the study of different canopy wind loss models, it is concluded that 
the canopy inlet wind speed and canopy thickness are the main 
influencing factors of wind loss, among which the canopy 
thickness is more significant. Hong et al. (2017) also demonstrated 
that canopy thickness is the main factor affecting the distribution 
of wind in a canopy.

Through the above analysis, it is concluded that the accuracy 
of the regression model gradually decreases with increasing fan 
speed because with increasing fan speed, the wind speed at the 
entrance of the canopy increases, and after the wind enters the 
canopy, it is affected by factors such as the density and direction 
of branches in the canopy, resulting in a decline in the fitting effect 
of the wind loss model. This is consistent with the research results 
of Khot et al. (2012), who found that 70% wind assistance achieves 
a better result than 100% wind assistance.

Research on the wind loss model in a 
canopy based on the PLSR algorithm

Through classic multiple regression analysis, it is concluded 
that the correlation coefficient R2 of the regression model is small, 
and the interpretation ability of the prediction data is weak. To 
obtain a better wind loss model based on multiple regression, the 
PLSR algorithm is used to study the canopy wind loss model based 
on canopy inlet wind speed and canopy thickness. Formulas 
11–13 are the wind loss models obtained under the conditions of 
fan speeds of 1,381, 1,502, and 1,676 r/min, respectively.

      
2

anopy10 1 20.282 1.22 10 0.391CSpeedLoss x x−= − × +
 
(11)

     
2

anopy11 5 20.213 3.39 10 0.319CSpeedLoss x x−= + × +
 
(12)

 
2

anopy12 6 20.22 1.03 10 0.321CSpeedLoss x x−= + × +
 
(13)

where,
SpeedLossCanopy10—Wind loss rate based on PLSR at 1381 r/min.
SpeedLossCanopy11—Wind loss rate based on PLSR at 1502 r/min.
SpeedLossCanopy12—Wind loss rate based on PLSR at 1676 r/min.

TABLE 3 R2 values of the regression models under different spray fan 
speeds.

Project
1,381 r/min 1,502 r/min 1,676 r/min

Leaf 
area LiDAR Leaf 

area LiDAR Leaf 
area LiDAR

Model 2 3 4 5 6 7

R2 60.4% 60.3% 51.2% 51.4% 45% 45%

TABLE 4 Significance of the factors of the regression models of the 
canopy wind loss model under different spray fan speeds.

Fan 
speed r/
min

Model

Significance

Inlet 
wind 
speed

Canopy 
thick

Leaf 
area LiDAR

1,381 2 0.22 0.000 0.604

3 0.231 0.000 0.851

1,502 4 0.022 0.000 0.351

5 0.017 0.000 0.281

1,676 6 0.267 0.000 0.726

7 0.260 0.000 0.721
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Table  5 shows that the fitting accuracy of the model 
obtained by PLSR is higher than that of the multiple regression 
model by 2.1, 14.7, and 12%. With the increase in the fan speed, 
the obtained canopy wind loss model R2 gradually decreases. As 
the fan speed increases, the wind speed at the canopy inlet 
gradually increases, but as the fan outlet of the sprayer remains 
unchanged, the increase in the wind speed at the canopy inlet 
does not increase synchronously with the fan speed. The wind 
loss rate obtained through the wind inlet and the canopy wind 
outlet fluctuates greatly, resulting in the fitting effect of the 
model not increasing with increasing speed. At the same time, 
it is concluded that the prediction of the model for the 
verification set is weak, and the prediction ability gradually 
decreases with increasing speed. The reason for this 
phenomenon is that the wind loss rate gradually increases with 
the fluctuation of fan speed, and the extraction of verified data 
sets has a great impact on the verification results. The root mean 
square error of the data is less than 0.3, indicating a good degree 
of data concentration.

Study of the wind loss model in the 
canopy based on the BP neural network

The fitting accuracy of the regression model obtained by the 
PLSR algorithm is significantly higher than that of the multiple 
regression model, but the fitting accuracy of the model is still low, 

at less than 0.7, which cannot predict the canopy wind loss well. The 
BP neural network can use the error after output to evaluate the 
leading error of the output layer, update the error of the previous 
layer, and gradually calculate the errors of other layers to obtain a 
more accurate regression model calculation of the data. A BP neural 
network is used to train the wind loss model of the data group at 
different speeds through the test data group, and the prediction 
ability of the model to the data is obtained through analysis.

N-fold crossover divides the data set for many times, and 
averages the results of multiple evaluations, so as to eliminate the 
adverse effects caused by unbalanced data division in a single 
division. The model with the best generalization ability can 
be selected from a variety of models. It can effectively solve the 
over fitting of data, avoid the limitations and particularity of fixed 
divided data sets, and have more obvious advantages in small-
scale data sets. In the study, 3-fold cross validation and 5-fold 
cross validation were selected according to the number of data sets 
(77 sets). The BP neural network-n-fold cross validation method 
is adopted, and the training sets and test sets with different ratios 
are used for multiple tests, and the results are averaged.

Under the conditions of different fan speeds of 1,381, 1,502 
and 1,676 r/min, the R2 of wind loss model of the BP neural 
network-3-fold cross validation is 76.55, 63.53 and 60.22%. The R2 
of the BP neural network-5-fold cross validation is 81.78, 72.85 
and 69.20%. The models of BP neural network-5-fold cross 
validation were better than the BP neural network-3-fold cross 
validation. The accuracy of both the models is higher than that of 
the model obtained by the PLSR algorithm. The BP neural 
network-5-fold cross validation are used for the wind loss model. 
Figure 8 shows the relationship of BP neural network-5-fold cross 
validation between the predicted value and measured value of 
wind loss through the trained BP neural network model.

The equation of the two fitting formulas is shown in 
Formulas 14–16:

 Y T1 10 93= .  (14)

TABLE 5 R2 and RMSE of the airflow speed loss rate model under 
different fan speeds.

Fan 
speed r/
min

Model R2 Model 
RMSE

Validation 
set R2

Validation 
set RMSE

1,381 62.4% 0.262 52.8% 0.164

1,502 65.3% 0.216 33.5% 0.216

1,676 56.9% 0.234 10.8% 0.188

A B C

FIGURE 8

BP neural network training model measurement accuracy based on different conditions. (A) 1381 r/min. (B) 1502 r/min. (C) 1671 r/min.

https://doi.org/10.3389/fpls.2022.1010540
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Gu et al. 10.3389/fpls.2022.1010540

Frontiers in Plant Science 11 frontiersin.org

 Y T2 20 99= .  (15)

 Y T3 30 90= .  (16)

where,
Y1—Prediction value of the wind loss rate of the BP neural 

network model at 1381 r/min.
Y2—Prediction value of the wind loss rate of the BP neural 

network model at 1502 r/min.
Y3—Prediction value of the wind loss rate of the BP neural 

network model at 1676 r/min.
T1—Measured value of wind loss at 1381 r/min.
T2—Measured value of wind loss at 1502 r/min.
T3—Measured value of wind loss at 1676 r/min.

The R2 of the formulas of 1,381, 1,502 and 1,676 r/min is 
95.13, 94.74, and 94.25%. The root mean square error is 0.15, 0.18, 
and 0.15. The standard error is 0.02, 0.03, and 0.03. The smaller 
the root mean square error and standard error, the models more 
stable. According to the metrics above, the BP neural network 
model can better fit the data.

Discussion

In this study, the classic regression algorithm, PLSR algorithm, 
and BP neural network algorithm are used to obtain a wind loss 
model. The BP neural network model has the highest accuracy, 
and the classic regression model has the lowest accuracy.

The process of obtaining functional equations through classic 
regression depends on the selection of equation types. Whether 
the selection of equation types is appropriate has a great impact 
on the accuracy of the model. In the process of data regression 
using classic regression and the PLSR algorithm, the obtained 
regression equation is more intuitive. The calculation processes of 
PLSR and classic regression models are highly dependent on the 
mathematical knowledge of operators. For functional equations 
with low regression accuracy, it is necessary to carry out stepwise 
regression. In the BP neural network training process, to obtain a 
better model and accuracy, it is necessary to set reasonable 
parameters and approach the objective function through multiple 
regression training (Lu, 2014). This algorithm cannot directly 
calculate the regression equation, and it needs a program to 
calculate the obtained model by importing software (Xin et al., 
2002). The BP neural network cannot directly reflect the 
relationship between the input and output data but can only draw 
the relationship model of the input and output by tracing points. 
The BP neural network can be used for the regression of complex 
models, especially when the relationship of variables in the model 
cannot be determined. Through the above analysis, it is concluded 
that the BP neural network regression algorithm is better than the 
PLSR algorithm and classic regression algorithm. Because the 

wind loss model obtained by the BP neural network algorithm is 
not intuitive, PLSR has the advantages of an intuitive and simple 
model in the three algorithms, which may cause some wind 
delivery errors in the spraying process. In the process of variable 
spraying selection, the wind loss model based on a BP neural 
network or PLSR can be  selected according to the required 
spraying accuracy and spraying error range.

This research shows that there is a correlation between the 
inner leaf area of the canopy and LiDAR point cloud data, which 
is consistent with the research results of Sanz-Cortiella et  al. 
(2011); Sanz et  al. (2013) and Zhang et  al. (2017). However, 
because these two factors have no significant impact on wind loss, 
the obtained wind loss model does not present leaf area and 
LiDAR point cloud data as independent variables in the model. 
On the one hand, the canopy leaves of orchard trees are not 
concentrated in the direction of canopy thickness, which has little 
impact on wind loss; on the other hand, the wind from the sprayer 
is strong, and the leaves in the canopy have little impact on its loss.

There are many factors affecting the loss of wind power in and 
out of the canopy. In addition to the thickness of the canopy and the 
number of leaves in the canopy, the loss is also affected by the 
growth direction of the branches in the canopy, the leaf inclination 
of the leaves, and the distribution form of the leaves in the canopy. 
Measurement methods are also important factors affecting the loss 
of wind power. In this study, an anemometer is used for multipoint 
measurement, and the measurement results are more accurate. 
However, there are shortcomings of low measurement efficiency, 
and wind measurements in the same measurement area are not 
obtained at the same time. In future research, multiple anemometers 
can be used to measure at the same time to reduce the impact 
caused by anemometer measurements during the testing process.

Conclusion

In the process of variable wind spraying, the appropriate wind 
force is determined in real time according to parameters such as 
canopy size and biomass in the canopy of orchard trees so that the 
droplets can penetrate the surface of the canopy and deposit into 
the interior of the canopy for the effective prevention and control 
of diseases and pests. The influencing factors and models of the 
wind loss rate in the canopy under different sprayer fan speeds are 
studied. Through classic regression analysis, the PLSR algorithm, 
and the BP neural network regression algorithm for data 
processing and model establishment, the following conclusions 
are drawn:

Classic regression analysis was used to conduct multiple 
regression analysis on the relevant factors that were assumed to 
affect the wind loss rate in the canopy. Under the conditions of 
different fan speeds of 1,381, 1,502, and 1,676 r/min, the R2 values 
of the obtained model are 0.603, 0.506, and 0.449, respectively. 
With increasing fan speed, the R2 of the obtained canopy wind 
loss model gradually decreases. The wind force at the entrance of 
the canopy and the travel of air flow in the canopy are the main 
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factors affecting the wind loss rate. Due to the uneven distribution 
of leaves in the canopy of orchard trees, the influence of the inner 
leaf area of the canopy and LiDAR point cloud data on the wind 
loss rate was not significant and was not studied as an influencing 
factor. However, it was shown that there was a correlation 
between the inner leaf area of the canopy and LiDAR point 
cloud data.

Using the PLSR algorithm and BP neural network algorithm 
to study the regression model of canopy wind loss can further 
improve the accuracy of the model. Under the above fan speed 
conditions, the R2 values obtained by the PLSR algorithm are 
0.624, 0.653, and 0.569, which are 0.021, 0.147, and 0.120 higher 
than those of the multiple regression algorithm, respectively. 
Compared with the above two methods, the BP neural network 
regression algorithm can significantly improve the fitting accuracy 
of the model. Under different fan speeds, the determination 
coefficients R2 of the model are 0.783, 0.679, and 0.715, which are 
0.18, 0.173, and 0.266 higher than those of the multiple 
regression analysis.

In this study, combined with the canopy volume and canopy 
leaf area model, a wind loss rate model under different algorithm 
conditions is proposed, which provides a reference for the wind 
control of a sprayer.
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