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Wheat lodging extraction using
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River Regions (Henan University), Ministry of Education, Kaifeng, China, 3Plant Pathology Lab, Texas
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The accurate extraction of wheat lodging areas can provide important

technical support for post-disaster yield loss assessment and lodging-

resistant wheat breeding. At present, wheat lodging assessment is facing the

contradiction between timeliness and accuracy, and there is also a lack of

effective lodging extraction methods. This study aims to propose a wheat

lodging assessment method applicable to multiple Unmanned Aerial Vehicle

(UAV) flight heights. The quadrotor UAV was used to collect high-definition

images of wheat canopy at the grain filling and maturity stages, and the Unet

network was evaluated and improved by introducing the Involution operator

and Dense block module. The performance of the Improved_Unet was

determined using the data collected from different flight heights, and the

robustness of the improved network was verified with data from different

years in two different geographical locations. The results of analyses show that

(1) the Improved_Unet network was better than other networks (Segnet, Unet

and DeeplabV3+ networks) evaluated in terms of segmentation accuracy, with

the average improvement of each indicator being 3% and the maximum

average improvement being 6%. The Improved_Unet network was more

effective in extracting wheat lodging areas at the maturity stage. The four

evaluation indicators, Precision, Dice, Recall, and Accuracy, were all the

highest, which were 0.907, 0.929, 0.884, and 0.933, respectively; (2) the

Improved_Unet network had the strongest robustness, and its Precision,

Dice, Recall, and Accuracy reached 0.851, 0.892, 0.844, and 0.885,

respectively, at the verification stage of using lodging data from other wheat

production areas; and (3) the flight height had an influence on the lodging

segmentation accuracy. The results of verification show that the 20-m flight

height performed the best among the flight heights of 20, 40, 80 and 120 m

evaluated, and the segmentation accuracy decreased with the increase of the

flight height. The Precision, Dice, Recall, and Accuracy of the Improved_Unet

changed from 0.907 to 0.845, from 0.929 to 0.864, from 0.884 to 0.841, and

from 0.933 to 0.881, respectively. The results demonstrate the improved ability

of the Improved-Unet to extract wheat lodging features. The proposed deep

learning network can effectively extract the areas of wheat lodging, and the
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different height fusion models developed from this study can provide a more

comprehensive reference for the automatic extraction of wheat lodging.
KEYWORDS
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1 Introduction

Wheat is the second largest food crop in the world. Various

factors, including adverse weather, disease and insect pests, high-

density planting, and excessive nitrogen application, can reduce

plant photosynthesis (Setter et al., 1997; Zhang et al., 1999) and

lead to lodging, making it difficult for harvesting. Lodging is one

of the most important factors affecting wheat yield and quality

(Kobayashi and Hitaka, 1968; Rongtian et al., 1996; Cao et al.,

2021). Yield reduction of up to 45% has been reported (Berry

and Spink, 2012; Peng et al., 2014). Lodging poses a severe threat

to global food security. China is one of the largest wheat

producers. The annual wheat planting area in China is about

24,000 hectares, and the yield reduction caused by lodging is as

high as 10%. At present, there is an urgent need to develop new

technologies and methods that can quickly and nondestructively

assess wheat lodging to minimize yield loss.

The traditional methods to monitor lodging require an

agricultural technician to sample and analyze the lodging areas

on site (Chu et al., 2017). When a large area of lodging occurs,

the traditional detection methods are not only time-consuming

but have low accuracy as well (Mardanisamani et al., 2019),

which often leads to insurance compensation disputes and

negatively affects the farming enthusiasm of farmers and

enterprises. Remote sensing is an effective method to obtain

information remotely, which can accurately assess the temporal

and spatial changes of crops. Remote sensing can provide strong

support for lodging assessment (Weiss et al., 2020). The

commonly used remote sensing methods include satellite

remote sensing, aerial remote sensing, near-earth remote

sensing, etc. Satellite remote sensing can cover a large scale,

which has been increasingly widely used in crop lodging

extraction (Wang et al., 2016; Han et al., 2017; Kumpumäki

et al., 2018). However, due to low temporal and spatial resolution

and limited availability of meteorology data in southern China

(frequently cloudy and rainy weather), the accuracy of satellite

remote sensing in lodging recognition is low (Kustas and

Norman, 2000). Also, it is challenging to meet the demand of

rapid response due to the long return visit cycle of the satellite.

Compared with space remote sensing, near-earth remote sensing

can maneuver and respond rapidly and is suitable for

monitoring lodging caused by floods. However, due to China’s
02
airspace policy and flight costs, its scientific research and

technology promotions become difficult to be carried out.

Near-earth remote sensing uses a small Unmanned Aerial

Vehicle (UAV) equipped with sensors to obtain various high-

resolution data, such as high-definition RGB images,

multispectral images, hyperspectral images, and thermal

images. Its low cost, high flexibility, and strong ability to

provide high spatial resolution (Alvarez-Vanhard et al., 2021)

make it a hot research area in crop lodging monitoring. For

example, Liu et al. (2014); Hyundong et al. (2021), and Tianxing

et al. (2017) used UAVs to assess the lodging of rice, wheat, corn,

and other crops. Singh et al. (2019) demonstrated through their

study that large-scale quantitative assessment of inversion using

a UAV is an effective method for identifying genetic variation in

inversion. However, current methods to process large UAV

image data have become the bottleneck for their further

applications. It is in urgent need of exploring a new method to

effectively process UAV lodging data.

At present, quite a few scholars have studied using UAV as

new methods to assess crop lodging. Ding et al. (2019) used

YCbCr transform and support vector machine to extract the

wheat lodging area, with an accuracy of 92%. Liu et al. (2018)

used UAV visible light combined with a thermal infrared image

as classification data, combined color, texture, and temperature

characteristics, and used the optimization of SVM multiclass by

Particle Swarm (PSO-SVM) method to obtain a value of 0.9415

for the correlation coefficient between the lodging proportion

and the actual lodging proportion. Chauhan et al. (2019) used

the UAV multispectral image and adopted the multi-resolution

segmentation (MRS) algorithm and nearest neighbor

classification algorithm to realize the classification of lodging

wheat with different severities. It is found that the red edge and

near-infrared band data could effectively distinguish different

severity categories, and the overall accuracy reached 90%. Cao

et al. (2021) proposed a hybrid algorithm based on a watershed

algorithm and adaptive threshold segmentation to extract wheat

lodging, which was better than a single watershed algorithm.

However, the above methods require technicians to screen and

identify features, which are difficult to apply and popularize in

business systems. The emergence of deep learning provides an

important opportunity to solve the above problems. With the

continuous research of deep learning algorithms, deep learning
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has made major breakthroughs in the classification, detection,

and segmentation tasks (Simonyan and Zisserman, 2014;

Szegedy et al., 2015; Redmon et al., 2016; Krizhevsky et al.,

2017; Ren et al., 2017; Shelhamer et al., 2017). On the study of

crop lodging, some investigators have made a preliminary

exploration by using deep learning. Zhao et al. (2019) used

Unet network to extract the lodging areas at the late mature stage

of rice, and the Dice coefficient could reach 0.9442. Yang et al.

(2020) used FCN-Alexnet network to train the visible image data

of lodged rice, and realized the lodging extraction accuracy of

0.9443. Song et al. (2020) used the self-defined Improved_Segnet

method to extract the sunflower lodging areas of the fused

image, and the accuracy was 15 to 20% higher than that of the

traditional support vector machine (SVM). Further, in the depth

learning method of wheat lodging, Zhang et al. (2020a) used

transfer learning to train the DeeplabV3+ model to extract the

wheat lodging areas at different growth stages. Their results show

that the effect of the transfer learning method was better than

that of the traditional Unet method. Yang et al. (2021) improved

Unet network for wheat lodging, with an overall accuracy of

88.99%. Zhang et al. (2020b) showed that the accuracy of UAV

RGB images, combined with the GoogLeNet deep learning

algorithm, could reach 0.93 based on UAV RGB data from

three different collection dates, combined with different deep

learning algorithms, for wheat inversion monitoring. Compared

with traditional machine learning methods, the deep learning

method has greater potential and space in the research of wheat

lodging monitoring. However, the previous methods give

consideration only to efficiency and accuracy and do not

account for multiple heights (scales), which makes the

algorithm difficult to be applied in practice.

With the introduction of Involution operator (Li et al.,

2021a), it provides a new idea to solve the contradiction

between the number of layers and the accuracy of the deep

learning network. It achieves higher efficiency and higher
Frontiers in Plant Science 03
classification accuracy without changing the overall structure

of the network, which provides a new direction for UAV remote

sensing monitoring of crop lodging. Furthermore, investigators

often combine the front and rear characteristics to improve the

performance of deep learning networks. For example, Dense

block is often used for the classification and recognition of

detection targets, and the way to retain the pre and post

features to improve the classification accuracy has not been

used for wheat lodging extraction. Therefore, it is worth trying to

combine Involution operator and Dense block to develop a

method to assess wheat lodging.

In view of the lack of effective methods for wheat lodging

monitoring based on UAV images, the objectives of this study

were to: 1) propose a new wheat lodging assessment method

based on Involution operator and Dense block module at

different flight altitudes, 2) verify the effectiveness of the

proposed method by comparing with several classical deep

learning methods, and 3) verify the robustness of the proposed

method through the data collected from different flight altitudes

and different wheat production areas. The research results will

support the study of lodging extraction at different flight

altitudes, the discrimination of actual lodging conditions of

farmland, and post-disaster damage assessment.
2 Materials and methods

2.1 Experimental area and UAV
data acquisition

2.1.1 Experimental area
The experimental area (Figure 1) was in Baihu farm, Lujiang

County, Hefei City, Anhui Province, China (31°13’N, 117°27’E).

It was in the subtropical monsoon climate zone, with mild

climate, abundant rainfall, and an average temperature of 13
FIGURE 1

Map of the experimental area. On the left was the location of the experimental area located in Anhui Province in the East of China; in the
middle was the map of Anhui Province, with the experimental field in Lujiang County in central Anhui; and on the right was the UAV lodging
image of the experimental area.
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to 20 °C, suitable for wheat production. Wheat was one of the

most widely cultivated crops in this area.

Wheat (cv. Ningmai 13) was sown in October 2019. Field

plot management such as fertilization, irrigation, and insect and

weed control, etc. followed local recommendations. The growth

status of wheat was different from one area to another due to the

difference in soil fertility and salinity. UAV images of lodged

wheat areas were collected on May 3 (filling stage) and May 10

(maturity), 2020 (Figure 1).

2.1.2 Data acquisition
In this study, the lodging images of UAV at two flight

altitudes (20 and 40 m) were collected at the grain filling and

maturity stages. The observation platform was DJI Phantom 4

Pro (DJI Innovation Science and Technology Co., Shenzhen,

China), and the image resolution of its own camera was

5472×3648 pixels. The UAV flights used DJI GS Pro software

to plan the route, with 80% forward overlap and 80% side overlap.

At the flight altitude of 20 and 40 m, the flight speeds were 2m/s

and 4m/s, respectively. The UAV images were collected at 14:00

on May 3 and 10, 2020, taking about 30 minutes for each flight.

The flight day was sunny and breezy. In order to improve the

geographic coordinate accuracy of UAV images, Trimble R2 was

used as the ground control points for geometric correction of

UAV images. The UAV images were spliced with Photoscan

(Agisoft, St. Petersburg, Russia) software, during which the

ground control points were imported for accurate geometric

correction, and finally, the Orthophoto Image of the study area

was exported. Table 1 shows the detailed information on the

UAV image acquisition. In order to observe the influence of

different altitudes on the extraction results of wheat lodging based

on the obtained data, the UAV images were downscale sampled

by cubic convolution interpolation method, and the flight altitude

data of 80 and 120 m were produced.

In order to make the data set needed for the training of the

deep learning network, the Orthophoto Images were firstly cut to

get the research areas, then the lodging areas in the UAV image

were manually labeled with the help of agricultural experts who

used the Open source software LabelMe (Massachusetts Institute
Frontiers in Plant Science 04
of Technology CSAIL, Cambridge, MA, USA), and finally

obtained the UAV RGB image and label map at the height of

20 and 40 m at the two growth stages. The results are shown in

Figure 2. The red area was the lodging wheat label manually

marked. Comparing with the labels of the two growth stages, as

wheat growth advanced, the red areas were shown in the label

map. The larger the area of lodging, the more serious the wheat

lodging. The data images and label diagrams at the 80- and 120-

m flight altitudes were not listed here. The above data was

obtained from the down-sampling of 20-m flight altitude data.
2.2 Experimental method

The UAV image data set used for training in this study came

from the four flight altitudes of 20, 40, 80, and 120 m, including

multiple spatial resolution data. Some of these data were used to

verify the Improved_Unet proposed in this study. The accuracy

and robustness between the proposed network and other

classical segmentation networks were compared.

2.2.1 The proposed wheat lodging extraction
Improved_Unet network

The classical Segnet network, DeeplabV3 +, and Unet

network have been used in the previous studies for crop

lodging extraction, and high model accuracy has been

obtained. Among them, the Segnet network adopts different

feature acquisition strategies than the traditional FCN network,

and it uses coding and decoding technology and uses the pooled

index to save pooling location information. DeeplabV3+

network structure is also composed of encoding and decoding

structures. The encoding part includes Atrus Spatial Pyramid

Pooling (ASPP) and improved Xception module including

input, intermediate, and output stream. Some studies have

used the transfer learning method to reduce the network’s

requirements for the amount of wheat lodging data, but the

reasonable selection of public data set is a complex problem.

Unet network adopts encoding and decoding structure, and

convolution adopts a valid filling method to ensure that the
TABLE 1 Summary of UAV image acquisition.

Date Flight height Speed Photo interval Lodging area Spliced image size (pixels)

May 3 20 m 2 m/s 2 sec Small 16279*11823

40 m 4 m/s 2 sec 8049*5486

80 m (Resampling) / / /

120 m (Resampling) / / /

May 10 20 m 2 m/s 2 sec Large 16339*11636

40 m 4 m/s 2 sec 8055*5410

80 m (Resampling) / / /

120 m (Resampling) / / /
*Represents the multiplication sign in the mathematical operator.
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results do not lack context features. In the decoding stage, the

feature map obtained in the encoding stage is connected with

that in the decoding stage, and the pixel level classification is

eventually realized through 1 * 1 convolution. Compared with

the Segnet network, Unet network has a jump connection

structure, which alleviates the problem of gradient

disappearance in the training process to a certain extent,

simplifies the model, and makes the model easier to adapt to

the complex information of wheat lodging images. It also fuses

the low-level and high-level information to obtain more

information. Compared with DeeplabV3+, the number of
Frontiers in Plant Science 05
layers of Unet network is much less, and the amount of

training samples required and the training time are also less.

In addition, there is no need to use the method of transfer

learning for training, which reduces the use standard.

Considering the differences between the above network

structures and considering the actual application, this study

improved the lightweight network Unet to achieve the purpose

of less time-consuming model training on the premise of reliable

accuracy in actual production. In order to obtain a larger

receptive field and retain more information to improve the

segmentation accuracy, this study used the Involution operator
A B

DC

FIGURE 2

RGB original images and label images at two growth stages and two flight heights. (A) 20-m flight altitude (May 3), (B) 20-m flight altitude (May 10),
(C) 40-m flight altitude (May 3), (D) 40-m flight altitude (May 10).
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to replace the convolution operation of the backbone position on

the basis of ensuring the network structure. In the Involution

design, Involution kernels are specifically located at pixels Xi,j

corresponding to coordinates (i, j) customized but shared on the

channel, and G calculates the number of groups that share the

same Involution kernel per group. The Involution kernel is used

to multiply and add the inputs to obtain the out feature map of

Involution defined as:

Yi,j,k =o u,vð Þ∈DK
i, j, u +

K
2

� �
, v +

K
2

� �
,
kG
C

� �
Xi + u, j + v, k :

(1)

The shape of the Involution kernel ℌ depends on the shape

of the input feature mapping. The idea is to generate Involution

kernels conditioned on the original input tensor such that the

output kernel is aligned with the input kernel. Here the kernel

generating function is symbolized as ∅ and the function

mapping for each position (i, j) is abstracted as:

Hi,j = ∅ XYI,J

� �
= W1s W0Xi,j

� �
(2)

where Yi,j indexes the set of pixels conditional on ℌi,j; W0 ∈
R

C
r�C and W1 ∈ RðK�K�GÞ�C

r represent 2 linear transformations

that together form the bottleneck structure, with the

intermediate channel dimension controlled by the reduced

order ratio r for efficient processing. s denotes the nonlinear

activation function for the 2 linear transformations after

batch normalization.

Ordinary convolution operation realizes channel specificity:

sharing convolution operators on the same channel and using

different operators on different channels. The construction of the

Involution operator is the opposite of convolution operation,
Frontiers in Plant Science 06
which realizes spatial specificity, expands the receptive field

based on reducing the amount of calculation, and reduces the

information redundancy between channels. The diagram of

Involution is shown in Figure 3.

ℌ is the Involution kernel, which is calculated from the

function F. Involution uses block convolution, that is,

convolution sharing on channels. For example, if the channel

is 32 and 16 channels share one convolution, the block is 2. For

ease of presentation, the block used in the schematic diagram is

1. Through this construction method, spatial specificity and

channel sharing are realized. All 1 * 1 convolutions are retained

in this study to realize classification.

At the same time, the dense block module is added in the

coding stage to retain more information by combining the front

and rear feature maps. DenseBlock is an important part of

DenseNet network. The main idea is: for each layer, the feature

maps of all previous layers serve as the input of the current layer,

while its own feature maps serve as the input of the subsequent

layer, forming full cross-linking. Feature maps extracted from

each layer can be used by subsequent layers. Compared with

other methods, DenseBlock has obvious advantages. First, the

number of parameters is reduced, which can save memory and

avoid model overfitting. On the other hand, it further alleviates

the problem of gradient disappearance, makes more effective use

of feature and enhances feature propagation.

Further, Max-pooling is used. During the pooling, the Max-

pooling location information is retained, and then in the

decoding stage, un-pooling is used to enlarge the feature map

combined with the Max-pooling location information recorded

during encoding. The network’s last layer uses a 1 * 1

convolution kernel and a convolution method that limits the

number of feature images to achieve pixel-level classification.
FIGURE 3

Involution diagram. Involution cleverly divides the network computation into kernel generation and Multiply-Add. The Involution kernel ℌi, j is
yielded from the function F conditional on a single pixel at (i, j), followed by a channel-to-space rearrangement. The Multiply-Add operation of
involution is decomposed into two steps, with ⊗ indicating multiplication broadcast across C channels and ⊕ indicating summation aggregated
within the K × K spatial neighborhood (Yang et al., 2021).
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The Improved_Unet network structure is shown in Figure 4.

Data set production

2.2.2 Data set production
To ensure that the deep learning network obtained good

training results and reduced the phenomenon of network fitting

due to too little data, this study cut and widened the original

UAV image data. The image was cropped by a sliding window

which had size of 256*256. As a result, the size of the final

training image was 256*256. The imagery data was augmented

by rotating, filtering, flipping, and adding noise. The label image

needed the same operation while rotating and flipping the RGB

image. A total of 15,000 training images and the same number of

label images were obtained. Fifteen thousand images were

divided into two parts, with 12,000 images being randomly

selected as the training set of the model, and the remaining

3,000 images being used as the test set of the model. The purpose

of random selection was to balance the inconsistency of wheat

lodging areas and light in different research plots.

2.2.3 Model training
The experiment was conducted using the Windows system,

Keras framework and python 3.7 programming language, with

Tensorflow as the backend. Using Adam optimizer, the initial
Frontiers in Plant Science 07
learning rate was set to 0.001 according to the original setting.

The experiment was conducted in 8 g memory, Xeon E5-2630

CPU (Intel Corp., Santa Clara, USA), GeForce RTX 2080 Ti

(NVIDIA Corp., Santa Clara, USA) GPU environment. Segnet

network, Unet network, the batch size of the Improved_Unet

network was set to 10, and the epoch was set to 100. After

training, the final model was obtained. The DeeplabV3+ network

using the transfer learning method used pre-trained network

parameters. The parameters were obtained from the public

training data set PASCAL VOC 2012. In view of the deep

number of network layers, only the last layer of the network

was thawed to train our own data set. Because the pretraining

parameters were used, the network can be stable soon. Therefore,

the epoch was set to 60 and the batch size to 10. The training

environment was consistent with the previous networks. In order

to balance the uneven situation of lodging and nonlodging

samples, the Tversky loss function was used in all network

training. In order to evaluate the obtained model, precision,

dice, recall, and accuracy evaluation indexes were used to

evaluate the model comprehensively. The formulas of loss

function and evaluation index are shown in equations 3–7.

TL = 1 −
TP + ϵ

TP + aFN + bFP + ϵ
(3)
FIGURE 4

Improved_Unet network. The network was divided into Encoder and Decoder. The feature images were calculated in the Encoder part by
Convolution and Involution; the Decoder part included Unpooling. The front and rear features were combined by Concatenate. The BN means
Batch Normalization which speeds up the training process, improves performance and solves the problem of gradient disappearance; the C
Represents Concatenate which combines front and back features; the blue arrow to the right represents Convolution 64, 3*3+BN+Relu function;
the yellow arrow to the right represents Dense block who’s structure is shown in the blue box, which combines the front and rear features; the red
arrow to the right represents Convolution with convolution kernel of 1*1 and number of feature maps of 1; the black arrow to the right represents
Involution + BN +Relu; the Max pooling retains key features while reducing parameters; and the Unpooling enlarges image size.
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Precision =
TP

TP + FP
(4)

Dice =
2TP

2TP + FP + FN
(5)

Recall =
TP

TP + FN
(6)

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

Where TP (true positive) indicates the correct classification

of samples (the lodging area is divided into the lodging area); FP

(false positive) indicates false alarm, that is, the negative sample

is divided into positive samples (the nonlodging area is divided

into the lodging area); and FN (false negative) indicates false

alarm, that is, the positive sample is divided into negative

samples (the lodging area is divided into the nonlodging area).

TL (Tversky Loss function) serves as the network loss function,

and a and b represent the two hyperparameters (taking values

between 0 and 1,a = 1-b). By adjusting a and b, the trade-off

between false positives (False positives) and false negatives (False

negatives) can be controlled. ϵrepresents the constant.

2.2.4 Model validation
The Involution operator enhanced the ability to capture

information. In order to further verify the robustness and

segmentation accuracy of the Improved_Unet, the evaluation

was also performed on the UAV images of wheat lodging

collected from other farms in Shucheng County, Anhui

Province, China in 2019. The image acquisition platform was

DJI Elf 4pro. The shooting day was on May 10, 2019. The flight

altitude was 20 m. The data processing process was the same as

in Section 2.1.2. The segmentation accuracy of Improved_Unet,
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Unet, Segnet and DeeplabV3+ networks on the new data was

used to evaluate the robustness of the constructed model.
3 Results

3.1 The effect of the proposed
Improved_Unet model

In order to evaluate the effects of the improved network

proposed in this study and its original network, the prediction

accuracy of the two networks was compared after arbitrarily

cropping the lodging image. Figure 5 shows the loss convergence

curves of the Unet network and the proposed Improved_Unet

network in this study.

As shown in Figure 5, compared with the Unet model, the

Improved_Unet model had a faster loss convergence speed and a

smoother curve. The loss of the Unet model fluctuated violently

at the beginning, and the loss of the Improved_Unet model

changed more gently. Especially in the interval where the loss

changed less, the training of the Improved_Unet model was

closer to the validation loss, and the curve fluctuation was

smaller, which indicates that the Improved_Unet model is

more stable. To further verify the accuracy of the proposed

Improved_Unet model, the image of the study area was

arbitrarily cropped, and the effects of the network before and

after the improvement were compared in this study. The results

are shown in Figure 6.

In Figure 6, based on the overall prediction and

segmentation effect, the segmentation results of the

Improved_Unet network were better in the segmentation of

large and small lodging areas, and the results were closer to those

manually labeled by experts. The segmentation results of the

Unet network had some noise points (misclassification, as
FIGURE 5

Comparison of the loss convergence curves between the Unet and Improved_Unet models.
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shown in the red box in Figure 6C), and the prediction of some

small lodging sites was unsuccessful, or the prediction had a

more significant deviation (as shown in the yellow box in

Figure 6C). In order to show the results of verification analysis

in a more detailed manner for the two networks, the 20-m flight

height data was taken for further illustration. The results are

shown in Table 2.

It can be seen from Table 2 that the results of the four

evaluation indicators of the Improved_Unet network were better

than those of the Unet network, and the Accuracy and Dice

coefficients of the Improved_Unet network were both greater

than 0.923, achieving better segmentation results. In particular,

the Accuracy at Maturity was 0.933, which was the highest

among all results.
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3.2 Accuracy comparison between the
Improved_Unet network and other
classical networks

To further compare the performance of the Improved_unet

network with the Segnet network, Unet network and Deeplabv3+

network on lodging segmentation, the results are shown in

Table 2. Taking the 20-m flight height data as an example, the

evaluation results of Precision, Dice, Recall, and Accuracy of the

four network models of Unet, Improved_unet, Segnet, and

Deeplabv3+ at the two growth stages (filling and maturity) of

wheat are listed. It can be seen from Table 2 that the

Improved_Unet network proposed in this study had the

highest Indicators at the stages. Followed by the DeeplabV3+
A B

DC

FIGURE 6

The arbitrarily cropped image of the experimental area and the prediction results of the two network models. (A) Original image of any site in
the experimental area, (B) Manually labeled image, (C) Unet prediction results, (D) Improved_Unet prediction results.
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network, its maturity Accuracy and Dice coefficients were 0.917

and 0.913, respectively. Overall, the method proposed in this

study was superior to the other three classical segmentation

networks in the extraction accuracy of lodging areas.
3.3 Robustness verification of the
Improved_Unet in other study areas

Although the Improved_Unet network model proposed in

this study had higher accuracy compared to other classic network

models, its robustness (whether it was still applicable in different

years and different geographical regions) needed to be verified.

Figure 7 shows the arbitrarily cropping the original and manual

labeled images and four kinds of network processing in the study
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area obtained in 2019. Specifically, Figure 7A was the original

image of lodging wheat taken by UAV, and Figure 7B was the

result of manual labeling by experts. Figures 7C–F were the

prediction results of the Improved_Unet, Segnet, Unet, and

DeeplabV3+ networks, respectively. Table 3 displays the

robustness verification results of the different networks.

From the visual results in Figure 7, the lodging wheat area

segmented by the Improved_Unet network was highly

consistent with the results labeled by the experts. Whether it

was a large lodging area or a small lodging area, the

segmentation results had a high similarity with the labels.

Further, the segmentation results were quantified and the

results of the four evaluation indicators Precision, Dice, Recall,

and Accuracy were compared. On average, each metric was

improved by more than 3 percentage points, and among the
TABLE 2 Comparison of the results of four networks at the 20-m height.

Evaluation Indicators Unet Improved_Unet Segnet DeeplabV3+

Filling Maturity Filling Maturity Filling Maturity Filling Maturity

Precision 0.870 0.875 0.892 0.907 0.821 0.837 0.881 0.865

Dice 0.881 0.894 0.918 0.929 0.868 0.877 0.901 0.913

Recall 0.872 0.876 0.879 0.884 0.854 0.863 0.870 0.881

Accuracy 0.910 0.914 0.923 0.933 0.883 0.890 0.914 0.917
fron
After all the data training in Table 1, the data at a height of 20 m were separately extracted for prediction.
A B D E FC

FIGURE 7

Comparison of processing results of different network models in other experimental areas. (A) Original image of lodging wheat taken by UAV,
(B) Wheat lodging labeled image marked by experts, (C) Lodging prediction image of Unet, (D) Lodging prediction image of Improved_Unet,
(E) Lodging prediction image of Segnet, and (F) Lodging prediction image of Deeplabv3+.
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individual metrics, the Precison of Improved_Unet showed the

significant improvement of 10.8% over the Precison of Segnet

network. It can be seen from Table 3 that the segmentation effect

of the Improved_Unet network proposed in this study was

significantly better than the other three networks, and the

results of the four indicators were 0.851, 0.892, 0.844, and

0.885, respectively. Among them, the segmentation result of

the Segnet network was the worst. The Precision was 0.768, the

Accuracy was 0.840, and the noise and misclassification were the

most serious. The Precision and Accuracy of the Improved_Unet

were 0.083 and 0.045 higher than those of Segnet, respectively.

Therefore, the method proposed in this study had the best effect

on the prediction results of these networks evaluated. Although

there was little noise and misclassification, the overall

segmentation results had smooth edges, and the robustness of

the model verified by data in different years and geographical

locations was acceptable.
4 Discussion

4.1 The difference between the proposed
method and other classical networks

This study investigated the application of a deep learning

algorithm in wheat lodging segmentation. Compared with the

classical Segnet, Unet and Deeplabv3+ networks, the

improved_Unet developed in this study has better performance

on the four evaluation indicators, Precision, Dice, Recall, and

Accuracy. The average improvement of each indicator was 3%

and the maximum average improvement was 6%. Furthermore,

the segmentation effect was also the best based on the validation

tests of different years and geographical locations. It is proved that

the proposed method is more accurate and more applicable.

Therefore, it has more advantages in the extraction of wheat

lodging. Compared with the four kinds of deep learning networks,

Segnet has improved the full convolution and the information

extraction method with the new encoding and decoding form

(Badrinarayanan et al., 2017). However, it loses much important

information in the process of convolution through the Unpooling

to retain some features. It is not enough to improve segmentation

accuracy. The results of Table 3 show that the Precision of this

method was less than 0.84 at the grain filling and maturity stages,
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and the four evaluation indexes were less than 0.84 in other areas,

which was the worst among the four deep learning networks. The

Unet network can improve the encoding and decoding form, the

relative character of the coding part is retained by connecting the

encoding and decoding features (Chen et al., 2019). Compared

with the Segnet network, the accuracy was improved, the

Precision, Dice, Recall and Accuracy were all higher than 0.85

at the filling and mature stages. However, the segmentation

accuracy was still on average. Chauhan et al. (2019) used the

UAV multispectral image and adopted the multi-resolution

segmentation (MRS) algorithm and nearest neighbor

classification algorithm to realize the classification of lodging

wheat with different severities with an overall accuracy of 90%.

Li et al. (2021b) combined a random forest with a Segnet and Unet

network to cut down sunflowers, yielding an accuracy of 88%.

Yang et al. (2020) obtained an accuracy of 0.8 for Segnet

segmentation of rice lodging. Compared with the previous

research, the proposed method has obtained a higher precision.

Cao et al. (2021) proposed a hybrid algorithm based on a

watershed algorithm and adap-tive threshold segmentation to

extract wheat lodging, which is better than a single watershed

algorithm with an accuracy of 94%. However, the method is

complex in data acquisition and requires the integration of

multiple algorithms for the process, which makes it difficult to

be promoted for practical application in operational systems. In

this study, we only need to provide RGB data and combine with

the Improved_Unet network to obtain high-precision inverted

monitoring. For the DeeplabV3+ network, the coding part added

Atrous spatial pyramid pooling (ASPP) and the improved

Xception module and retained more details, which enabled the

segmentation accuracy to improve significantly (Chen et al.,

2018). Above all, the accuracy achieved more than 0.9 at the

filling and mature stages. Kim et al. (2021) constructed

DeepLabV3 semantic segmentation model based on ResNetV2

101 backbone network to segment rice lodging with a precision of

87%, which is similar to the result of the current study. However,

the network has too many layers, the training time is too long, and

it can only be applied by means of migration learning in small

sample data sets, which dramatically limits the scope and effect of

the network. In this study, the proposed Improved_Unet

combines the advantages of Segnet and Unet, uses an involution

operator to replace the convolution operation of the backbone

part, realizes the spatial specificity, takes different operations for
TABLE 3 Robustness verification of different networks.

Method Precision Dice Recall Accuracy

Segnet 0.768 0.823 0.802 0.840

Unet 0.812 0.855 0.827 0.861

Improved_Unet 0.851 0.892 0.844 0.885

DeeplabV3+ 0.827 0.874 0.816 0.869
fro
Table 3 was the prediction result of Figure 7 after all data training in Table 1.
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different pixels, and ensures the maximum information extraction,

and thus the results of the four evaluation indexes are better than

those of the other three classical deep learning networks. However,

when taking the 2019 validation data as an example to compare

the Segnet, Unet, Deeplabv3+ and Improved_Unet networks for

the average training time, it was found that the average training

time of these four networks was 1.6, 1.92, 2.78 and 2.38 h,

respectively. The results indicate that the training time of the

method proposed in this study was relatively longer. This might be

due to the fact that the combination of features before and after

the coding part retains more relevant features and the number of

network layers is deeper. In the follow-up research, we will focus

on reducing the number of network layers to ensure more

practical promotion value.
4.2 The effectiveness analysis of the
proposed method at different
flight altitudes

At present, most of the methods proposed by previous

investigators are based on the single flight altitude data. Yang

et al. (2021) obtained 89% accuracy of wheat lodging extraction

using 30-m flight altitude data through the improved Unet

model. Zhang et al. (2020a) obtained 20-m flight height image

of wheat lodging for segmentation, the segmentation accuracy

was more than 85%. Some scholars have also studied the UAV

data for different flight heights. Zhang et al. (2022) combined

three flight heights of 15, 45 and 91m in their study for wheat

lodging monitoring with an accuracy of 67%. Compared with

this study, we find that the Improved model, constructed by

multi-height images, has similar effect on single-height lodging

wheat as that constructed by other deep learning methods, but it

is also suitable for multi-height estimation, which shows the

advantage of application and popularization. Considering the

factors such as monitoring area, operating time, and weather

conditions during the operation that will impact UAV

monitoring crop lodging, the flight altitude is the key to

solving the above problems. Therefore, the study of flight

altitude is of great significance in crop production. In this

study, we collected the data of UAV images at the maturity

stage as an example to discuss the adaptability and influence

factors of the proposed method at four flight altitudes. The

results are shown in Table 4.
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Table 4 shows that the segmentation accuracy of wheat

lodging decreased with the increase of flying height from 20 to

120 m. Precision, Dice, Recall, and Accuracy were 0.907, 0.929,

0.884 and 0.933 at the 20-m flight altitude, respectively, which

were the highest at all four flight altitudes. The 120-m flight

altitude was the worst, and its four indexes decreased from 4 to

7%. Therefore, it can be concluded that different flying heights

affect the precision of wheat lodging segmentation. However,

further analysis of the results shows that there was no significant

difference in the results of lodging segmentation when

comparisons were made between 20 and 40 m and between 80

and 120 m, and the difference of the four precision indexes was

small, with the ranges from 0.007 to 0.013 and from 0.011 to

0.023, respectively (Table 4). When the flight altitude changed

from 40 to 80 m, the difference between the four indexes of the

lodging segmentation precision was between 0.019 and 0.031,

which was obviously increased. The possible reasons are as

follows: (1) with the increase of flying altitude, the larger the

study area in the original image, the more ground objects (bare

soil, weeds, etc.) are contained in a single pixel, and the less

detailed information of the plant to some extent. In such way, it

interferes with the accuracy of the study; and 2) the data of 80

and 120 m were sampled from the 20-m altitude, and there

might be some loss of information (Xiao et al., 2020). The Peak

Signal to Noise Ratio (PSNR) values of the original and down-

sampling images were 32DB and 27DB, respectively. The higher

the altitude, the more information may be lost. To sum up, the

determination of effective flight altitude is beneficial to

maximizing UAV’s operational efficiency and achieving

reasonable lodging segmentation precision.
4.3 Future work

In this study, both the grain-filling and maturity stages were

studied. Wheat lodging usually is more severe at these stages

than any earlier growth stages. Therefore, the proposed

Improved_Unet network has a good segmentation effect and

can provide technical support for lodging estimation. However,

developing a method to monitor lodging at the early and middle

stages of wheat growth and development can help take

preventative farming measures to reduce the yield loss caused

by lodging. This could be one of the research areas in the

future studies.
TABLE 4 Comparison of the results of our proposed method at four different flight altitudes.

Flight height Precision Dice Recall Accuracy

20 m 0.907 0.929 0.884 0.933

40 m 0.900 0.918 0.871 0.922

80 m 0.860 0.887 0.852 0.896

120 m 0.845 0.864 0.841 0.881
fro
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5 Conclusions

With a focus on wheat lodging extraction in the current

study, we collected the UAV RGB images of wheat at the filling

and maturity stages using DJI Phantom 4Pro flying at different

flight altitudes. Through data processing and analysis, and

model accuracy evaluation, we have developed the lodging

extraction network Improved_Unet with good applicability

and robustness. This new method for wheat lodging extraction

is an improvement over the Unet network. The Improved_Unet

network has the best results in the four evaluation indexes

compared with Segnet network, Unet network and DeeplabV3

+ network. Taking the 20-m flight altitude as an example, the

values of Accuracy and Dice in the evaluation indexes were both

greater than 0.915, and the segmentation result was the best. For

the combined data from both two growth stages, the Accuracy of

the maturity stage was 0.933, which was better than that of the

filling stage. The results were verified by using data from

different flight altitudes and found that the 20-m flight altitude

was the best. With the increase of flight altitude, the

segmentation accuracy of wheat lodging decreased

successively. Although the research method proposed in this

paper has high accuracy in extracting wheat lodging, its practical

application needs to be further studied in the future.
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