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During the growth season, jujube trees are susceptible to infestation by the leaf 

mite, which reduces the fruit quality and productivity. Traditional monitoring 

techniques for mites are time-consuming, difficult, subjective, and result in 

a time lag. In this study, the method based on a particle swarm optimization 

(PSO) algorithm extreme learning machine for estimation of leaf chlorophyll 

content (SPAD) under leaf mite infestation in jujube was proposed. Initially, 

image data and SPAD values for jujube orchards under four severities of leaf 

mite infestation were collected for analysis. Six vegetation indices and SPAD 

value were chosen for correlation analysis to establish the estimation model 

for SPAD and the vegetation indices. To address the influence of colinearity 

between spectral bands, the feature band with the highest correlation 

coefficient was retrieved first using the successive projection algorithm. 

In the modeling process, the PSO correlation coefficient was initialized 

with the convergent optimal approximation of the fitness function value; 

the root mean square error (RMSE) of the predicted and measured values 

was derived as an indicator of PSO goodness-of-fit to solve the problems 

of ELM model weights, threshold randomness, and uncertainty of network 

parameters; and finally, an iterative update method was used to determine 

the particle fitness value to optimize the minimum error or iteration number. 

The results reflected that significant differences were observed in the 

spectral reflectance of the jujube canopy corresponding with the severity of 

leaf mite infestation, and the infestation severity was negatively correlated 

with the SPAD value of jujube leaves. The selected vegetation indices NDVI, 

RVI, PhRI, and MCARI were positively correlated with SPAD, whereas TCARI 

and GI were negatively correlated with SPAD. The accuracy of the optimized 

PSO-ELM model (R2 = 0.856, RMSE = 0.796) was superior to that of the ELM 

model alone (R2 = 0.748, RMSE = 1.689). The PSO-ELM model for remote 

sensing estimation of relative leaf chlorophyll content of jujube shows high 

fault tolerance and improved data-processing efficiency. The results provide 
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a reference for the utility of UAV remote sensing for monitoring leaf mite 

infestation of jujube.
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Introduction

The jujube tree (Zizyphus jujuba), which plays a significant 
role in the ecological and economic development of the Xinjiang 
oasis, is a key component of agricultural growth in southern 
Xinjiang. One of the primary pests that endanger the health of 
jujube is the leaf mite (Tetranychus truncatus Ehara), and when it 
infests the jujube during the growth season, it can lower the 
quality of the jujube by more than 35%. Therefore, efficient pest 
control and early detection are crucial for jujube 
orchard management.

Remote sensing monitoring using low-altitude unmanned 
aerial vehicles (UAVs), such as UAVs equipped with multispectral 
and hyperspectral cameras, addresses the above issues. In addition 
to low-altitude UAVs, measurements using satellites are also 
available for remote sensing to monitor the growth of crop plants. 
In recent years, agricultural pest and disease monitoring has 
increasingly utilized remote sensing monitoring technology (Adao 
et al., 2017; Bai et al., 2020; Jiang et al., 2021). With its rapid, real-
time, large-area, and non-destructive qualities, the technology has 
demonstrated benefits that cannot be matched by standard pest 
and disease monitoring approaches. Large-scale monitoring of 
crops, including crop area, pest and early warning, and growth 
conditions, may be accomplished by satellite remote sensing (Bai 
et al., 2019). However, throughout the imaging process, satellite 
remote sensing optical images are frequently influenced by 
inclement weather such as clouds, rain, and fog. Compared with 
satellite remote sensing, UAV remote sensing platforms have the 
characteristics of low operating cost, high flexibility, and fast data 
acquisition in real time, which is a unique advantage in the field 
of crop pest and disease detection. As an essential component of 
low-altitude remote sensing (Zhang et al., 2021), UAV remote 
sensing platforms have unique advantages for crop pest and 
disease monitoring, which considerably expands the scope of 
remote sensing use in crop monitoring (Dehkordi et al., 2020; Xu 
et  al., 2022). Satellite remote sensing is primarily used for 
monitoring broad areas, but it cannot provide images with 
sufficient spatial resolution and the images are susceptible to 
weather conditions (Bendig et  al., 2015; You et  al., 2022). In 
addition, the progressive improvement of UAV technology has 
made feasible its combination with hyperspectral and 
multispectral technology for agricultural disease monitoring, 
providing a reference for accurate crop disease monitoring and to 
guide remedial management (Adao et al., 2017; Li et al., 2021). For 
instance, UAV hyperspectral remote sensing can monitor a broad 

area with high precision, efficiency, and continuity, and accomplish 
the fusion of UAV multisource remote sensing imagery and target 
extraction. In previous studies (Liu et  al., 2020), UAV 
hyperspectral remote sensing has been utilized to perform 
pertinent research on a variety of agricultural diseases, such as 
citrus Huanglongbing (Garcia-Ruiz et al., 2013; Deng X.L. et al., 
2020), wheat yellow rust (Dehkordi et al., 2020; Guo et al., 2021), 
and pine wilt disease (Deng X. et al., 2020; Qin et al., 2021; Xia 
et al., 2021), etc.

UAV hyperspectral remote sensing facilitates information 
extraction in image and spectral dimensions, and is frequently 
employed for monitoring agricultural growth conditions, and pest 
and disease stress in the field. Photosynthesis is an essential 
reference for evaluation of plant development (Hunt et al., 2013, 
Sun Q. et al., 2021), and chlorophyll content is an indication of 
plant photosynthetic capacity; hence, chlorophyll content can 
effectively reflect the growth status of a crop (Ji et  al., 2021; 
Kaivosoja et  al., 2021; Lei et  al., 2021). The variation of the 
chlorophyll content of crops is important for monitoring the 
growth of crops. On the one hand, chlorophyll content absorption 
reflects the strength of photosynthesis, the growth stage and 
health status of crops; on the other hand, pests and diseases also 
directly affect the chlorophyll content of plants. Therefore, 
monitoring chlorophyll content effectively reflects the growth 
condition of crops. Variations in grayscale values on hyperspectral 
scanning recordings are caused on a broad scale when the crop is 
damaged by pests or disease, resulting in considerable variances 
in spatial, spectral, and temporal phases (Liu et al., 2017; Ahmad 
et al., 2018). The introduction of fused hyperspectral data and 
chlorophyll feature content approaches by analyzing local spectral 
differences of crops may also enhance remote sensing research on 
the monitoring of pests and diseases (Vanegas et al., 2018). It may 
be used for monitoring vegetation production, controlling crop 
resources, and monitoring pests and diseases by calculating the 
chlorophyll content of the crop canopy. Consequently (Wang 
et al., 2015), monitoring of crop chlorophyll content indicators 
might assist in reflecting the severity or incidence of agricultural 
pests and diseases to a certain extent.

A key biochemical indicator of crop development is 
chlorophyll content, and when jujube trees are infected with leaf 
mites, the amount of chlorophyll varies according to the degree of 
the disease. Hyperspectral has rich spectral information, which 
provides the possibility for the construction of chlorophyll 
inversion models. The severity of leaf mite infestation was 
correlated with chlorophyll content, which can be  indirectly 
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reflected by measuring the chlorophyll content of jujube. The 
majority of current research on crop chlorophyll inversion with 
hyperspectral data is based on statistical regression models, which 
may be broadly classified into two types: vegetation index models 
and direct spectrum models. In the vegetation index models, the 
hyperspectral data are first utilized to generate several vegetation 
indices (Sun Q. et al., 2021), which are then used to develop 
numerous linear or nonlinear regression methods to produce an 
inversion model between these indices and chlorophyll content in 
the vegetation index models (Guo et al., 2021; Ji et al., 2021; Sun 
J. et  al., 2021). It is easy to build the inversion model using 
vegetation indices, but a single vegetation index cannot adequately 
characterize the entire hyperspectral information. The direct 
spectrum models rely on the modeling of the entire hyperspectral 
bands, which is usually a high-dimension vector. Using the whole 
hyperspectral band directly may result in excessive model 
complexity or model overfitting. Dimension reduction approaches 
like as principal component analysis (PCA) or partial least squares 
(PLS) may assist in addressing this issue in part.

Most of the current research on the relationship between 
hyperspectral data and chlorophyll content focuses on the changes 
in chlorophyll content of crops under different nutrient stresses 
and different growth periods, while the hyperspectral inversion 
research on chlorophyll content of crops infected by diseases and 
insect pests is relatively less. The main performance is that the 
research pays more attention to the spectral characteristics of crop 
diseases and less attention to the physiological and biochemical 
changes in plants caused by diseases and insect pests. In addition, 
the research on crop diseases and insect pests using remote 
sensing technology is mostly aimed at grain crops such as wheat 
and rice, as well as economic crops such as cotton, soybean, and 
rapeseed, which pay less attention to pests and diseases of 
jujube plants.

Therefore, the aim of this study was to estimate SPAD values 
for leaf mite infestation of jujube based on UAV hyperspectral 
images. The estimation performance of the model based on VIs 
and selected feature bands was also analyzed. The relationship 
between the degree of leaf mite infestation and canopy leaf SPAD 
values was investigated based on the best estimates of SPAD values 
obtained. More specifically, the following points were noted in 
our study:

 (1) Based on the experimental data, the correlation between 
the hyperspectral characteristic parameters of the jujube 
canopy and chlorophyll content was analyzed.

 (2) Establishment of jujube SPAD estimation model under 
stress of leaf mite based on VI alone by using a linear 
regression model.

 (3) To improve the accuracy of the inversion of the chlorophyll 
content of jujube infested with leaf mites. A proposed 
method employs a successive projection algorithm (SPA) 
to extract the characteristic bands from the high-
dimensional hyperspectral vector, reducing model 
complexity and avoiding model overfitting. With the 

extracted characteristic bands as input, by building a 
PSO-ELM inversion model for the chlorophyll content 
of jujube.

Materials and methods

Study areas

The 224th regiment, the study area selected for this 
experiment, is located north of National Highway 315 at the 
crossroads of Pishan County and Moyu County in Hotan Region, 
on the southern edge of the Great Taklamakan Desert in Xinjiang, 
China (Li et al., 2021). The total land area is 234,751 km2 and the 
terrain slopes from the southwest to the northeast. Jujube 
predominates in the study area, which comprises a planting area 
of 74,057 ha, a sizable landmass, an abundance of light and heat 
resources, drought, low rainfall, high evaporation, low relative 
humidity, and significant diurnal temperature differences—all of 
which are unique natural conditions that have aided the explosive 
growth of the jujube industry in Xinjiang. The 14th division’s 
224th regiment began planting jujube in 2003, according to 
investigations by the Xinjiang Production and Construction 
Corps. jujube orchards have expanded by more than 90 km2 since 
approximately 2019, and constitute 72% of all arable land and 83% 
of all orchard land (Liu et al., 2015).

At the three designated study areas, a total of 90 sample survey 
sites were selected, where communities of healthy jujube plants 
and plants infested with leaf mites were clearly separated. Taking 
into consideration the features of pest infestation and the 
distinguishability of remote sensing images, the infestation 
severity was divided into four classes: healthy, mild damage, 
moderate damage, and severe damage. Based on an investigation 
of the effects of environmental changes on leaf mite infestation of 
jujube trees in Xinjiang, it was determined that the peak incidence 
of leaf mites occurs annually from June to August (Zhang et al., 
2013; Li H. et al., 2020). By clustering, leaf mites mostly suck sap 
on the underside of leaves, causing grayish white or yellowish fine 
patches on the leaves, decreasing the leaf chlorophyll content, and 
impairing the development and growth of jujube plants. In light 
of this, the present experiment chose the aforementioned period 
to conduct the research and employed an UAV-mounted 
hyperspectral sensor and ground acquisition for data collection in 
the field trial. The study area shown in Figure 1.

Data acquisition

UAV hyperspectral remote sensing image 
acquisition and data processing

The experiment employed a M600Pro UAV (Shenzhen DJI, 
Shenzhen, China) equipped with a hyperspectral camera (Rikola, 
Oulu, Finland) and the SPAD-502Plus (Konica Minolta, Osaka, 
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Japan). Supplementary Figure  1 depicts the experimental 
instruments and the scene diagrams. The acquisition period 
ranged from 11:00 to 15:00 (the sun altitude angle was >45°) 
under bright, clear, or partially overcast conditions. In anticipation 
of flight photography, radiation correction was conducted on the 
hyperspectral camera. Four 50 cm × 50 cm diffuse reflectance gray 
plates (reflections of 3%, 22%, 48%, and 64%, respectively.) were 
placed on a level surface in the test location, and the surface of the 
calibration plate was devoid of interfering objects and shadows. In 
accordance with the features of the hyperspectral imagers 
provided by Rikola, system correction and post-processing 
correction were conducted on the hyperspectral images after 
image acquisition was completed.

Correcting the system

In the course of capturing hyperspectral images, the UAV 
platform creates inevitable systematic inaccuracies owing to the 
instrument’s inherent constraints and the measurement technique, 
which must be  addressed. Radiation calibration, dark current 
correction, and lens vignetting correction are the primary  
components.

The feature information of the original jujube tree orchard 
hyperspectral image was expressed as the digital number (DN). 
However, because the systematic error DN cannot accurately 
reflect the spectral characteristics of the feature, the DN of the 
original image must be converted to the feature reflectance using 
the information for the calibration plate representing the specific 
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FIGURE 1

Study area. (A) Xinjiang Uygur Autonomous Region; (B) Hotan area; (C) 224th regiment; (D) and (E) Image of the study area.
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reflectance obtained at the same time as the experiment, as shown 
in Equation (1).

 
r r r rt

tDN DN
DN DN

=
-
-

-( ) +1

2 1

2 1 1

 
(1)

where rt and DNt  are the reflectance and DN of the original 
image target element, r1  and r2 are the reflectance of different 
calibration plates, and DN1  and DN2  denote the DN value of 
different calibration plates, respectively.

Post-processing refinement

In this work, the UAV images were captured using frame-wide 
imaging. Owing to the imaging principle and environment, there 
are small changes in position and attitude between the bands, 
resulting in hyperspectral cube bands that do not totally overlap. 
The flight time of the UAV is ~20–30 min, and the radiation 
brightness gradient difference between different bands will 
be  affected by the change of solar illumination conditions, 
resulting in inhomogeneous color and DN. The irradiance can 
be  effectively corrected to the normal level using Equations 
(2), (3).

 
L L Cjc at sensor j at j

sensor
l l l( ) = ( ) ´ ( )_  

(2)

 
C E Ej j refl l l( ) = ( ) ( )/

 
(3)

where Ljc at sensorl( ) _ is the irradiance consistency 
corrected image; Ljc atsensor

l( ) is the jth original image; C j l( )  is 
the jth image multiplicative correction factor; E j l( )  is the 
irradiance value recorded for the jth image; and Eref l( )  is the 
irradiance value of the reference image.

The UAV flew at a height of 60 m, at a speed of 5 m s−1, with 
overlap and side overlap of the images of 75%, a baseline 
distance of 25.9 m, a route spacing of 34.5 m. The Agisoft 
PhotoScan program was used to import photographs and the 
position and orientation system data, define the coordinate 
system, align the images, produce point clouds, grids, and 
textures, construct a digital elevation model, and produce 
orthophotos. The stitched orthophoto was geometrically 
corrected using GPS point data collected in the field to reduce 
the accuracy between the hyperspectral image features and the 
actual feature positions. The projection coordinate system was 
set to the Universal Transverse Mercator and the final correction 
error was controlled within 0.5 m. Within 0.5 m is the ultimate 
correcting error. Even after radiation correction, a variety of 
random disturbances remain in the picture reflectance, 
including impulse noise and Gaussian noise. Using Savitzky–
Golay filtering, the spectral curve was considered to be polished, 
ensuring that the noise was efficiently smoothed with the same 
form and width as the signal.

Measurement of SPAD at ground 
sampling points

The collection environment is shown in 
Supplementary Figure  2. A handheld chlorophyll absorbance 
meter, the SPAD-502Plus, was used to estimate the chlorophyll 
content of leaves swiftly and non-destructively. On the same day 
as the UAV flight, the SPAD properties of jujube trees were 
assessed. The field sampling points were arranged in the shape of 
a ‘S’, each of the three chosen blocks comprised 30 sampling 
points. Four classes of jujube trees were selected with the same 
spatial distribution. Thus, 90 sets of samples were gathered, 
consisting of a total of 1,200 samples. Following the sample 
allocation concept, 20 of the 90 groups of samples were utilized as 
test samples, while the measured SPAD values of the remaining 70 
groups were randomly chosen as modeling samples. To minimize 
sampling error, canopy leaves of comparable size, color, and shape 
were chosen for the sampling procedure (Han et al., 2021). The 
measurements were performed at the leaf tip, center, and base, and 
the mean value was used to represent the leaf ’s SPAD 
characteristic parameter.

Classification of plant pest severity

This study was carried out in experimental plots with leaf mite 
occurrence in the field, and field leaf mite surveys were conducted 
by hand to collect samples. At the time of sampling, the degree of 
leaf damage and the latitude and longitude information of the 
sampling site were recorded based on GPS positioning, the 90 
sample points were sited evenly throughout the jujube tree 
planting area. According to the Code of Practice of Prevention and 
Control Techniques for Pests and Diseases of Jujube (National 
Standard of the People’s Republic China), the severity levels of 
jujube tree mite infestation was divided into four classes in 
Supplementary Table 1. Healthy leaves were assigned a value of I, 
mild damage a value of II, moderate damage a value of III, and 
severe damage a value of IV. The four categories leaves are shown 
in Figure 2.

Vegetation index

A vegetation index may be subdivided into several vegetation 
index parameters based on various monitoring and computation 
methodologies (Torres-Sanchez et al., 2014; Liu et al., 2020; Ji 
et al., 2021). A vegetation index incorporates linear or nonlinear 
combinations of reflectance in distinct spectral bands to produce 
correlated spectral signals so as to simplify the spectral 
information and enhance vegetation-related features. For 
identification of agricultural pests and diseases, the visible red 
band, which is highly absorptive in green plants, and the near-
infrared band, which is highly reflective and transmissive in green 
plants, are often selected. The spectral response of these two bands 
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to the same biophysical phenomena provides a strong contrast 
that changes with the leaf canopy structure and coverage; hence, 
their ratio, difference, or linear combination may be utilized to 
augment or disclose the implicit vegetation information (Lei et al., 
2021). In the present study, the normalized difference vegetation 
index (NDVI), ratio vegetation index (RVI), physiological reflex 
vegetation index (PhRI), modified chlorophyll absorption ratio 
index (MCARI), transformed chlorophyll absorption ratio index 
(TCARI), and green index (GI) were chosen. Information on the 
vegetation indices is presented in Table 1.

Statistical analysis

Regarding the accuracy of the parameter estimates, the 
coefficient of determination (R2) and root mean square error 
(RMSE) were employed to assess the model accuracy. The R2 value 

represents the degree of fit, whereas RMSE measures the accuracy 
of data measurement. In general, it is believed that the closer the 
R2 value is to 1, the better it indicates a strong goodness of fit, and 
conversely, a low value indicates a poor goodness of fit. The 
smaller the RMSE, the better it indicates a small error, whereas a 
high value indicates the inaccuracy is large. The calculation of 
these statistics is shown in Equations (4), (5):

 

2 2
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2 2

1 1
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where n  denotes the number of samples for estimation or 
validation of the model; xi , x , yi , and y  denote: measured 
value, measured mean value, estimated value, and estimated mean 
value, respectively.

Results

Characteristics of SPAD variation

From 90 sample points, a total of 1,200 ground SPAD values 
were obtained, Table 2 summarizes the statistical properties of 
the sampled data. The modeling sample and the validation 
sample differed except for the data samples. The variation range 
of SPAD values for the modeling set of samples was 20.80–66.90, 

A B

C D

FIGURE 2

Different degrees of leaf mite infestation in jujube severity.

TABLE 1 Vegetation index information.

Name Formula Comprehensive embodiment Application Reference

NDVI NIR R
NIR R

-
+

Integrated crop growth variability Diseases detection Mahlein et al. (2013)

RVI NIR
R

Crops growth sensitivity Chlorophyll estimation Birth and McVey (1968)

PhRI ( )
( )

550 531
550 531

R R
R R

-
+

Crop growth pattern Chlorophyll estimation Daughtry et al. (2000)

MCARI ( ) ( )( )0.2701 671 701 549
701
671

R R R R
R
R

- - -

æ ö
ç ÷
è ø

Crops chlorophyll variations LAI and chlorophyll estimation Zhang et al. (2019)

TCARI

( ) ( )0.2
3 700 500

700 675
700
670

R R
R R

R
R

æ ö
ç ÷

-ç ÷- -ç ÷æ öç ÷ç ÷ç ÷è øè ø

Crops growth sensitivity Chlorophyll estimation Haboudane et al. (2002)

GI 554
677

R
R

æ ö
ç ÷
è ø

Crops green variability Leaf rust detection Ashourloo et al. (2014)
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the mean was 46.21, and the coefficient of variation was 21.01%. 
The variation range of SPAD values for the validation set of 
samples was 21.50–67.50, the mean was 45.97, and the CV was 
21.06%. Considering the impact of leaf mites on the leaf 
chlorophyll content, the CV of the SPAD values was more than 
10%, suggesting that the chlorophyll content was more variable. 
The discrepancies between the modeling and validation sets 
were negligible, there were no significant differences within the 
modeling and validation sets (p = 0.678), as determined by an 
independent samples t-test. Therefore, the sample sets were 
appropriate for modeling and validation.

Analysis of SPAD and spectral 
characteristics of jujube under infestation 
of leaf mite

Chlorophyll content is an indicator of the biochemical 
parameters of the crop and reflects the growth of the crop (Qi 
et al., 2021). Pest infestation causes changes in the chlorophyll 
content of the crop. Thus, measuring chlorophyll content reveals 
the health and vigor of the crop. When jujube plants are infected 
with leaf mites, the mean SPAD value of their canopy leaves 
decreases gradually with an increase in the severity of leaf mite 
infestation (Figure 3). The results demonstrated that the SPAD 
value of jujube trees was negatively associated with the severity of 
leaf mite infestation.

With the more severe leaf mite infestation, the SPAD values of 
jujube chlorophyll content gradually decreased, thus causing 
changes in the spectral characteristics of the canopy of jujube, 
showing a trend of decreasing spectral reflectance step by step 
with the increase of leaf mite infestation. Figure 4 depicts the 
average spectral reflectance curves of jujube trees at the canopy 
scale under different severities of leaf mite infestation. The spectral 
band features of jujube plants differ notably with the severity of 
leaf mite infestation. Considering the phenomena of “green peaks” 
owing to decreased chlorophyll absorption, the spectral 
characteristic curves of healthy jujube trees exhibited modest 
reflectance peaks in the green band between 520 and 570 nm. 
Because of the intense absorption of chlorophyll for 
photosynthesis, a red wavelength absorption trough, termed a 
“red valley,” forms in the red wavelength range of 620–690 nm. As 
the chlorophyll concentration rises, so does the photosynthetic 
capability. The “green peak” and “red valley” in the green light 
spectrum progressively diminish between 680 and 750 nm. Given 
light scattering within the leaf, the reflectance in the near-infrared 

range exhibits conspicuous peaks of high reflectance, which 
constitute the spectrum’s largest peak and generate a highly 
reflective platform. The variation in spectral reflectance of leaf 
mite damage of jujube trees was increasingly evident with an 
increase in the severity of infestation, which led to a decline in 
chlorophyll content and severe damage to the cellular structure 
and tissues of the leaf.

Correlation between SPAD value and 
vegetation indices of jujube trees

To facilitate an understanding of the relationship between 
vegetation indices and the chlorophyll content of jujube, a 
correlation coefficient matrix map is presented in Figure  5. 
Positive correlations are represented by numbers greater than 
zero, whereas negative correlations are represented by values less 
than zero (Yang et al., 2021). The absolute values of the correlation 
coefficients between SPAD and NDVI, RVI, PhRI, MCARI, 
TCARI, and GI ranged from 0.64 to 0.82. The NDVI, RVI, PhRI, 
and MCARI were positively correlated with SPAD, whereas 
TCARI and GI were negatively correlated with SPAD. As can 
be  seen in Figure  5, the six selected vegetation indices were 
significantly correlated with SPAD, among which the correlation 
coefficient between leaf SPAD value and PhRI reached a 
maximum of 0.82, which was higher than the correlation 
coefficient between SPAD value and other vegetation indices. 
Further, by taking SPAD of jujube leaves as the dependent 
variable, and using NDVI, RVI, PhRI, MCARI, TCARI, and GI 
as independent variables, a remote sensing estimation model for 
the relative chlorophyll content of jujube canopy leaves was 
constructed. Table 3 shows the statistical regression modeling of 
vegetation indices to inversion chlorophyll content. The modeling 
determination coefficient of the SPAD-PhRI estimation model 
was 0.702, which was higher than the modeling accuracy of SPAD 
value and other vegetation indices.

FIGURE 3

Variations in SPAD values of jujube leaves for different leaf mite 
infestation levels.

TABLE 2 Statistical characteristics of chlorophyll content.

Sample 
set

No. of 
samples

Min. Max. Mean. Std. 
deviation

C.V/%

Overall 1,200 20.80 67.50 46.17 9.66 20.93

Modeling Set 800 20.80 66.90 46.21 9.71 21.01

Validation Set 400 21.50 67.50 45.97 9.68 21.06
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Correlation between SPAD value and 
spectral reflectance

As the chlorophyll content of jujube trees infected by leaf 
mites will change, as illustrated in Figure 6, chosen chlorophylls 
significantly associated with leaf mite infection were correlated 
with the raw and first-order derivative spectra for the analysis. 
The correlation coefficients between the original spectra and the 
SPAD value were negative at 500–749 nm and positive above 

750 nm (Figure  6A). The absolute value of the correlation 
between the original spectrum and the chlorophyll content is 
mostly between 0.5 and 0.65, and the curve changes are relatively 
flat. When the original spectrum is transformed by the first 
derivative, the correlation with the chlorophyll content of jujube 
leaves is significantly enhanced in some wavelength bands, 
among which it reaches a very significant positive correlation at 
660, 685, 735, and 754 nm, and at 550, 588, 633, and 702 nm 
highly significant negative correlation. The maximum correlation 

FIGURE 4

Spectral curves of jujube trees for different leaf mite damage indices.

FIGURE 5

Correlation analysis between SPAD and vegetation index.
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coefficients between the first-order derivative spectra and the 
SPAD value were −0.75 and 0.70 at 702 and 754 nm (Figure 6B), 
respectively. It is evident that the chlorophyll of jujube leaves 
strongly affects the first-order differential spectrum under the 
leaf mite infestation. The curve of the correlation coefficient 
between the first-order derivative spectrum and chlorophyll 

content fluctuates obviously. Considering that the spectral 
derivative enhances the slight change in the slope of the spectral 
curve, the reason for this change is related to the biochemical 
absorption characteristics of crops. It can be  seen that the 
chlorophyll of jujube trees is damaged by the infection of leaf 
mites, and the first derivative spectrum has a strong sensitivity 
to the chlorophyll content of jujube. Consequently, hyperspectral 
remote sensing technology may be  used to quantify the 
chlorophyll content of jujube under the stress of leaf 
mite infestation.

SPA feature band selection

Hyperspectral data are abundant in volume and wavelength 
information, but the correlation between wavelengths is excessively 
high and contains a substantial quantity of duplicated information, 

TABLE 3 Correlation between SPAD values of canopy leaves and 
vegetation index of jujube trees.

VI Model R2 RMSE

NDVI y = 2.04x + 65.36 0.668 1.062

RVI y = 18.14x + 101.76 0.585 0.951

PhRI y = 15.61x + 94.95 0.702 0.886

MCARI y = 2.0x + 65.3 0.657 0.869

TCARI y = −0.53x + 80.20 0.632 0.896

GI y = 2.74x + 72.55 0.608 0.787

A

B

FIGURE 6

(A) Raw spectra with SPAD correlation analysis; (B) First-order derivative spectra with SPAD correlation analysis.
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which poses a barrier to the storage and processing of huge 
amounts of data for practical applications (Liu et  al., 2021). 
However, duplicate information in the spectral can be avoided by 
using a successive projection algorithm (SPA) for analysis to select 
the wavelengths of interest. The RMSE is calculated as the square 
root of the sum of the square of the departure of the observed value 
from the actual value divided by the number of observations and 
is used to assess the deviation between the observed and true 
values (de Sousa Fernandes et al., 2016). Given that the objective 
of feature wavelength extraction is to accurately categorize healthy 
and unhealthy plants, the fewest possible feature wavelengths 
should be used. In the present study, the RMSE decreased with an 
increase in the number of feature bands extracted (Figure 7A). The 
RMSE was smallest (0.451) with five feature wavelengths; the 
minimum RMSE value is attained when the number of bands 
contained in the corresponding optimal band set, which is the 
optimal subset of bands for the period, attains its minimum. 
Therefore, five characteristic wavelengths were chosen as the 
optimal outcome. The selected characteristic bands comprised 
512.1, 628.8, 674.2, 736.6, and 773.2 nm (Figure 7B).

Model building and prediction

An ELM is a feed-forward neural network with a single or 
multiple hidden layers. Unlike in conventional neural networks 
with back propagation (BP), the parameters of the nodes in the 
hidden layers of ELM are randomly assigned and never tuned. It 
solves the shortcomings of classic neural networks, such as 
sluggish training rate, local optimum instability, and sensitivity to 
learning rate (Li W. et al., 2020). However, the conventional ELM 
architecture is considered to have drawbacks (Zhang et al., 2022), 
such as the unpredictability of weights and thresholds, and the 
uncertainty of network parameters, which make it less effective at 
processing data and result in overfitting phenomena that reduce 
the accuracy of the prediction model. To optimize the parameters, 

such as weights and thresholds, of the ELM model in order to 
increase the prediction accuracy of the model, PSO was 
implemented (Kaloop et al., 2019). The position and velocity of 
the particles were updated according to Equations (6), (7), the 
particle fitness value was recalculated, the individual extremes and 
population extremes were determined with each update, and 
iterations were repeated in order to conduct an optimization 
search in the solution space.

 
( ) ( ) ( )

( ) ( )
1 1

2 2

1kd kd kd kd

kd kd

V t V c r Pbest t X t
c r Gbest t X t

w+ = + é - ùë û
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where V tkd +( )1  is the velocity of particle k  in the d th 
dimension in the t +1 th iteration; w  is the inertia weight, 
generally taken to be 0.9; c1  and c2  are learning factors; r1  and 
r2  are random numbers in the range [0, 1]; and Pbest tkd ( )  and 
Gbest tkd ( )  denote the extreme positions of particle k  in the 
individual and the population.

In the present study, PSO was used to improve the input 
weights and thresholds of the ELM model, and each particle may 
be  considered to be  an ELM model for the prediction of 
chlorophyll content. The location information of the particles is 
utilized to represent the input weights and thresholds of the ELM 
model (as shown in Figure 8), whereas the particle dimension D 
and the kth particle k are represented as follows:
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FIGURE 7

(A) Number of the best spectral variable for sample model; (B) Selection of characteristic hyperspectral bands.
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where n  and t  are the number of neurons in the input 
and hidden layers, respectively; wijk  and bjk  are the input 
weights and hidden layer thresholds, respectively, and both 
are random numbers within the range [−1, 1], 1 < i < n, and 
1 < j < t.

The PSO-ELM employs the SPA extracted characteristic 
bands as the independent variable and the leaf chlorophyll 
content of the jujube canopy as the dependent variable. 
Initially, the PSO parameters were initialized and the ideal 
fitness function value was chosen based on the performance 
of the PSO-ELM model. The inertia weights were set to 0.90, 
the maximum number of iterations was set to 100, and the 
learning factors were set to 1.40. Subsequently, the input 
weights and thresholds corresponding to each particle were 
substituted into the ELM model, and the predicted and 
measured values of RMSE were used for adaptation of the 
PSO to calculate the individual and global extremes. Lastly, 
the particle positions and velocities were updated by  
iterative comparison, and the particle adaptation values  
were calculated, and the particle extremes and global  
extremes were updated until the minimum error was  
achieved or until the maximum number of iterations was  
attained.

Using the 512.1, 628.8, 674.2, 736.6, and 773.2 nm bands 
as independent variables and the chlorophyll content as a 
dependent variable with ELM and PSO-ELM, respectively, the 

SPA method was utilized to create models for prediction of 
the chlorophyll content of jujube trees (as shown in Figure 9). 
The unoptimized ELM and PSO-ELM prediction values were 
utilized to compare and evaluate the actual measured data in 
order to confirm the prediction accuracy of the suggested 
models. Table 4 shows the prediction results of the PSO-ELM 
inversion model of jujube tree chlorophyll content used in 
this study were superior to those of the inversion model built 
with the simple extreme learning method, and the PSO-ELM 
model of chlorophyll content inversion (R2 = 0.856, 
RMSE = 0.796) was superior to that of the chlorophyll  
content inversion built with the single ELM (R2 = 0.748, 
RMSE = 1.689).

Given that the absolute value of the correlation between 
reflectance and chlorophyll content in the 500–900 nm band 
is generally between 0.5 and 0.65, and that there is a 
connection between distinct bands in this range, extracting 
and establishing the chlorophyll content inversion is 
complicated. SPA is used in this study to extract the 
distinctive bands of chlorophyll content inversion in order to 
reduce the complexity of spectral data. The number of bands 
is decreased to 5 after screening the contribution value, and 
the spectral wavenumber is lowered by 88.89%. The RMSE is 
0.451. The correlation coefficients for the ELM and PSO-ELM 
inversion models were found to be  0.748 and 0.856, 
respectively. The preferential selection of five feature band 

FIGURE 8

Flow chart of the PSO-ELM algorithm.
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parameters of SPA reduces the problem of redundancy among 
spectral data, improves modeling efficiency and operational 
efficiency, and reduces the effect of covariance of input data 
parameters, indicating that SPA is a more effective method 
for feature wavelength extraction. The sensitive bands of 
chlorophyll content response of jujube were selected by using 
SPA, and an extreme learning machine inversion model based 
on particle swarm optimization was established with a view 
to achieving rapid, accurate, and nondestructive diagnosis of 
canopy chlorophyll content under leaf mite infestation and 
improving inversion accuracy.

The spatial distribution of jujube leaf mites in the research 
region was determined，using ArcGIS software based on the 
disease grading criteria for leaf mite severity (I–IV; as shown in 
Figure  10). The map displays the range of SPAD values that 
correlate to the severity of each mite infestation. While other 
portions of the plot were less damaged and could be  mildly 
treated for prevention to fulfill the demands of normal jujube tree 
development, the left area of the plot required concentrated 
spraying of pesticides since it was more heavily infested. The 
results demonstrated that the outcomes of the ground survey and 
the UAV images are similar.

Discussion

Analysis of the correlation between 
spectral reflectance and chlorophyll 
content

Using hyperspectral spectra the benefit of “image-spectrum 
integration,” we acquired hyperspectral images of the jujube 
tree, sought to inversion of chlorophyll content under the stress 
of leaf mite for jujube. Recent studies have focused greater 
attention on the spectral properties of crop diseases, and less 
on the physiological and biochemical alterations imposed by 
the diseases. The present results revealed that leaf mite 
infestation influences the spectral reflectance of the jujube tree 
canopy, and that SPAD values are strongly associated with the 
leaf mite infestation index. Given the relative decrease in 
chlorophyll content caused by insect damage, the spectral 
properties of jujube plants varied significantly with severity of 
insect damage. As the population of leaf mites peaks, the 
chlorophyll content in the leaves declines, resulting in a 
reduction in the photosynthetic activity of the leaves and a 
considerable decrease in spectral reflectance. The “white 
patches” or yellowing of branches caused by mite feeding on 
the leaves decreased the leaf area index and leaf chlorophyll 
content of jujube. In addition, it was demonstrated that crop 
pests and chlorophyll are strongly associated, and that spectral 
data can reflect changes in chlorophyll content caused by 
agricultural pests. Future work will focus on transferring such 
an integrative methodology presented here to other agronomic 
parameters estimation.

FIGURE 9

ELM and PSO-ELM models Chlorophyll content inversion model.

TABLE 4 Model comparison.

Model
Modeling set Validation set

R2 RMSE R2 RMSE

ELM 0.748 1.689 0.681 1.566

PSO-ELM 0.856 0.796 0.825 0.862
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Spectral-based inversion model of 
chlorophyll content

In recent years, the link between reflectance spectral 
characteristics and pest parameters has been investigated using 
spectral data, and the sensitive wavebands following pest damage 
have been screened to enable pest monitoring and identification 
by classification. In the present study, we estimated the relative 
chlorophyll content of jujube trees under leaf mite infestation 
using UAV hyperspectral inversion and proposed a model for 
prediction of the chlorophyll content of jujube using 
PSO-ELM. The influence of random parameters of the ELM 
model on prediction accuracy and its weak generalization 
performance were effectively compensated. In addition, the 
inversion accuracy of jujube tree chlorophyll content was 
improved. The present results serve as a reference for the utility of 
UAV remote sensing for diagnosis and monitoring of leaf mite 
infestation in jujube.

Challenges and prospective research

Collaborative “air–sky–ground” building of pest and disease 
monitoring research. In studies utilizing UAV remote sensing 

to monitor crop development, pests, and diseases, the 
determination coefficients (inversion accuracy) of the parameter 
inversion findings are typically greater than those of satellite 
remote sensing (Adao et  al., 2017). However, the essential 
research methodologies and fundamental concepts of both are 
identical or comparable (Aasen et al., 2018). The essence of the 
higher inversion accuracy of UAV remote sensing is as follows. 
First, given the lower altitude of aerial photography, the distance 
to the crop canopy is shorter, hence there is less distortion and 
sensitivity of the acquired information (e.g., image texture 
features, spectral features, and thermal radiation features), 
which more accurately reflect small changes in the crop 
phenotypes. Second, the small spatial scale of UAV remote 
sensing not only objectively excludes heterogeneous factors 
(such as climate variation, soil conditions, moisture conditions, 
crop varieties, pest and disease stress, and human management 
practices) that affect the inversion of crop growth, pests, and 
diseases at medium and large scales, but also allows for the 
precise control of variable factors required for the experiment. 
However, this advantage of UAV remote sensing is also a 
constraint to its application (Delavarpour et al., 2021; Wang 
et al., 2022). Although the combination of ground-based data 
with UAV remote sensing data may provide point-to-point 
inversion of crop growth, pests, and diseases, a number of 

FIGURE 10

Inversion spatial distribution map of infestation severity of jujube mites.
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limitations remain. The geographical extent is confined to the 
field size, and the consequent localization and individual 
variability in crop phenotypes limit the portability of 
monitoring models based on UAV remote sensing (Rezwan and 
Choi, 2022), so it is impossible to duplicate the inversion laws 
observed at larger scales or other sites. It is challenging to 
overcome regional disparities in numerous elements, such as 
crop types, natural environmental conditions, and human 
management practices, using satellite remote sensing (Messina 
and Modica, 2020; Zhou et al., 2020). It is also challenging for 
satellite remote sensing to overcome the impact of the diverse 
inversion influences on the inversion precision. Given the 
restricted geographical extent, UAV remote sensing is able to 
effectively screen diverse information. While employing satellite 
remote sensing techniques, we provide UAV remote sensing 
data as a crucial correction index for satellite remote sensing 
inversion agricultural growth, pest and disease studies to aid in 
the development of crop models. This may provide jujube pests 
monitor new ideas for follow-up studies.

Conclusion

In this study, leaf mite damage was monitored using an UAV 
platform equipped with a hyperspectral sensor. By acquiring 
hyperspectral images of jujube orchards with varying severities 
of leaf mite infestation, hyperspectral inversion was investigated 
to assess the relative chlorophyll content of jujube trees under the 
stress of leaf mite infestation. The results confirmed that the 
SPAD values of jujube plants were negatively correlated with 
severity of leaf mite infestation and leaf damage. Significant 
spectral variation was observed, with SPAD values diminished in 
the green peaks and red troughs of the spectral band with an 
increase in the severity of leaf damage. The differences in spectral 
reflectance among leaf mite-infested jujube plants were more 
pronounced. A strong correlation was observed between the 
SPAD value of jujube trees and the original and first-order 
derivative spectral reflectance of the canopy of jujube trees 
infested with leaf mites. It is therefore possible to quantify the leaf 
chlorophyll content of jujube trees under the stress of leaf mite 
infestation using hyperspectral remote sensing, thus providing a 
theoretical foundation for monitoring leaf mite infestation of 
jujube trees using hyperspectral remote sensing. Five feature 
bands were extracted using SPA: 512.1, 628.8, 674.2, 736.6, and 
773.2 nm. The PSO-ELM model was developed using the 
extracted characteristic bands as input variables and the 
chlorophyll content of jujube trees as the output variable. The 
superior performance of the PSO-optimized ELM model 
demonstrated the viability of UAV deployment to perform 
hyperspectral inversion of the chlorophyll content of jujube 
plants infested with leaf mites. Thus, the variation in leaf 
chlorophyll content may be utilized to examine the categorization 
of jujube plants by severity of leaf mite infestation based on the 
variation in spectral characteristics.
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