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1Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India, 2Sri Karan
Narendra Agriculture University, Jobner, India, 3Agro Produce Processing Department, Indian
Council of Agricultural Research (ICAR)-Central Institute of Agricultural Engineering, Bhopal, India
Water scarcity is a significant environmental limitation to plant productivity as

drought-induced crop output losses are likely to outnumber losses from all

other factors. In this context, triazole compounds have recently been

discovered to act as plant growth regulators and multi-stress protectants

such as heat, chill ing, drought, waterlogging, heavy metals, etc.

Paclobutrazol (PBZ) [(2RS, 3RS)-1-(4-chlorophenyl)- 4, 4-dimethyl-2-(1H-1,

2, 4-trizol-1-yl)-pentan-3-ol)] disrupts the isoprenoid pathway by blocking

ent-kaurene synthesis, affecting gibberellic acid (GA) and abscisic acid (ABA)

hormone levels. PBZ affects the level of ethylene and cytokinin by interfering

with their biosynthesis pathways. Through a variety of physiological responses,

PBZ improves plant survival under drought. Some of the documented

responses include a decrease in transpiration rate (due to reduced leaf area),

higher diffusive resistance, relieving reduction in water potential, greater

relative water content, less water use, and increased antioxidant activity. We

examined and discussed current findings as well as the prospective application

of PBZ in regulating crop growth and ameliorating abiotic stresses in this

review. Furthermore, the influence of PBZ on numerous biochemical,

physiological, and molecular processes is thoroughly investigated, resulting

in increased crop yield.

KEYWORDS

PBZ, drought, gibberellic acid, abscisic acid, physiological and biochemical response
Introduction

Climate change has posed a severe danger to crop productivity and output.

Numerous types of abiotic stressors, such as heat, drought, and salt, cause

morphological, physiological, and biochemical alterations that eventually hamper crop

growth (Yadav et al., 2020). Drought is a big worry since numerous variables such as high
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and low temperatures, limited water availability, erratic rain

patterns, low rainfall, salt, high light intensity, etc. led to drought

(Salehi-Lisar and Bakhshayeshan-Agdam, 2016). Drought in

plants is characterized by decreased leaf water potential, turgor

pressure, stomatal closure, and impaired cell growth. Drought

impacts photosynthesis, chlorophyll production, nutrient

metabolism, ion uptake and translocation, respiration,

carbohydrate metabolism, etc. in plants (Farooq et al., 2009).

When it comes to drought-induced plant damage, oxidative

stress is critical. Drought raises reactive oxygen species (ROS)

levels in plant cells (Smirnoff, 1993). Excessive ROS generation

and accumulation induce cellular oxidative damage, disrupt

cellular membranes, and result in enzyme inactivation, protein

breakdown, and ionic imbalance in plants (Hasanuzzaman et al.,

2020). ROS disrupts cellular macromolecules, including DNA,

and may result in base deletion owing to alkylation and

oxidation, both of which have been associated with a variety of

physiological and biochemical ailments in plants (Apel and Hirt,

2004). Plants have a sophisticated antioxidative defense system

that controls the overproduction of ROS. The ROS-induced

damages and disruption of cellular homeostasis are alleviated by

the action of different enzymatic (e.g., catalase, CAT; superoxide

dismutase, SOD; peroxidase, POD; glutathione reductase, GR;

glutathione peroxidase, GPX) and non-enzymatic (e.g., ascorbic

acid, carotenoids, tocopherols, and glutathione content)

antioxidants (Prochazkova et al., 2001; Rady and Gaballah,

2012). This plant defense system is only active up to a specific

threshold of tolerance. Under severe and persistent stress, the

natural defense system is hampered, resulting in physiological

anomalies (Smirnoff, 1993). The mechanism of ROS generation

and scavenging by plants with high antioxidative capacity has

been linked to plant tolerance to abiotic stressors (Wahid et al.,

2014). As a result, various studies have been conducted to

improve plant resilience and drought adaptations, as well as to

mitigate the negative effects of drought. These studies mostly

involve the use of phytoprotectants (such as growth promoters,

antioxidant compounds, and osmoprotectants), which are

highly effective measures of promoting drought responses in

agricultural plants (Garg et al., 2019; Desta and Amare, 2021).

Plant growth regulators (PGRs) are commonly utilized in

agriculture to augment overall plant growth. Plant growth

regulators have both beneficial and negative effects on growth,

development, and plant metabolism (Ashraf et al., 2011; Desta

and Amare, 2021). There are several classes of PGR including

auxin, abscisic acid, cytokinins, gibberellin, salicylic, jasmonic

acid, and ethylene, as well as more recently investigated

brassinosteroids, strigolactones, polyamine, and triazole, etc.

Due to their intrinsic abiotic stress tolerance inducement

through augmenting plant self-defense systems such as

antioxidant enzymes and molecules in stress-affected plants,

triazole compounds, a class of systemic fungicides, have been

investigated to have plant growth promoting properties and are

sometimes used as stress-safeguards (Jaleel et al., 2007). Various
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triazole compounds are used as PGRs such as PBZ, uniconazole,

triapenthenol and BAS 111, etc. Triazoles regulate plant growth

by changing the balance of key plant hormones i.e., cytokinins,

gibberellic, and abscisic acid (Hajihashemi, 2018). Triazoles

induce morphological (root growth stimulated and shoot

elongation inhibition) and biochemical (enhanced cytokinin

synthesis and temporary increase in ABA) changes (Fletcher

et al., 2000; Gopi et al., 2007).

PBZ is a triazole compound that plays an important function

in reducing water deficit stress by lowering glutathione levels

and reducing the peroxidation of lipids (Aly and Latif, 2011).

Many plants, including tomato, sesame seeds, and mango have

been shown to use PBZ to reduce the negative effects of drought

by enhancing the activity of anti-oxidative enzymes

(Somasundaram et al., 2009; Srivastav et al., 2010). PBZ has

been known to be used in horticultural crops for a long time to

increase yield. (Assuero et al., 2012; Kamran et al., 2020). PBZ

prevents the biosynthesis of sterol and gibberellins (Khan et al.,

2009). By modifying the photosynthetic rate and phytohormone

levels, PBZ can significantly affect plant growth and

development (Kim et al., 2012) (Table 1). The application of

PBZ improved leaf number, stem diameter, modified root

architecture, decreased plant height, and contributed to

enhanced yield and tolerance to lodging (Syahputra et al.,

2016; Pal et al., 2016). An enzyme ent-kaurene oxidase in GA

biosynthetic pathway which catalyzes ent-kaurene oxidation

into ent-kaurene acid is inhibited by PBZ (Rady and Gaballah,

2012; Kondhare et al., 2014). Sankar et al. (2013), reported that

PBZ retains endogenous cytokinin levels, stabilizes leaf water

capacity, and induces increased leaf and epidermal thickness.

Besides discussing possible theories on the regulation of water

deficit stress tolerance, this article aims to investigate the impact

of PBZ on morphological, biochemical, and molecular responses

to drought.
Chemical structure and modes of
application

Chemical structure and translocation of
PBZ in plant

PBZ is a synthetic compound having the empirical formula

(1-(4-chloro-phenyl) 4,4-dimethyl-2-(1,2,4-triazol-1-yl)-

pentan-3-ol) with two asymmetric carbon (Figure 1B).

Therefore, two pairs of enantiomers may exist, (2R, 3R) ‐ and

(2S, 3S) ‐PBZ, and (2S, 3R) ‐ and (2R, 3S) ‐PBZ. However, due to

steric hindrance production of only the first pair of enantiomers

is possible (Wu et al., 2013). While in the case of wheat (2S, 3S) ‐

PBZ was a more effective regulator of plant growth inhibition

than (2R, 3R) ‐PBZ (Lenton et al., 1994).

Triazoles were previously thought to be transported mainly

acropetally in the xylem, (Davis et al., 1988). Later research on
frontiersin.org
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TABLE 1 Summary of effect of PBZ on different parameters under the drought stress in various crops species.

Effect of PBZ on RWC

S.No. Crop Effective
dose

Key findings References

1. Triticum aestivum 30 mg/l RWC was increased by 5% in control and 11% in drought plants treated with PBZ Dwivedi et al.,
2017

2. Oryza sativa 90 mg/l 15% increase in RWC under drought compared to control Garg et al.,
2019

3. Curcuma
alismatifolia

1500 mg/l RWC increased by 5% under drought Jungklang
et al., 2017

4. Abelmoschus
esculentus

80 mg/l RWC increased by 60.1% under drought Iqbal et al.,
2020

Effect of PBZ on MSI

Oryza sativa 90 mg/l 15% increase in mean MSI under drought Garg et al.,
2019

Triticum aestivum 30 mg/l 4-5% increase in mean MSI under drought Dwivedi et al.,
2017

Effect of PBZ on plant growth

Curcuma
alismatifolia

1500 mg/l The plant height was 1.2 times lower under drought Jungklang and
Saengnil, 2012

Curcuma
alismatifolia

3.75 g/l Shoot height was reduced by 48.93% under drought Jungklang and
Saengnil, 2012

Helianthus annuus
and zinnia

2.0 mg/pot Shoot height was reduced by 26.3 and 42.1%, respectively Ahmad et al.,
2014

Syzygium
myrtifolium

3.75 g/l Plant height was reduced by 19.93% Roseli et al.,
2012

Curcuma
alismatifolia

1500 mg/l Plant height was reduced by 50% under drought Jungklang
et al., 2017

Odontonema
strictum

0.24 mg/pot Plants were 11 cm taller under drought Rezazadeh
et al., 2016

Amorpha fruticosa 150 mg/l 61% increase in the plant height Fan et al., 2020

Zea mays L 300 mg/l Increased root dry weight by 102.1% at the seventh leaf stage, 65.1% at the ninth leaf stage, 47.9% at the
twelfth leaf stage

Kamran et al.,
2018

Arachis hypogaea 10 mg/l Increased root length from 18.17 to 28.15 cm/plant, total leaf area from 96.38 to 117.31 cm2/plant, whole
plant fresh weight from 33.72 to 39.16 gm/plant, whole plant dry weight from 3.49 to 4.12 g/plant

Sankar et al.,
2014

Sesamum indicum 5 mg/l Abraham
et al., 2008

Ipomoea batatas 34 µm Increased vine fresh weight, root fresh weight, vine dry weight, and root dry weight by 40.10, 65.47,
66.91, and 67.86% respectively

Yooyongwech
et al., 2017

Effect of PBZ on photosynthetic pigments

Anacardium
occidentale

3 g a.i./tree Increased Chlorophyll a (27.35%), Chlorophyll b (54.54%), total chlorophyll (30.98%) and Carotenoids
(13.55%) under control conditions

Mog et al.,
2019

Triticum aestivum 30 mg/l 25.7% increase in chlorophyll content under drought Dwivedi et al.,
2018

Zea mays L 300 mg/l Increased the chlorophyll content by 48.2%, 54.3%, 51.2% and 79.0%, at 0, 15, 30 and 45 DAS
respectively.
Carotenoid contents increased by 15.7%, 17.3%, 27.9% and 36.7% at 0, 15, 30 and 45 DAS respectively

Kamran et al.,
2020

Arachis hypogaea 10 mg/l Increased total chlorophyll, carotenoid, xanthophyll and anthocyanin content by 120.22%, 112.66%,
116.48%, 111.26%, 114.44% and 112.24% respectively

Sankar et al.,
2013

Zea mays L 2 mg/l Increased chlorophyll content by 62%

Oryza sativa L.
indica

25 or 50
mg/l

Plants had greener leaves and delayed late senescence Dewi, 2018

Odontonema
strictum

0.24 mg/pot Net photosynthesis was 51% higher under drought Rezazadeh
et al., 2016

(Continued)
Frontier
s in Plant Science
 03
 frontiersin.org

https://doi.org/10.3389/fpls.2022.1008993
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Maheshwari et al. 10.3389/fpls.2022.1008993
castor bean (Witchard, 1997) and pear (Browning et al., 1992)

found their presence in both xylem and phloem sap, suggesting

that these can be transported both acropetally and basipetally.

PBZ was also held by roots, translocated through the xylem

mainly in the stems, and collected in leaves (Wang et al., 1985).

Early and Martin (1988) found that PBZ was metabolized more

quickly in apple leaves than in other plant sections.
Mode of action and methods of
application

PBZ is a growth retardant and stress protectant that works

by inhibiting GA biosynthesis (Gopi et al. 2009). PBZ suppressed

the GA biosynthesis by inactivating ent-kaurene oxidase or

cytochrome P450-dependent oxygenase, preventing ent-

kaurene to ent-kauronoic acid oxidation (Zhu et al., 2004;

Rady and Gaballah, 2012). Since both abscisic acid and

chlorophyll are synthesized through the terpenoid pathway,

PBZ has been shown to influence their synthesis too

(Figure 1A). As PBZ inhibits GA synthesis, common terpenoid

pathway precursors accumulate and are redirected to promote

ABA biosynthesis (Rademacher, 2018). Kitahata et al. (2005)

found that PBZ inhibited natural ABA catabolism by inhibiting

the ABA 8’ hydroxylase enzyme (Fig 1a).PBZ is more effective

even at lower dose of application compared to other PGRs (Rady

and Gaballah, 2012).
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Foliar sprays, drenching, and seed priming are the most

popular methods of PBZ application. All methods yield good

results (Rademacher, 2015) but drenching works for a longer

duration and provide uniform regulation at lower doses (10 µM)

in Capsicum chinense (Franca et al., 2017). As PBZ is poorly

soluble (0.12 mM) in water when applied as a foliar spray, it is

only partially translocated in the phloem (Ribeiro et al., 2011). In

contrast to foliar spray, PBZ application by drenching is more

uniform as PBZ is transported via xylem vessels. Further, PBZ

application by drenching inhibits GA more effectively as roots

synthesize a significant amount of GA (Sopher et al., 1999). Ruter

(1996), demonstrated that drench application was more effective

than foliar spray at the lower dose of PBZ (0.5 mg a.i./pot) in

shrub lantana. Seed priming treatment using PBZ (100µM) under

drought in rice genotypes leads to better growth of the plants

compared to unprimed seed plants (Samota et al., 2017a).

Morphological and physio-
biochemical responses of plants to
PBZ

Effect of PBZ on relative water content

Relative water content (RWC), directly related to the content

of soil water (Sarker et al., 1999) is a significant indicator of

water stress in leaves (Merah, 2001). Plant exposure to water
TABLE 1 Continued

Effect of PBZ on RWC

S.No. Crop Effective
dose

Key findings References

Zoysia japonica 50 mg/l Increased leaf chlorophyll content by 0.6 mg g-1 FW Cohen et al.,
2019

Festuca arundinacea
and Lolium perenne

Increased the photosynthetic pigment content Shahrokhi
et al., 2011

Vigna radiata 150 mg/l Increased SPAD value from 34 to 37.7 Babarashi
et al., 2021

Effect of PBZ on grain yield and dry matter partitioning

Zea mays L 50 mg/l Increased the average weight of 1,000 seeds and yield Bayat and
Sepehri 2012

Zea mays L 300 mg/l Kamran et al. (2018), average maize grain yields increased by 61.3% after seed soaking with 300 mg/l
PBZ, while seed dressing with PBZ at 2.5 g kg-1 increased yield by 33.3%

Kamran et al.,
2018

Triticum aestivum Increased grain yield per plant by 6-7%, grain numbers per panicle by 24-33%, 1,000-grain mass by 3-
6%, and harvest index by 2-4%

Dwivedi et al.,
2017

Vigna radiata 150 mg/l Increased seed yield from 622 to 1921 kg/ha Babarashi
et al., 2021

Odontonema
strictum

0.24 mg/
plant

Promoted flowering and maintained the same numbers of flower (6 flowers/plant) Rezazadeh
et al., 2016

Solanum
lycopersicum

50 mg/l Yield increased by 1.37 times more Rezazadeh
et al., 2016

Solanum
lycopersicum

30 mg/l Pretreated tomato plants retained their fruit yield (3.89 kg/plant) and number of fruits (31 fruits/plant)
when exposed to drought

Latimer, 1992
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stress results in an immediate reduction of RWC (Mawlong

et al., 2014; Kumar et al., 2015). PBZ accelerated the stomatal

closure, improved water retention, and increased drought

tolerance in jack pine and oak ( (Marshall et al., 2000; Percival

and Salim AlBalushi., 2007). PBZ-treated plants maintained

higher RWC than the non-treated ones’ (Jungklang and

Saengnil, 2012; Dwivedi et al., 2017; Jungklang et al., 2017).

Dwivedi et al. (2017), stated that the application of PBZ (30 mg/

l) in wheat under control and water-stressed plants resulted in an

increase of 5% and 11% respectively in the mean RWC. The

reduced rate of evapotranspiration helps plants maintain a

higher RWC, and overcome stress, and developed tolerance to

various environmental stresses (Yadav et al., 2005). RWC

increased in PBZ-treated triticale (Triticale hexaploide) plants

during water stress (Berova and Zlatev, 2003)., Under water
Frontiers in Plant Science 05
stress, PBZ treatment assists plants in retaining water for 30-40

days (Jungklang and Saengnil, 2012). Garg et al. (2019), observed

that application of PBZ (90 mg/l) under drought in rice

genotypes was responsible for about a 15% increase in RWC

as compared to drought without PBZ treatment. Jungklang et al.

(2017), found that in Curcuma alismatifolia leaves, PBZ (1500

mg/l) increased RWC by 5% under drought. Iqbal et al. (2020),

reported that in okra (Abelmoschus esculentu) cultivar Nutec,

application of PBZ (80 mg/l) along with drought increased RWC

(60.1%) compared to drought without PBZ treatment (57.2%)

although the result was not statistically significant. Similarly, in

Safflower (Carthamus tinctorius L.) application of PBZ under

drought enhances the RWC (Davari et al., 2022). Overall PBZ

enhances the RWC of plants under drought conditions by a

reduction in evapotranspiration.
B

A

FIGURE 1

(A)Terpenoid pathway. Paclobutrazol inhibition is indicated by . (CPS), Copalyl diphosphate synthase; (KAO), ent-kaurenoic acid oxidase; (KS),

ent-kaurene synthase; (GGPPS), geranylgeranyl pyrophosphate synthase; (PSY), phytoene synthase; (ZEP), zeaxanthin epoxidase; (NCED), 9-
cisepoxycarotenoid dioxygenase; (CHS), chlorophyll Synthase; (GGRS), geranylgeranyl reductase. (B) Chemical structure of some triazoles.
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Effect of PBZ on membrane stability
index

Membrane stability is a common criterion for determining

drought tolerance because water deficit induces water loss from

plant tissues, which severely impairs membrane structure and

function. The stability of the cell membrane was used as a

drought tolerance indicator and leakage of electrolytes showed

an increase in water deficit (Agarie et al., 1995). Garg et al.

(2019), reported that PBZ (90 mg/l) in rice genotypes led to an

11% increase in mean MSI as compared to drought-stressed

plants without PBZ treatment. PBZ (20 mg/l) minimized the

leakage of electrolytes in carrots (Gopi et al., 2007). Dwivedi et al.

(2017) reported that the application of PBZ (30 mg/l) in wheat

under control and water-stressed plants resulted in an increase

of 1-2% and 4-5% respectively in the mean MSI. Similarly,

Jungklang et al. (2017), reported that PBZ (1500 mg/l)

decreased electrolyte leakage by 60% under water deficit stress

in Curcuma alismatifolia. Babarashi et al. (2021), observed that

the application of PBZ (150 mg/l) in mungbean under drought

decreased electrolyte leakage from 52.6% (drought without PBZ)

to 47.1%. Similarly, in Safflower (Carthamus tinctorius L.)

application of PBZ under drought enhances the cell membrane

stability (Davari et al., 2022). Collectively, these findings suggest

that PBZ improves MSI by minimizing electrolyte and ion

leakage under stress conditions.
Effect of PBZ on plant growth

The most striking growth response observed in PBZ-treated

plants is a reduction in shoot growth (Pinto et al., 2005). This

response is mainly attributed to internode length reduction. Hua

et al. (2014), reported that canola plant height was reduced by

27% when PBZ was applied at 10 cm stalk height as compared to

without PBZ. Rezazadeh et al. (2016), reported that red firespike

plants treated with PBZ (.24 mg/pot) under drought were 11 cm

taller than untreated plants. Under water deficit stress,

Jungklang et al. (2017) found that applying PBZ (1500 mg/l)

decreased the plant height of Curcuma alismatifolia by 50%

relative to non-treated plants. In Amorpha fruticosa, Fan et al.

(2020) found that PBZ treatment (150 mg/l) under extreme

drought (RWC 35-40%) resulted in a 61% increase in height

relative growth rate compared to drought without PBZ.

Jungklang and Saengnil (2012), observed that in Patumma

after 40 days of withholding water, the plant height was 1.2

times lower in PBZ (1500 mg/l) treated plants compared to

water-stressed without PBZ. When PBZ (3750 mg/L) was

applied to Patumma, shoot height was reduced by 48.93%

relative to untreated plants. In comparison to non-treated

plants, soil drenching with PBZ (1500 mg/l) under water

stress for 20- and 30-days periods-maintained shoot length
Frontiers in Plant Science 06
(Jungklang et al., 2017). However, in sunflower and zinnia

shoot height was reduced by 26.3 and 42.1%, respectively, after

soil drenching with PBZ (2.0 mg/pot) (Ahmad et al., 2014).

According to Roseli et al. (2012), Syzygium myrtifolium (Roxb.)

Walp. plant height was reduced by 19.93% when treated with

PBZ (3750 mg/L). According to Azarcon et al. (2022), PBZ

(500ppm) increased panicle number, resulting in higher grain

yield while reducing water demand, hence increasing rice water

use efficiency under drought conditions.

Berova et al. (2002) reported that PBZ (50 mg/l) increased

wheat seedling length, fresh and dry weight of shoots, under low-

temperature stress as compared to control (low-temperature

stress without PBZ). PBZ has been shown to increase both the

fresh and dry weight of shoots and roots in cucumber seedlings

that have been exposed to high temperatures (Baninasab and

Ghobadi, 2011). Kamran et al. (2018), reported that seed soaking

of maize with PBZ (300 mg/l) under a semi-arid region increased

root dry weight by 102.1% at the seventh leaf stage, 65.1% at the

ninth leaf stage, 47.9% at the twelfth leaf stage, compared to

drought without PBZ treatment. Sankar et al. (2014), reported

that in peanut plants at 80 days after sowing (DAS) application

of PBZ (10 mg/l) under drought increased root length from

18.17 to 28.15 cm/plant, total leaf area from 96.38 to 117.31 cm2/

plant, whole plant fresh weight from 33.72 to 39.16 g/plant,

whole plant dry weight from 3.49 to 4.12 g/plant as compared to

drought-stressed plants without PBZ treatment. A similar

pattern of results was also obtained by Abraham et al. (2008)

in Sesamum indicum by application of PBZ (5 mg/l) during

drought. Yooyongwech et al. (2017) observed that in sweet

potatoes, PBZ (34 µM) under drought increased vine fresh

weight, root fresh weight, vine dry weight, and root dry weight

by 40.10, 65.47, 66.91, and 67.86% respectively, compared to

water-stressed plants.

After PBZ (500 mg/l) application, the root dry weight of

Aesculus hippocastanum was improved (18.4% reduction) after

water deficit stress (Percival and Noviss, 2008). Under drought

conditions, the dry weight of PBZ (60 mg/l) treated tomato

shoots (37.17% reduction) and root dry weight (13.04%

reduction) were higher (Latimer, 1992) as compared to the

control. Similarly, the dry weight of PBZ (50 mg/l) treated

plants decreased by 20.45%, compared to 36.77% for non-

treated plants (Bayat and Sepehri, 2012). In turf grass, shoot

dry weight was extremely responsive to water deficit conditions

(25% FC), resulting in 95 to 97% reduction, respectively, while

treatment with PBZ (30 mg/l) reduced the shoot dry weight by

3.14% only (Shahrokhi et al., 2011).

The leaf area of P. angustifolia plants treated with PBZ

(30 mg/l) and grown under well-watered conditions was reduced

by 83.25%. However, when exposed to mild water deficit

conditions, the growth of PBZ-treated plants improved

but declined when exposed to severe water deficit stress

(Fernández et al., 2006). When exposed to drought,
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shoot height, leaf area, and root length of PBZ (10 mg/l)

pre-treated peanut plants improved compared to the control

(Sankar et al., 2014a). Farooqi et al. (2010), reported that the

diameter of Vetiveria Zizanioides increased in stressed plants

due to 12% PBZ application. According to Pal et al. (2016), PBZ

(1.6 mg/l) reduced leaf area (LA) in tomato plants by 24% under

water deficit conditions. Overall, PBZ enhanced plant

development under stressful circumstances by increasing shoot

and root biomass. Although some research implies that

PBZ reduces plant height, others report that PBZ increases

plant height, hence a greater knowledge of the influence of

PBZ application on plant development is required before

future application.
Effect of PBZ on photosynthetic
pigments

Water stress alters the total chlorophyll content and stability

within thylakoid membrane protein-pigment complexes which

are the first structures to be weakened under stress conditions

(Pospıśǐlová et al. 2000). Chlorophyll reduction under water

deficit stress is mainly due to chloroplast damage caused by ROS

(Smirnoff, 1995). PBZ (3 g a.i./tree) increased Chlorophyll a

(27.35%), Chlorophyll b (54.54%), total chlorophyll (30.98%)

and carotenoids (13.55%) compared to control without PBZ in

cashew (Mog et al., 2019). According to Dwivedi et al. (2018),

applying PBZ (30 mg/l) to wheat plants under water deficit

stress resulted in a 25.7% increase in chlorophyll content

as compared to stressed plants without PBZ. Kamran et al.

(2020), reported that in maize PBZ (300 mg/l) increased the

chlorophyll content by 48.2%, 54.3%, 51.2%, and 79.0%, at 0, 15,

30, and 45 DAS respectively Similarly carotenoid contents

increased by 15.7%, 17.3%, 27.9% and 36.7% at 0, 15, 30 and

45 DAS in water deficit stress as compared to control (drought

without PBZ application). Berova et al. (2002) observed that PBZ

treatment was 15–18% more effective than the control at

preventing chlorophyll loss in wheat during low-temperature

stress. PBZ (10 mg/l) increased total chlorophyll, carotenoid,

xanthophyll, and anthocyanin content in 80 days old Arachis

hypogaea by 120.22%, 112.66%, 116.48%, 111.26%, 114.44%, and

112.24% respectively over control under drought (Sankar et al.,

2013) reported that PBZ (2 mg/l) increased chlorophyll content

by 62% as compared to control in maize. Dewi et al. (2018),

observed that treatment with 25 or 50 mg/l PBZ in black rice

plants had greener leaves and encountered late senescence than

control plants. Similarly, in Safflower (Carthamus tinctorius L.)

application of PBZ under drought enhances the photosynthetic

pigments (Davari et al., 2022).

Rezazadeh et al. (2016), reported that net photosynthesis was

51% higher in red firespike plants treated with PBZ (0.24 mg/

pot) under drought than in those without PBZ. In Zoysia

japonica, PBZ (50 mg/l) during water deficit stress increased
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leaf chlorophyll content by 0.6 mg/g FW compared to water-

stressed without PBZ (Cohen et al., 2019). Similarly, Pal et al.

(2016), recorded that PBZ in both irrigated and deficit-irrigated

plants increased chlorophyll content as compared to control

plants (without PBZ). PBZ increased the photosynthetic

pigment content in Festuca arundinacea and Lolium perenne

under water stress (Shahrokhi et al., 2011). Under water deficit

stress, PBZ significantly increased chlorophyll a, chlorophyll b,

and carotenoids in wheat cultivars (Aly and Latif, 2011).

Babarashi et al. (2021), reported that PBZ (150 mg/l)

treatment in mungbean under drought increased SPAD value

from 34 (drought without PBZ) to 37.7. All prior investigations

have concluded that PBZ improves photosynthesis by increasing

chlorophyll and other photosynthetic pigments under

stressful circumstances.
Effect of PBZ on grain yield and dry
matter partitioning

Drought primarily affects production by reducing the

number of seeds by either influencing the quantity of dry

matter produced at the time of flowering or by directly

affecting pollen or ovules, leading to a decrease in seed

collection. PBZ has been shown to modify sink efficiency,

prompting assimilates to be redistributed to meristematic

regions other than shoot apices and improving assimilate flow

to reproductive structures in plants (Setia et al., 1996). Under

drought, the use of PBZ (50 mg/l) increased the average weight

of 1,000 seeds and yield in maize (Zea mays L.) (Bayat and

Sepehri, 2012). According to Kamran et al. (2018), average maize

grain yields increased by 61.3% after seed soaking with 300 mg/l

PBZ, while seed dressing with PBZ at 2.5 g/kg increased yield by

33.3% compared to control without PBZ in semi-arid regions.

Under water stress, wheat genotypes treated with PBZ increased

grain yield per plant by 6-7%, grain numbers per panicle by 24-

33%, 1,000-grain mass by 3-6%, and harvest index by 2-4%

(Dwivedi et al., 2017). According to Iqbal et al. (2020), under

water stress, yield per plant was reduced. Stress effects, on the

other hand, were found to be reduced when PBZ was applied (40

mg/l). Babarashi et al. (2021) reported that the application of

PBZ (150 mg/l) in mungbean under drought increased seed yield

from 622 (drought without PBZ) to 1921 kg/ha. Drought

impaired flowering in red firespike plants, but PBZ treatment

(0.24 mg/plant) promoted flowering and maintained the same

number of flowers (6 flowers/plant) as the control (Rezazadeh

et al., 2016). Tomato plants treated with PBZ (50 mg/l) produced

1.37 times more fruit than non-treated plants. The yield of pre-

treated plants was reduced by 4.79% when they were subjected to

drought at 60% field capacity (Mohamed et al., 2011). (Latimer

1992) observed that PBZ (30 mg/l) pre-treated tomato plants

retained their fruit yield (3.89 kg/plant) and fruits per plant (31

fruits/plant) when exposed to water deficit stress. Overall, past
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research indicates that the use of PBZ boosted grain yield/fruit

set under drought by improving sink efficiency.
PBZ hampered the gibberellin
biosynthesis

GAs are growth regulators which fall under a large family of

tetracyclic diterpenoids. GAs are plant hormones that are

required for a variety of developmental activities in plants

such as pollen maturation, stem elongation, leaf expansion,

trichome creation, seed germination, and flowering induction

(Achard et al., 2009). Furthermore, the exogenous application of

gibberellins can reverse PBZ-induced growth inhibition (Lever,

1986). These findings support the theory that PBZ-induced

growth inhibition is due to a reduction in gibberellin

biosynthesis. Wu et al. (2019), studied the effect of PBZ (200

mg/l) in rice varieties under submergence stress and found that

gibberellic acid content was decreased by the application of PBZ

compared to submergence stress without PBZ. Fan et al. (2020)

found that PBZ (150 mg/l) under severe drought (RWC 35-40%)

decreased GA content more than drought without PBZ in

Amorpha fruticosa.

PBZ-induced abscisic acid biosynthesiAbscisic acid (ABA) is

classified as a stress phytohormone because it accumulates

quickly in response to stress and mediates many stress

responses that help plants survive (Zhang et al., 2006). The

effect of PBZ on ABA is of significant importance because ABA

is synthesized through the isoprenoid pathway. Fan et al. (2020),

reported that PBZ (150 mg/l) under severe drought (RWC 35-

40%) increased ABA (27.1%) than without PBZ in Amorpha

fruticosa. Similarly, Dwivedi et al. (2018), recorded that

treatment with PBZ in wheat cultivars did not significantly

affect ABA content, however, mean ABA content was

significantly enhanced by 25% under water deficit stress. Pal

et al. (2016), showed that DI (Deficit irrigated) + PBZ treated

plants significantly increased ABA accumulation compared to

DI control plants. PBZ application increased ABA and decreased

gibberellins during the reproductive stage in the shoot of mango

plants (Burondkar et al., 2016). Compared to untreated

seedlings, PBZ treatment has been shown to minimize

endogenous ABA by about one-third caused by water stress in

apples and wheat (Buta and Spaulding, 1991; Wang et al., 2016).

Mackay et al. (1990), found that PBZ-induced stress tolerance in

snap beans was due to increased endogenous ABA content. PBZ

substant ia l ly enhanced endogenous ABA levels in

hydroponically grown seedlings and detached leaves of oilseed

rape, according to Häuser et al. (1990). According to Aly and

Latif (2011), PBZ enhanced the endogenous level of ABA in

wheat under water deficit stress. Wu et al. (2019), observed that

PBZ (200 mg/l) increased ABA content in rice varieties under

submergence stress compared to submergence stress without
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PBZ application. The effect of PBZ on ABA may be the source of

stress defense (Fletcher and Hofstra 1988).
PBZ elevated antioxidant enzymes
activity

PBZ enhances the detoxification of ROS, antioxidant, and

chlorophyll (Chl) content (Rady and Gaballah, 2012). As

photosystem II (PSII) operation is reduced, an imbalance

between electron generation and usage occurs, causing

quantum yield shifts. These changes in chloroplastic

photochemistry cause excess light energy to be dissipated in

the PSII core and antenna under drought, resulting in the

development of potentially harmful active oxygen species (O2
-

1, 1O2, H2O2, OH) (Peltzer et al., 2002). ROS detoxification

pathways can be found in all plant species and are classified as

enzymatic which include ascorbate peroxidase (APX),

superoxide dismutase (SOD), catalase (CAT), peroxidase

(POX), and non-enzymatic which include reduced glutathione

(GSH), ascorbic acid and tocopherol (Prochazkova et al., 2001).

Somasundaram et al. (2009) showed that PBZ (5 mg/l)

application to Sesamum indicum resulted in 464.74%, 267.49%,

and 359.08% increase in SOD, APX, and POX activity

respectively in leaf tissue under drought conditions as

compared to without PBZ. Different PBZ treatments increased

SOD activity in maize grown in the semi-arid environment to

varying degrees. From 0 to 15 days after silking (DAS), SOD

activity increased, then decreased until it reached 45 DAS

(Kamran et al., 2020). The APX activity of PBZ-treated

ryegrasses was found to be 25% higher than that of untreated

under drought. No considerable difference in CAT activity was

observed in PBZ-treated plants under drought. PBZ increased

POX activity considerably under drought (Sheikh Mohammadi

et al., 2017). Under salt stress, a higher dose of PBZ (1500 mg/l)

increased the activity of antioxidant enzymes in mango leaves.

Under salt stress, mango plants treated with PBZ had higher

SOD (24%), POX (163%), and CAT (46%) activity than control

plants without PBZ treatment (Srivastav et al., 2010).

Application of PBZ increased SOD by 19.09% and 33.07% in

roots and leaves, respectively, and CAT activity by 33.17% in

quinoa leaves under salinity. Similarly, PBZ improved POD

activity in quinoa by 78.18% in roots and 55.56% in leaves

under salinity stress (Waqas et al., 2017). Kamran et al. (2020),

reported that PBZ (300 mg/l) in semi-arid region increased the

mean SOD activity by 12.4%, 22.9%, 29.1%, and 38.6%, POD

activity by 21.0%, 33.0%, 32.2% and 59.2%, CAT activity by 29.7,

25.6%, 45.0%, and 70.6%, APX activity by 40.9%, 28.7%, 56.2%,

and 53.8% at 0, 15, 30, and 45 DAS, respectively in maize

compared with the drought-stressed plants without PBZ

treatment. PBZ decreased H2O2 and O2
− contents by 51.0%

and 40.1% at 0 DAS, 45.0% and 42.0% at 15 DAS, 63.4% and

51.8% at 30 DAS, and 58.2% and 50.4% at 45 DAS, respectively,
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compared with the water-stressed plants without PBZ treatment.

Similarly, Forghani et al. (2020), reported an increase in

antioxidant enzymes under salt stress with PBZ in

sweet sorghum.

Under water deficit stress, PBZ application resulted in a 2-

fold increase in GSH/GSSG ratio compared to control allowing

for precise regulation of the ascorbate-peroxidase pathway and,

as a result, preventing oxidative damage in tomato plants (Pal

et al., 2016). Sankar et al. (2007), reported that in Arachis

hypogaea L. (ICG221) application of PBZ (10mg/l) under

water deficit stress increased ascorbic acid content in leaf from

9.08 to 9.52 mg/g dry weight basis, ά tocopherol from 0.52 to

0.70 mg/g fresh weight basis, reduced glutathione from 33.06 to

47.48 µg/g fresh weight basis as compared to drought-stressed

plants without PBZ.
PBZ enhanced proline content

Proline is a key amino acid in protein and membrane

structures, as well as a ROS scavenger under drought (Ashraf

and Foolad, 2007). PBZ treatment enhanced proline content and

improved drought tolerance. However, further research is

needed to determine the actual molecular mechanism

underlying the effect of PBZ on mobile proline concentration

in plants (Chandra and Roychoudhury, 2020). PBZ treatment

(75 mg/L) significantly reduced proline content (0.030 mmol/g

FW) in pomegranate leaves by 59.22% to control (0.067 mmol/g

FW) (Moradi et al., 2017). Mohamed et al. (2011) found that free

proline concentration increased by 54.56 mg g-1 in PBZ (50 mg/

l) treated tomato plants grown at 60% field capacity, which was

1.52-fold greater than the control. However, in water-stressed

conditions, the free proline level in PBZ (10 mg/l) in pre-treated

peanuts was lower (1.04-fold over control) than in untreated

plants (1.49-fold over control) (Sankar et al., 2014). Dwivedi

et al. (2017), showed that the wheat plants treated with PBZ

under water stress had a 40% decrease in proline content as

compared to the stressed plants without PBZ. These findings

suggested that the wheat genotypes experienced less stress (as

indicated by the proline content) and improved drought

tolerance as a result of PBZ application. Another study

showed a considerable increase in free proline content after

Mannitol+PBZ treatment in wheat cultivar Sakha 8 (3.342 mg g-

1 f.w) as compared to control (without PBZ+Mannitol) and the

same pattern was observed in all the wheat cultivars (Aly and

Latif, 2011). Endogenous proline level increased by 17% in

mango leaves treated with PBZ (1500 mg/L) under salt stress

when compared to salinized plants without PBZ treatment

(Srivastav et al., 2010). Samota et al. (2017a), showed a

significant increase in proline content in drought-sensitive and

drought tolerant rice genotypes after priming with PBZ under

drought as compared to their unprimed samples. Babarashi et al.

(2021) reported that the application of PBZ (150 mg/l) in
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mungbean under drought increased proline content from 7.28

(drought without PBZ) to 7.87 mmol/g f.wt. Similarly, in

Safflower (Carthamus tinctorius L.) application of PBZ under

drought enhances the proline content (Davari et al., 2022).
PBZ reduced malondialdehyde content

Usually, membrane lipid peroxidation in plants is detected

by measuring malondialdehyde (MDA). MDA is a widely used

marker of oxidative lipid injury caused by environmental stress.

Kamran et al. (2020), showed that the MDA content was

significantly lower in the PBZ-treated maize plants over the

control under drought. PBZ treatment under drought

considerably reduced the MDA content in maize leaf by 31.5%

at 0 DAS, 31.4% at 15 DAS, 32.2% at 30 DAS, and 20.2% at 45

DAS compared with drought without PBZ. Other studies carried

out on PBZ-primed rice samples indicated that PBZ showed

insignificant change in MDA content in the sensitive genotype

under drought while a 55% decrease in MDA content was found

in the tolerant genotype as compared to PBZ treated under

control conditions (Sasi et al., 2021). Similar findings were

documented by Samota et al. (2017b), who observed that

plants raised from PBZ-primed seeds had lower MDA levels

under control and drought conditions than plants raised from

unprimed seeds. The amount of MDA decreased as the amount

of PBZ increased. PBZ (80 mg/l) decreased MDA content (51.15

mol/g f.wt.) under water deficit stress relative to drought alone

(61.92 mol/g f.wt.) (Samota et al. (2017b). Kamran et al. (2020),

reported that PBZ (300 mg/l) in the semi-arid region reduced

MDA content by 44.1%, 50.4%, 66.3%, 40.5%, at 0, 15, 30, and 45

DAS respectively compared with the water-stressed plants

without PBZ treatment.
PBZ influence on protein content

The protein content in plants decreases with the onset of

water deficiency. PBZ treatment increased the protein content of

the leaves and tubers in carrots (Gopi et al., 2007). From 0 to 15

DAS, the soluble protein content of maize increased slightly,

then steadily decreased from 15 to 45 DAS. Plants treated with a

high concentration of PBZ under drought retained higher

protein content from 0 to 15 DAS, but protein content was

significantly inhibited from 30 to 45 DAS (Kamran et al., 2020).

Wheat seeds primed with PBZ had increased protein content

(Nouriyani et al., 2012). Also, there are other similar reports

which showed that PBZ priming increased the protein content

under abiotic stress and non-stress conditions (Razavizadeh and

Amu, 2013). According to Iqbal et al. (2020) when PBZ was

applied under drought to the okra cultivar Nutec, total soluble

proteins increased as the amount of PBZ was increased. Total

soluble proteins were 11.04, 11.29, 10.75, and 11.76 mg/g f.wt. at
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four different PBZ treatments of 0, 20, 40, and 80 mg/l,

respectively under water stress conditions.
PBZ influence on sugar content

During drought, the accumulation of compatible solutes

such as carbohydrates is claimed to be an effective stress

tolerance mechanism (McKersie and Leshem, 1994). Sugar

resulting from transitory starch degradation was noticed in

PBZ-pretreated plants (Kaur and Gupta, 1991), which retains

the leaf water potential under water deficit stress conditions

(Zhu et al., 2004). PBZ treatment in mango increased total sugar,

sugar: acid ratio, reducing sugar, and titratable acidity reduction

(Vijayalakshmi and Srinivasan, 1999; Yeshitela et al., 2004). In

drought-stressed ryegrass, PBZ application significantly

increased soluble sugar content compared to untreated plants.

The impact of PBZ was mainly pronounced on 30 and 45 days of

drought treatment in Iranian perennial ryegrass (Sheikh

Mohammadi et al., 2017). According to Fan et al. (2020), PBZ

(150 mg/l) under extreme drought (RWC 35-40%) had 119%

higher soluble sugar content than drought without PBZ in

Amorpha fruticosa. In untreated and PBZ-treated (50 mg/l)

tomato plants total soluble sugars increased by 1.16 and 1.52

times under water deficit (60% FC), respectively (Mohamed

et al., 2011). Sugar content increased by 2 mg/l after foliar

application of PBZ under 6% PEG-induced water deficit stress in

S. rebaudiana Bertoni as compared to stressed plants

(Hajihashemi and Ehsanpour, 2014). Total soluble sugar

enrichment in PBZ-treated sweet potatoes may be required for

cellular osmotic adjustment under water deficit stress situations.
Molecular responses of plants to
PBZ

PBZ inhibits GA biosynthesis by inactivating cytochrome P

450-dependent oxygenase, which inhibits the oxidation of ent-

kaurene to ent-kauronoic acid (Zhu et al., 2004; Rady and

Gaballah, 2012). PBZ inhibits ABA degradation into phaseic

acid, resulting in ABA accumulation. In drought-stressed

tomato plants, PBZ increased the expression of ABA

biosynthesis genes (SlZEP, SlNCED, and SlAAO1) (Pal et al.,

2016). To gain a better understanding of the dwarfism

mechanism, Zhu et al. (2016), analyzed gene transcripts of Lily

leaves after PBZ treatment. 2704 genes were found to be

differentially expressed by comparing PBZ-treated samples to

untreated samples. PBZ increased the expression of nine genes

encoding GA biosynthesis enzymes (one KAO and eight

GA20ox genes) while decreasing the expression of a gene

involved in GA deactivation (GA2ox gene). Song et al. (2011)

reported that the expression of ent-kaurene oxidase (ZmKO1-2),

ent-kaurene synthase (ZmKS1,2,4), and ent-copalyl diphosphate
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synthase (ZmCPS) decreased, whereas the expression of GA 3-

oxidase (ZmGA3ox1), GA20-oxidase (ZmGA20ox1,5) and ent-

kaurenoic acid oxidase (ZmKAO) increased in maize seedlings

treated with PBZ. PBZ has been shown to increase SLGA20ox-3

and SLGA3ox2 expression in tomato plants through feedback

regulation. Upregulation of SLGA20ox-3 and SLGA3ox2

transcript accumulation was observed in response to PBZ-

induced ent-kaurene oxidase inhibition, which was thought to

be a feedback upregulation of GA biosynthesis in response to

lower GA content (Hedden and Thomas, 2012).

Another study examined the expression profiles of GA

biosynthesis genes (ent-kaurene oxidase; KO, gibberellin 20-

oxidase1; GA20ox1 and gibberellin 3-oxidase; GA3ox) and

floral transcription factor genes (UFO, WUSCHEL; WUS, and

LFY) in response to 1,250 mg/l of PBZ treatment of Jatropha

floral buds. Then, samples were selected at the different time

points of 14 days (no sex organs observed), and 20 days after

treatment (blooming and sex organs observed). The results

showed that PBZ significantly reduced the expression level of

GA20ox1, GA3ox, and LFY as compared to the control (P<0.05)

at 14 days. On the other hand, the expression level of UFO and

WUS1 were significantly higher than the control. At 20 days,

there was no difference in the expression level of GA

biosynthesis genes between the control and treatment. At the

same time blooming time of PBZ-treated flowers was delayed

which might be due to low expression levels of GA20ox1, GA3ox,

and LFY in treated floral buds (Seesangboon et al., 2018).

PBZ (200 mg/l) inhibited the GAs content in rice varieties

under submergence stress compared to submergence stress

without PBZ (Wu et al., 2019). qRT-PCR was used to analyze

the expression of GAs biosynthetic genes such as OsCPS1,

OsKS1, and OsGA2ox1. OsCPS1 mRNA was repressed in PBZ

treatment, which was consistent with the GA content in leaves.

PBZ application increased ABA content regardless of rice

genotypes due to the upregulation of 9-cis-epoxycarotenoid

dioxygenase (NCED), the main enzyme in ABA biosynthesis,

encoded by OsNCED3 (Barrero et al., 2006).

In contrast to plants not treated with PBZ, Rubisco-small

subunit expression was higher at the anthesis and post-anthesis

stages in all wheat cultivars with PBZ (Dwivedi et al., 2017). At

the anthesis and post-anthesis stages of wheat growth, the PBZ-

treated water-stressed plants showed downregulation of the stress

marker pyrroline-5-carboxylate synthase (P5CS) expression in all

genotypes studied (Dwivedi et al., 2017). At various growth stages

after the formation of the basal second internode of wheat, the

complex changes in the activities of enzymes involved in lignin

biosynthesis, such as phenylalanine ammonia-lyase (PAL) and 4-

coumarate: CoA ligase (4CL), were assessed in response to PBZ

(200 mg/l) application. The activity of PAL and 4CL were higher

by 42% and 35.6% respectively as compared to the control (Peng

et al., 2014; Wang et al., 2016; Kamran et al., 2018).

PBZ (PBZ) at 0.8 and 1.6 mg/l significantly increased

aquaporin (gene and protein) expression in tomato plants
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compared to controls, implying a coordinated increase in ABA

and aquaporin levels in response to water stress. Treatment with

PBZ during deficit irrigation increased SlTIP2 expression by 5.3-

fold above the control and resulted in greater PIP2-7 protein levels

(compared to PBZ-irrigated). The increased expression of PIP2-7

in response to PBZ treatment during deficit irrigation shows that

it enhances water intake andmanagement by encouraging de novo

synthesis of aquaporin (AP) channels. Under deficit irrigation,

PBZ (0.8 and 1.6 mg/l) administration raised citrate content 2.18
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and 1.64-fold, respectively, compared to PBZ-treated irrigated

plants (control). This was due to the up-regulation of Sl Citrate

synthase (SlCS) by 1.28 and 1.73-folds, respectively. Application of

PBZ under irrigated conditions and PBZ-treated deficit irrigated

plants increased Sl Succinyl-CoA ligase, SlSCoAL1, and SCoAL2

expression by 1.66 and 2.01-fold, 1.21, and 3.66-fold, respectively,

resulting in substantially increased succinate abundance (1.63-

fold). PBZ-treated irrigated and deficit irrigated plants produced

more GABA than control plants. When PBZ-treated irrigated and
FIGURE 2

Depiction of overall impact of paclobutrazol under drought on physiological, biochemical, and molecular responses. Arrow showing the trend
(Upward-Increase; Downward- Decrease).
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deficit irrigated plants were compared to their respective control

plants, increased expression of glutamate decarboxylase, SlGAD,

was connected to better GABA buildup. GABA production was

boosted by increasing the expression of SlGAD, an enzyme

necessary for glutamate to GABA conversion.

DNAmethylation plays an important role in plant growth and

development. Recent research findings have shown that the

imposition of various biotic and abiotic stresses on the plant

contributes to increased methylation of the genome and thus leads

to genome activity degeneration. Garg et al. (2019), found that the

application of PBZ under water deficit stress leads to

hypermethylation which was predominant in the drought

susceptible genotype as compared to drought tolerant genotypes.
Conclusion

By suppressing GA biosynthesis, PBZ increases ABA and

chlorophyll. By reducing stomatal conductance and transpiration

rates, the increased ABA level increases the RWC and WUE of

crop plants. By increasing antioxidant activity and limiting lipid

peroxidation, PBZ improved membrane stability and maintained

photosynthetic machinery integrity under stress conditions. It also

increased the photosynthetic pigment profile, suggesting that the

application of PBZ triggers the xanthophyll cycle pigments and

thus contributes to the defense of the photosynthetic machinery.

As a result, PBZ application increases grain yield by facilitating

greater photo assimilation by increasing the exchange of

photosynthetic gases, higher chlorophyll content, and

photosynthetic activity for longer periods. As a result, PBZ-

induced physiological activities boost crop yield under water

stress, salinity, temperature stress, and climate change

conditions (Figure 2), resulting in more sustainable agricultural

practices. This, however, is contingent on attracting agricultural

scientists’ attention and farmers’ trust in this novel compound in
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the future. Furthermore, further research is needed to uncover the

PBZ-induced multi-stress defense mechanism, especially in terms

of its association, interrelation, and crosstalk with other

phytohormones and stress-sensitive genes. As PBZ causes many

physiological changes as a drought defence mechanism, these

changes are not the same in all plant species, so more research is

needed to determine the impact of PBZ and its application in crop

fields along with its residual impact on soil.
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