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Heavy metal elements, which inhibit plant development by destroying cell

structure and wilting leaves, are easily absorbed by plants and eventually

threaten human health via the food chain. Recently, with the increasing

precision and refinement of optical instruments, optical imaging

spectroscopy has gradually been applied to the detection and reaction of

heavy metals in plants due to its in-situ, real-time, and simple operation

compared with traditional chemical analysis methods. Moreover, the

emergence of machine learning helps improve detection accuracy, making

optical imaging spectroscopy comparable to conventional chemical analysis

methods in some situations. This review (a): summarizes the progress of

advanced optical imaging spectroscopy techniques coupled with artificial

neural network algorithms for plant heavy metal detection over ten years

from 2012-2022; (b) briefly describes and compares the principles and

characteristics of spectroscopy and traditional chemical techniques applied

to plants heavy metal detection, and the advantages of artificial neural network

techniques including machine learning and deep learning techniques in

combination with spectroscopy; (c) proposes the solutions such as coupling

with other analytical and detection methods, portability, to address the

challenges of unsatisfactory sensitivity of optical imaging spectroscopy and

expensive instruments.
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Introduction

Heavy metal elements are absorbed by plants and induce

nuclear and chromosomal aberrations by altering the

permeability of the plasma membrane. More precisely, heavy

metals can bind proteins and alter their activity, bind to ADP/

ATP reactivity and phosphate groups, and interfere with ion

homeostasis to disrupt membranes and antioxidant systems,

induce nuclear and chromosome aberrations, inhibit cell

division, induce cell cycle arrest, and changes cell wall

structure. Thus, causing severe damage to plants at the cellular

and tissue levels, ultimately leading to stunted plants and

reduced crop yield and quality (Liu et al., 2017; Xie et al.,

2018; Feng et al., 2021). Figure 1 illustrates the effects on

heavy metals stress (HMS) for the plant from the metabolic,

cellular, and organization levels. Moreover, heavy metals

threaten human health through the food chain. Therefore,

heavy metal contamination is closely related to agricultural

production, environmental protection, and food safety (Wang

et al., 2018a; AbdElgawad et al., 2020; Yuan et al., 2020).

There are many reliable methods to detect heavy metal

contamination in plants, including chemical analysis,

electrochemical anodic stripping voltammetry, ultraviolet

visible spectrophotometry (UV) (Brzezicha-Cirocka et al.,

2016; Wang et al., 2018b), high performance liquid

chromatography, atomic absorption spectrometry (AAS)

(Ghanati et al., 2019; Li et al., 2021a), inductively coupled

plasma mass spectrometry, inductively coupled plasma optical

emission spectrometry (ICP-OES). Although these methods

have high detection accuracy, they are time-consuming,

laborious, complicated sample pretreatment and have a limited

detection range, which cannot meet the requirements of green,

rapid, and large-scale detection (Bian et al., 2020; Shojaei et al.,

2021; Zhao et al., 2021). Recently, with the development of

optical instruments and machine learning, the sensitivity of

optical imaging spectroscopy has been improved and gradually

applied to the detection of heavy metals for plants because of the
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simple, rapid, and in situ advantages provided by spectroscopy

(Zhou et al., 2020a; Park et al., 2022).

This review focuses on the application of optical imaging

spectroscopy combined with machine learning for heavy metal

detection for plants in the last decade or so (2012-2022). The

feasibility of using spectroscopy for heavy metal detection is

explored from plant roots, stems, leaves, and fruits. In addition,

the basic principles of spectroscopy combined with machine

learning to detect heavy metal contamination levels in plants are

elucidated. Meanwhile, future research orientation and focus are

critically proposed to address the difficulties and challenges in

the present spectroscopy and artificial neural network

development stage.
Theoretical basis of spectroscopy

Heavy metal elements entering plants damage the cell’s

plasma wall structure and affect the metabolism and phenotypic

information of the plant (Feng et al., 2021). Therefore, the

spectroscopy is divided into molecular and atomic spectra to

detect plants according to different responses to heavy metals.

Rathod et al. (Rathod et al., 2015) and Jabbar et al. (Jabbar et al.,

2019) used atomic and molecular spectroscopy to detect heavy

metal stress in plants. Alvarez-Mateos et al. (Alvarez-Mateos et al.,

2019) and Aldakheel et al. (Aldakheel et al., 2020) combined

traditional techniques and spectroscopic to study heavy metals in

plants. It has been a widespread tendency to reveal heavy metal

contamination levels of plants from different scales by multi-

device/technology linkage. In addition, the combination of

spectroscopy and deep learning dramatically improves the

efficiency and accuracy of detection, enabling label-free, in-situ.

Zhang et al. (Zhang et al., 2022) and Zhao et al. (Zhao et al., 2022)

et al. used spectroscopy combined with deep learning to study

heavy metals in plants.

Moreover, heavy metals are absorbed by plant roots and

transported to the aboveground organs of plant tissues, which
FIGURE 1

The effects of heavy metals for plant from metabolic, cellular, organization level.
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are usually enriched in leaf vacuoles. However, different plants

have different absorption and transport abilities for heavy

metals, so plants with strong absorption abilities are selected

for heavy metal phytoremediation (Feng et al., 2021), thus the

combination of optical imaging spectroscopy with temporal and

spatial information of plants to construct a multidimensional

visual kinetic model to assess the distribution characteristics of

heavy metals in plants is a novel approach, which plays a

theoretical reference value for breeding and green remediation.

Figure 2 briefly depicts the characteristics of five spectroscopic

techniques applied to detect heavy metals in plants.
Molecular spectrum

Visible and near-infrared spectral data are typically obtained

by point scanning in a wide wavelength range (Shen et al., 2020).

Vis-NIR spectrometers with the point scanning method are

easily carried in the field or on-site detection for their small

volume and high reliability (Kawamura et al., 2021). However,

due to the influence of overtone and combined vibration, the

absorbance characteristics in the visible near-infrared spectrum

are usually low (Chen et al., 2021). HSI combined imaging and

spectroscopy techniques to obtain high-resolution spectral-

spatial information in visible and near-infrared regions (Jun

et al., 2019). HSI could provide accurate exploration and visually

express plant phenotype information of samples at the pixel level

(Shen et al., 2020; Ryckewaert et al., 2021). However, thousands

of spectral bands can result in data redundancy, optical

complexity, and spatial heterogeneity (Pyo et al., 2020).
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Raman spectrum is a kind of molecular scattering based on

the inelastic scattering of incident light. The scattering spectra of

different incident light frequencies are analyzed to obtain the

vibration and rotation information of the molecule and to study

the structure of the molecule. Raman spectroscopy has superior

spatial resolution, rich information, and resistance to water

interference (Liedtke et al., 2021). However, Raman signal is

weak and easily interfered by external factors such as

fluorescence (Naqvi et al., 2022). Various Raman spectroscopy

techniques are proposed to solve the weak signal and interference

problem, such as Surface-enhanced Raman scattering (SERS),

which overcomes the problems of weak Raman signal and

fluorescence interference. Besides, Raman spectroscopy coupled

with micro-imaging realizes the chemical compound visualization

in the cell or metabolic levels, which assists in exploring the heavy

metal stress process and migration rules in plants.
Atomic spectroscopy

LIBS is an atomic emission spectroscopy technology that

utilizes a focused pulsed laser beam to generate plasma from

materials, then analyzes the elemental composition from the

emission spectrum (Peng et al., 2016). The essential

characteristics of LIBS are the ability to detect all elements,

sample detection in different matrices, simultaneous multi-

element detection ability, little or no sample preparation, real-

time analysis, in-situ diagnosis, and remote detection (Jantzi

et al., 2016). The moisture content in the material limits the

detection ability of LIBS for the moisture content may reduce the
B

C D

A

FIGURE 2

The principle and characteristics of spectral technology. (A) Laser induced breakdown spectroscopy (LIBS). (B) Raman spectrum. (C) Visible/
Near-infrared spectroscopy (Vis-NIR)/Hyperspectral imaging (HSI). (D) Chlorophyll fluorimeter.
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emission intensity and affect the stability of the signal (Peng

et al., 2017).
Multitechnique spectroscopy

Chlorophyll fluorescence (CHI-FI) technology as a

photosynthetic probe can reflect the distribution of heavy metal

elements in plants, using chlorophyll as a judge. Zhang et al.

(Zhang et al., 2022) and Das et al. (Das et al., 2015) combine

spectroscopic techniques with chlorophyll fluorescence

technology to detect and visualize the distribution of heavy

metal elements such as Cd and Cu in plants. Therefore, multi-

device/technology is considered an effective way to reveal the

distribution of heavy metals and plant response at multiple scales.

Spectral data is repetitive, complex, and high dimensional, so

machine learning methods are needed for effective data mining,

such as dimensionality reduction, feature band extraction,

modeling, etc. For HSI, RS, and CHI-FI imaging spectroscopy,

traditional machine learning methods are challenging to meet the

requirements, so it is necessary to use deep learning methods to

process high-dimensional data. Detection of heavy metals in

plants can be rapidly predicted using mathematical models with

good performance.
Frontiers in Plant Science 04
Basic steps of spectroscopic
detection

The major steps of the experiment are sample preparation,

spectra acquisition and computational analysis. The major steps

of the experiment are shown in Figure 3.
Spectrum acquisition

The first step of sample preparation is essential for

spectrum acquisition. Usually, plant samples need to be

cleaned, dried, and crushed (Li et al., 2016a), and many

samples also need to be appropriately embedded and sliced.

Drying, grinding, and pressing are usually preferred for dried

samples using LIBS to acquire spectral (Peng et al., 2017; Peng

et al., 2018). Appropriate embedding and slicing are necessary

conditions for obtaining microstructure with spectral

properties through Raman spectroscopy (Gierlinger et al.,

2012; Liedtke et al., 2021).

An acquisition system is essential for spectrum acquisition,

including a darkroom, light source, spectrometer, sample room

and computer. For imaging spectrometers, a CCD camera is also
FIGURE 3

The major steps of the experiment are sample preparation, spectra acquisition and computational analysis.
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required (Lowe et al., 2017). Spectral measurements were

performed in a darkroom to control lighting conditions and

reduce the effects of stray light (Wang et al., 2014). At the same

time, attention should be paid to spectral resolution and

determination range (Fu et al., 2020; Zhou et al., 2020b).

When collecting spectra, the surrounding environment should

be stable and corrected with a standard reference plate

(Mishra, 2021).
Data preprocessing

Computational processing is necessary to extract useful

information from a large amount of data. Spectral data

processing includes preprocessing, sample set division,

dimensionality reduction, optimal band selection, and model

establishment. For hyperspectral data, radiation calibration,

atmospheric correction, geometric correction, and other

preprocessing are also required before preprocessing (Li et al.,

2012; Li et al., 2015). The original spectrum contains not only

spectral information, but also noise signals that may interfere

with spectral information due to various factors such as sample

background and stray light (Mishra et al., 2017). Therefore,

before data analysis, spectral preprocessing is used to remove

noise and filter data, including Savizkg-Golag convolution

smoothing (S-G), standard normal variable transform (SNV),

multivariate scattering correction (MSC), short-time Fourier

transform (STFT), Functional dependency (FD), fast Fourier

transform (FFT) derivation, and wavelet transform (WT).

Smoothing eliminates the noise in the spectrum; SNV reduces

the influence of nonspecific scattering on particle surface (Wang

et al., 2018a); MSC eliminates the scattering effect and enhances

the spectral absorption information related to components; the

modified baseline is derived and the wavelet transform is used

for data denoising and smoothing (Wang et al., 2018a). Principal

component analysis (PCA) and other methods can be used to

reduce the dimension of spectral data (Pyo et al., 2020; Yu et al.,

2020). At the same time, it is also necessary to select the best

band, mainly including genetic algorithm (GA), uninformative

variable elimination (UVE,and the successive projection

algorithm (SPA) (Milanez et al., 2017).
Machine learning

Machine learning has become increasingly popular in the

critical field of spectroscopy (Han et al., 2022). When processing

spectral data, spectral modeling methods can be further divided

into the classification model (qualitative results) and the

regression model (quantitative estimation) (Mishra et al.,

2017). Classification is a supervised learning method used to

identify the categories of different substances. Commonmethods

include support vector machine (SVM), Least squares support
Frontiers in Plant Science 05
vector machine (LS-SVM), naive Bayes (NB), decision tree, and

logical regression. (Wang et al., 2019). Clustering is an

unsupervised learning task, which can automatically classify

samples, such as k-means, hierarchical clustering, and

Gaussian mixture model.

Regression analysis predicts the value of variables by

establishing linear or nonlinear models. A variety of machine

learning methods are applied to regression analysis, such as partial

least squares regression (PLSR) (Peng et al., 2016; Yu et al., 2020),

extreme learning machine (ELM), and artificial neural networks

(ANNs). (Melgani and Bruzzone, 2004; Li et al., 2018).

With the development of artificial intelligence, deep learning

method has gradually become a research hotspot, which has

shown the most advanced performance in image-based data

processing (Li et al., 2021b). As a data-driven learning method,

deep learning can automatically learn the low-dimensional and

high-dimensional features contained in the data from the

original data. It was initially suitable for two-dimensional

image data, but its applicability has recently extended to one-

dimensional spectral data. The Convolutional neural network

(CNN) is one of the representative deep learning algorithms.
Spectroscopy for detecting plants
heavy metals

HMS influences the growth of plants and physiological

parameters (such as chlorophyll content and enzymatic

activity), leading to changes in reflection characteristics (Zhou

et al., 2019a). Therefore, plant heavy metal levels and

physiological parameters can be evaluated by analyzing

spectral reflection information (Fu et al., 2020; Shen et al.,

2020). Root, stem, and leaf play an essential role in plant

growth, and reflect the growing situation. Plant roots absorb

and enrich heavy metals and migrate them to stems and leaves.

The research on detecting heavy metals in plant’s roots, stems,

leaves, and fruits provides a theoretical basis for exploring the

migration characteristics of heavy metals in plants. Recently,

spectroscopic technology is extensively applied in analyzing

plants’ leaves or roots to get the HMS level or growth

information, and some research results have been obtained.

The HSI, Vis-NIR, CHI-FI, LIBS, and RS are the most

commonly used spectrum in acquiring plant information. This

part mainly summarizes the research achievements of five

spectroscopic technologies in detecting plants under HMS

from different plant organs.
HMS of roots

Roots are one of the vegetative organs of plants, which

absorb water and inorganic salts in the soil and play the role

of supporting, reproducing, and storing organic matter. HMS
frontiersin.org

https://doi.org/10.3389/fpls.2022.1007991
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2022.1007991
inhibits root growth, for example, by reducing the number of

branches. Using spectral technologies to detect roots under HMS

is more focused on traditional Chinese medicine plants or plants

with strong soil remediation ability. Table 1 shows examples of

the application of spectroscopic techniques in root detection

under heavy metal stress.

The results showed that spectral technology combined with

machine learning could detect heavy metal stress in herbaceous

plants and roots. Qu et al. (Qu et al., 2012) acquired the

apparent reflectance spectra of wheat, cabbage, and pea

under Cu stress, and extracted their fluorescence spectra

based on the model inversion method. The positive

correlation between the height of the far-red fluorescence

peak (FFR) and the Cu content in leaves was established. The

extraction method of fluorescence spectrum based on the

theoretical model proposed in this research provides a new

method for this research field. Silva et al. (Silva et al., 2012)

detected the accumulation mechanism of Cd in maize leaves

and roots based on fluorescence spectroscopy. They monitored

the chlorophyll and biomass changes, which proved the

increase of Cd accumulation in roots could reduce the

migration of metals to above-ground parts. The research

illustrated that fluorescence spectroscopy has excellent

sensitivity to the changes of plants under Cd stress, and can

be used for early detection of heavy metal content in plants.

Through the analysis of plants, it is further used for the

identification of pollution environments and the monitoring

of risk areas. Liu et al. (Liu et al., 2018) detected the Cd in

tobacco root samples by LIBS, the best quantitative model was

achieved by the IPLS-SVM model with R2 of 0.9820. This

research provides a feasible, effective and economical approach

for fast detecting Cd in tobacco roots. Li et al. (Li et al., 2016a;

Li et al., 2016b) LIBS was used for rapid quantitative analysis of

Cu in the roots of three Chinese herbal medicines and selected

Pb 405.7 nm as the characteristic spectral line for analysis. The

results showed that LIBS could be used for rapid detection and

analysis of Cu in Chinese herbal medicines, and the internal

standard method could improve the fitting accuracy. LIBS

characteristic line extraction combined with machine
Frontiers in Plant Science 06
learning can quickly predict heavy metal elements. Liu and

Wang et al. (Liu et al., 2015b; Wang et al., 2017b) detected the

contents of Cu and Pb in vetiver roots by Raman spectroscopy

and analyzed the compounds represented by characteristic

Raman bands. The results proved that the PLSR prediction

model of heavy metal content after first-order differential

pretreatment was optimal. In this research, indirect

quantitative analysis of Cu content in resin after adsorption

of heavy metals further confirmed the great potential and

application value of vetiver in soil and water conservation

and soil heavy metal remediation. Figure 4 shows the

application analysis of HSI, LIBS, CHI-FI, and RS spectral

techniques in detecting heavy metals in plant roots. The

spectrum obtained in Figure 4 not only can determine heavy

metals in plants, but also can visualize heavy metals and

components of stressed organs by combining the spectrum

with the image, which is helpful in studying the distribution

and migration characteristics of heavy metals in plants.

It is challenging to degrade naturally in the soil

polluted by heavy metals, which can only change and

migrate the form. Using plants with strong heavy metal

enrichment ability to transfer heavy metals in soil plays an

essential role in the remediation of heavy metal contaminated

soil. Phytoremediation is a set of methods to eliminate, destroy,

metabolize, fix and stabilize heavy metal contaminates using plants.

It is an effective way to control heavy metal contaminates in soil.

Root exudates (such as citric acid and glycine) play a crucial role in

phytoremediation. Generally, heavy metals can be absorbed by

plant roots, harvested and concentrated on the ground, or filtered,

fixed and, passivated by plant roots, to reduce their activity and

pollution. Detecting the content of heavy metals in plant roots by

spectroscopy is an assistant in explaining its accumulation

mechanism, determine its effect, and selecting plants with strong

heavy metal enrichment ability for soil remediation.

Currently, many researchers focus on the wrapping of heavy

metals in roots to further reduce the damage of heavy metals in

plants. Moreover, optical imaging spectroscopy provides a new

way to evaluate the heavy metals’ adsorption capacity of plants

and resistant breeding.
TABLE 1 Lists the application of spectral technology in the detection of roots under HMS.

Techniques Plant (HMS) Data analysis Results Ref.

CHI-FI, UV, AAS Corn (Cd) Chemometrics R2 = 0.88 (Silva et al., 2012)

CHI-FI, Vis-NIR, AAS Wheat, beans, vegetables (Cu) GM,AM,LM Spectral intensity∝Cu content of leaves (Qu et al., 2012)

RS Vetiver (Cu) PLS R2 = 0.78, (Liu et al., 2015b)

LIBS, AAS herbal medicine (Pb) Internal standard method R2 = 0.98 (Li et al., 2016a)

LIBS, AAS Coptis chinensis (Cu) Internal standard method R2 = 0.99, (Li et al., 2016b)

LIBS Tobacco (Cd) SPA; PLS,SVM SVM(R2 = 0.98) >PLS (R2 = 0.94) (Liu et al., 2018)

HIS, ICP-OES Herb (Cd) CARS; PLS, LS-SVM CARS-LS-SVM(R2 = 0.9) >CARS-PLS (R2 = 0.87) (Feng et al., 2019)

RS Apple rootstock (Cu) SG; SVM
PLS-DA

SVM (Accuracy: 100%)>PLS-DA (Accuracy: 96%) (Li et al., 2022)
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HMS of stems

The stem is one of the vegetative organs of plants,

transporting nutrients and water to support leaves, flowers, and

fruits. The stems of some plants also have the functions of

photosynthesis, storage of nutrients, and reproduction. Many

scholars have found the accumulation and distribution of heavy

metals in plant stems. However, spectroscopic analysis of changes

in plant stems components under HMS is also required. Zhang

et al. (Zhang et al., 2019a) used fluorescence spectroscopy to detect

the Cd content in Chinese herbal medicine rapidly and established

the calibration curve of Cd content and fluorescence intensity. The

detection limit of Cd was 0.083 mg/kg, and the quantitative limit

was 0.207 mg/kg. The accuracy was similar to that of chemical

analysis, and the detection time was short, which could be used to

monitor heavy metals in Chinese herbal medicine manufacturers.
Frontiers in Plant Science 07
By near-infrared spectroscopy, Xu et al. (Xu et al., 2011) quickly

predicted the contents of Cd, Cu, and Zn in sweet potato leaves

and stems. Partial least squares regression (PLS) was used to

model and analyze the contents of water, protein, Cd, Cu, and Zn

in sweet, potato, leaves and stems. The results show that near-

infrared spectroscopy can be used to quickly predict the contents

of Cd, Cu and Zn in sweet, potato, leaves, and stems. Plant

inorganic ions can be combined with organic groups with near-

infrared absorption in a specific form, so that Vis-NIR can detect

their content. However, the Vis-NIR has high requirements for

the representativeness and classification of the calibration model

sample group and the uniformity of the sample size, so it is

necessary to explore suitable model optimization methods.

The stem of the plant has a transduction effect. It can

transport the water and inorganic salts absorbed by the root

system from the soil to the leaves, flowers, fruits, and other
B

C D

A

FIGURE 4

Application of spectral technology in detecting heavy metals in plant roots. (A) Rapid detection of cadmium and its distribution in Miscanthus
sacchariflorus by visible and near-infrared hyperspectral imaging. Different letters (a, b, c, d, e.) in each histogram indicate a significant difference
at P<0.01. (B) The effects of copper absorption and metal distribution in Commelina communis root growing area were analyzed by XRF. (a)
Longitudinal section around the meristem and metal locations; (b) Cross section of elongation tissue and metal locations; (c) Cross- section of
non-growing tissue and metal locations. The scale bar of sections represents 50mm. Different letters (a, b, c,d.) in each histogram indicate a
significant difference at P<0.05. (C) Quantitative analysis of cadmium in tobacco roots was carried out by LIBS spectroscopy and stoichiometry.
(D) Analysis of Raman spectroscopy in root detection of heavy metals. SERS, Surface-Enhanced Raman spectroscopy; XRF, X-Ray fluorescence;
LIBS, Laser-induced breakdown spectroscopy.
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ground parts. Stems are accompanied by heavy metal migration

when transporting water, inorganic salts, and other substances.

Therefore, studying the heavy metal contaminantes of plant

stems is necessary. However, spectral technology is more used to

detect the content or phenotype of plant leaves or roots under

HMS, but the corresponding mechanism of stems is less

researched. More research can be done in this field in the

future, which will help to understand the migration

characteristics of heavy metals in plants.
HMS of leaves

As an essential organ of plants, leaves synthesize organic

matter through photosynthesis, supply essential nutrients for

plants growth, and promote for roots to absorb water and

mineral nutrients from the outside through transpiration.

Leaves are crucial indicators that reflect the biochemical

composition and health status of vegetation. Getting

physiological information about leaves is important to

understand plant characteristics (Fu et al., 2020). In particular,

detecting leaf physiological information under heavy metal stress

by spectral technology is helpful in researching the corresponding

mechanism of plants under heavy metal stress. Table 2 lists the

application of spectral technology in detecting leaves under heavy

metal stress. The results show that spectral technology combined

with machine learning and chemical methods has excellent

advantages in the detection of heavy metals, and it is a rapid

method for the detection of heavy metals in plants.

Shen et al. (Shen et al., 2020) used HSI to conduct high-

throughput screening of free proline (FP) in rice leaves under Cd

stress and established PLS, LS-SVM, and ELM models based on

effective wavelength, realizing the FP content visualization. The

results showed that ELM with 27 sensitive wavelengths had the

best performance for predicting FP detection. Hyperspectral
Frontiers in Plant Science 08
imaging and machine learning can rapidly and non-

destructively estimate the physiological parameters of leaves,

providing a technical means for real-time and high-throughput

screening of plant phenotypic physiological parameters under

heavy metal stress. Fu et al. (Fu et al., 2020) recognized Cu and

Pb in Maize Leaves Based on HSI and analyzed the recognition

characteristics of Cu and Pb in the frequency domain. The

results show that the red edge and red shoulder region of the

spectrum can be used as the characteristic spectrum to

distinguish Cu and Pb. This research demonstrates the

potential of frequency domain in identifying small spectral

differences. The concentration of heavy metals in plants can be

obtained by analyzing the spectra of plants, and further

indirectly estimating the concentration of heavy metals in

water and soil. Peng et al. (Peng et al., 2018) established the

Cr prediction model of rice leaves based on global spectra after

the optimization of two important parameters (delay time and

energy ratio) in dual-pulse laser-induced breakdown

spectroscopy (DP-LIBS), with a correlation coefficient of

prediction of 0.959 and the distribution of chromium in rice

leaves were visualized with the best prediction model. Feng et al.

(Feng et al., 2019) also realized the visualization of Cd

concentrations in Miscanthus sacchariflorus based on HSI.

Zhao et al. (Zhao et al., 2022) did the structure analysis and

non-invasive detection of cadmium-phytochelatin2 complexes

in the plant by deep learning Raman spectrum. Phytochelatin2

(PC2) chelates Cd
2+ in a 2:1 ratio to form Cd (PC2)2; Cd-S bonds

of the Cd (PC2)2 have signature Raman vibrations at 305 and 610

cm−1 are the most distinctive spectral signatures for Cd-PCs

complexes. This research provides a general protocol using

Raman information for structure analysis and non-invasive

detection of heavy metal-PCs complexes in plants. It provides

a novel idea for simplifying the identification of high

phytoremediation cultivars and assessing heavy metal-related

food safeties. Figure 5 displays the typical common spectra
TABLE 2 Application of spectral technologies in detecting the quality of the leaves under HMS.

Techniques Plant (HMS) Data analysis Results Ref.

Vis-NIR Ludwigia Prostrata PLSR R=0.950 (Liu et al., 2012)

HSI, LIBS Tobacco (Cu) Calibration curve R2 = 0.98, LOD:7.72 mg/kg (Lu et al., 2017)

LIBS Rice (Cr) PLSR R2 = 0.97, LOD:4.75mg/kg (Peng et al., 2017)

LIBS, ASV Vegetables (Cd) SNV, FD, SD, CT; PLSR The best method: CT, R=0.99 (Yang et al., 2017)

Vis-NIR Corn (Cu) Regression R2 = 0.73,RMSE=0.013 (Li et al., 2019)

Vis-NIR Tomato (Cd) WT; LSSVR R2 = 0.94, RMSE=0.0099 (Jun et al., 2019)

Vis-NIR Lettuce (Cd) WT, SD, PCA, VISSA,GOA; SVM The best method: VISSA, GOA; Accuracy:98.57% (Zhou et al., 2019b)

HSI Corn (Cu) OIF-PLS R=0.85 (Gao et al., 2020)

HSI Rice (Cd) GA, CARS; PLS, ELM, LS-SVM The best method: CARS; ELM, R=0.94 (Shen et al., 2020)

HSI Lettuce (Cd, Pb) WT, SCAE;DL, SVR Cd: R2 = 0.93, RMSE=0.050
Pb: R2 = 0.94, RMSE=0.041

(Zhou et al., 2020b)

HSI Tobacco (Hg) PCA, CARS; PLS-DA, LS-SVM The best method: CARS; LS-SVM, Accuracy:100% (Yu et al., 2021)

Vis-NIR Corn(Cu) STFT, PLSR R2 = 0.99 (Meng et al., 2021)
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application in detecting plant leaves under heavy metal stress.

The figure shows the process of heavy metal detection and

analysis, spectrum acquisition, data preprocessing, modeling,

and visual expression.

However, it is difficult to extract features manually by using

machine learning methods to process spectral data, and the

issues of such considerable data in spectral data increase the

spectral processing load, leading to the complexity of spectral

feature extraction and mathematical modeling. Deep learning

shows obvious advantages in processing massive data. Applying

it to processing spectral data is conducive to extracting data

features and improving the detection and recognition rate. Zhou

et al. (Zhou et al., 2020b) developed a deep learning method

based on wavelet transform (WT) and stack convolution auto

encoder (SCAE) to detect the depth characteristics of lettuce

leaves under heavy metal stress. The performance of Support

vector machine regression (SVR) model based on depth features

obtained byWT-SCAE is reasonable, and the predictive decision

coefficient (Rp
2) is 0.9319. This research confirms the great

potential of combining hyperspectral techniques with deep

learning algorithms for detecting composite heavy metals.
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As an essential part of plants, leaves can reflect the growth

and physiological state of plants. Using spectral technology to

detect the leaves of plants under heavy metal stress can obtain

the influence of heavy metals on the phenotypic information of

leaves and the concentration information of heavy metals. The

research on the leaf information of plants under HMS is mostly

the detection of heavy metals in food plants or leaf vegetables,

which is of great significance to food safety. However, most of

the current researches are based on laboratory conditions to

carry out single heavy metal stress on leaves and use spectral

technology to quantitatively detect heavy metal content in leaves

or analyze physiological information of plants. The spectral

analysis also mainly focuses on constructing vegetation indices

to obtain leaf physiological information. For detecting HMS of

large-scale farmland plants, portable detection equipment and

online monitoring equipment based on spectral technology is

still the focus of research and development, and the critical point

of digital agriculture implementation. Researchers are more

likely to combine hyperspectral imaging technology with

remote sensing technology and use hyperspectral remote

sensing technology to detect heavy metal content in large-area
B

CA

FIGURE 5

Spectrum processing process and flow chart. (A) Flowchart of image processing and data analyses for predicting the FP in rice leaves. Different
letters (a, b, c, d, e.) in each histogram indicate a significant difference at P<0.01. (B) Raman spectrum analysis results of leaf tissue of Pakchoi
under heavy metal cadmium stress. (C) Optimization method for rapid visualization of chromium distribution in rice leaves by LIBS
spectroscopy. FP, free proline; ST, standard; PLP, pure leaf powders; PLS, partial least squares; SVM, support vector machine; LIBS, Laser-
induced breakdown spectroscopy.
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planted plants, which also provides the possibility for real-time

and efficient monitoring of heavy metal contaminations. In the

future, it may play an essential role in providing key information

in space and time for precision agriculture.
HMS of fruits

Fruit is closely related to human life. In human food, most of

them are the fruits of gramineous plants, such as wheat, rice, and

corn. People often eat fruits, including apples, peaches, oranges,

and grapes. They are rich in glucose, fructose, sucrose, various

and inorganic salts, vitamins and other nutrients. These fruits

are not only delicious, but also processed into dried fruit, jam,

preserves, wine, fruit juice, and vinegar. In addition, some fruits

also have certain medicinal value, such as jujube, fennel, papaya,

citrus, hawthorn, apricot and longan, which can be made into

Chinese herbal medicine. Therefore, nondestructive fruit quality

testing is conducive to ensure its commercial value and food

safety. Currently, many studies have been conducted to detect

the quality of fruits Based on spectral technology, but there are

few studies on detecting heavy metals in fruits.

Lin et al. (Lin et al., 2014) analyzed the cadmium content in

Gannan navel orange based on LIBS technology and compared it

with the analysis results of AAS technology after wet acid

decomposition. The correlation coefficients of LIBS and AAS

analysis results were 0.9096 and 0.991, respectively, with little

difference between them. Food is indispensable for human

survival, it is essential to understand its toxic trace level to

determine its potential impact on human health. As a non-

destructive testing technology, spectral technology has

significant advantages in the rapid non-destructive testing of

fruits. LIBS technology is expected to play an essential role in

detecting heavy metals in fruits because it does not require

complex sample preparation.
Others

The canopy is a dense top layer of trees. As the first part of

the plant to contact with the external gas environment and light,

plant canopy is related to the use of light energy, such as light

transmission, reflection, photosynthesis, and transpiration rate.

It can be used to evaluate the growth of plants. The detection and

evaluation of heavy metal content in canopy by spectral

technology play an important role in food safety and

environmental monitoring. Scholars have used spectral

technology to detect and analyze plant canopy under heavy

metal stress and explored the spectral effect of heavy metal stress

on plants. Shi et al. (Shi et al., 2016) collected the field canopy

reflectance spectra in the jointing-booting growth stage of rice,

and selected the well-performing vegetation indices using

successive projections algorithm (SPA), then adopted the SPA
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selected vegetation indices to calibrate a multiple linear

regression model for estimating soil arsenic content. Results

showed that a three-band vegetation index performed best in

estimating content. The vegetation index can be effectively used

to estimate the content of heavy metals in plants, the

combination of characteristic wavelengths in spectral

information is helpful in improving the estimation accuracy.

Liu et al. (Liu et al., 2015a) realized the dynamic simulation of

rice growth parameters in cadmium contaminated soil to

monitor the stress-induced changes of growth parameters on

the time scale. Results showed that the growth parameters

simulated by the modified WOFOST model reflected the

variations of rice growth status on a time scale. This research

provides a reference for dynamically monitoring heavy metal

contamination in farmland environments. Kancheva et al.

(Kawamura et al., 2021) obtained the canopy reflectance data

of alfalfa, spring barley, and pea under Cd and Ni stress, studied

the sensitivity of plant spectral response (various vegetation

indexes and red edge positions) to pollution level and crop

performance (growth variables), and obtained the relationship

between heavy metal stress and plant phenotype through

regression analysis. In addition, the transmittance and

chlorophyll fluorescence excited by blue light (470nm) were

measured on isolated leaves, statistically correlated with plant

pigment content and cadmium concentration. The results

showed the stress growth conditions were caused by significant

plant spectral response changes. Various spectral characteristics

were highly correlated with stress factors. This also provides a

theoretical basis for using spectral technology to describe plant

physiological development and ecological tranquility. Zhang

et al. (Zhang et al., 2019b) used fluorescence spectroscopy to

determine the content of heavy metals As, Pb, and Hg in edible

roses. The detection limits were 0.0053, 0.0227, and 0.0079 mg/L,
respectively. It was found that the content of heavy metals in

edible roses exceeded the standard. The results showed that the

detection of heavy metal elements as, Pb, and Hg in edible roses

by fluorescence spectroscopy could meet the detection

requirements, and it was expected to be used to determine the

heavy metal content of edible flowers such as canary flowers,

bitter thorn flower, and pear flower. There are few studies on

detecting heavy metal content in flowers by spectral technology,

and the research methods need to be further studied. Wang et al.

(Wang et al., 2017a) collected the spectral data of wheat canopy

at different growth stages under the stress of heavy metals Cu

and Zn and explored the effects of Cu and Zn stress on the

spectra of wheat. The results showed that heavy metals had

different effects on the spectra of wheat at different growth

stages. The red trough position (650nm) in the canopy

spectral characteristics would move to the short-wave

direction, that is, the blue shift phenomenon occurred, and the

green peak position (550nm) would move to the long-wave

direction, that is, the redshift phenomenon occurred. The red

edge blue shift phenomenon of spectral characteristics is also
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related to the change of chlorophyll content of plants under

heavy metal stress.

It is feasible to detect plant canopy under heavy metal stress

by spectral technology, which can be used to study the response

mechanism of plants to heavy metal stress, especially through

the construction of vegetation index. At the same time, spectral

technology combined with remote sensing technology can be

used to realize large-area Farmland Monitoring and biological

parameter inversion of plant canopy under heavy metal stress.

With the continuous development of sensor technology and

computer technology, it is more potential to realize the detection

of trace heavy metals in plants and the small changes of plant

physiological indexes based on spectral analysis.
Conclusion and prospect

With the development of optical instruments and machine

learning, applying optical imaging spectroscopy to the real-time

detection of heavy metals in plants has become a possibility. At

the same time, optical imaging spectroscopy can reveal plant

phenotypic information at multiple scales, making the

distribution of heavy metals visualized in multiple dimensions,

and providing a new method to explore the migration pattern of

heavy metals in plants. Moreover, the development of artificial

neural networks has solved the problem of complex and tedious

data mining in spectroscopy, further improved the sensitivity of

spectra and reduced the detection limit.

Although optical imaging spectroscopy coupled with

machine learning has proven to be a reliable means for plant

heavy metal detection due to its rapid, high-throughput, simple

operation, in-suit and real-time, it still faces some challenges: (a)

Limited by the optical properties of plants, the sensitivity of

optical imaging spectroscopy detection is lower than that of

traditional chemically invasive analytical methods, thus seeking

multiple devices/techniques coupled with spectroscopy to

improve precision of optical instruments is the key to improve

the sensitivity of spectroscopy. (b) Despite the simplicity of

optical imaging spectroscopy detection steps, expensive and

large equipment instruments are still the major constraints to

the application of spectroscopy to plant heavy metal detection,
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so the development of portable and low-cost optical devices is

the basis for promoting the industrialization of spectroscopy. (c)

Improving the artificial neural network model and developing

more algorithms guarantee full mining of spectral data, which is

conducive to the further promotion of spectroscopy in

phytoremediation and breeding.
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