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Lead (Pb) is a heavy metal pollutant and negatively affects agriculture and

ecosystems. Pb can cause oxidative stress and abnormal plant growth. The

ascorbic acid-glutathione (AsA-GSH) cycle mainly exists in chloroplasts and

resists oxidative stress, scavenges reactive oxygen radicals, and maintains

normal photosynthesis. However, the dosage related effects of Pb on

pakchoi photosynthesis, via oxidative stress and the AsA-GSH system,

remains unclear. In this study, various Pb dosage stress models were tested

(low: 300 mg/kg; medium: 600 mg/kg; high: 900 mg/kg). Pb stress induced a

dose-dependent increase in Pb content in pakchoi leaves (P < 0.05). Principal

component analysis showed that Se, B, and Pb were significantly and negatively

correlated. Pb stress also increased MDA content and decreased antioxidant

enzymes SOD, GSH-Px, and T-AOC activities (P < 0.05). We also found that Vc

content, as well as the GSH/GSSG ratio, decreased. Additionally, Pb stress

destroyed chloroplast structure, decreased photosynthesis indicators Pn, Tr,

Gs, Ci and VPD, and attenuated Fv/Fm and Fv/Fo (P < 0.05). In the high-dose

group, the contents of chlorophyll a, chlorophyll b, and carotenoids decreased

significantly, while the expression of chloroplast development genes (GLK,

GLN2) decreased (P < 0.05). Our data suggest that Pb stress leads to dosage-

dependent, aberrant photosynthesis by inhibiting the AsA-GSH system in

pakchoi. This study expands the Pb toxicology research field and provides

indications for screening antagonists.
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Introduction

Lead (Pb) is a non-essential, heavy metal plant pollutant,

derived mainly from waste gas, batteries, and canned products

(Ye et al., 2018; Dong et al., 2021). The Pb contents in the

Yangtze River and the estuary in winter were 11.3 to 669.4 mg/g
in China. From the 1980s to 2016, the Pb content increased by

77-78% due to pollution (Yu et al., 2021). The Pb found in

household ash mainly derives from coal burning and solid waste

incineration, and is consistent with the Pb levels in urban air and

soil surface. Household dust is therefore considered to be the

main environmental cause for children requiring treatment for

Pb related problems (Dong et al., 2021). Moreover, the Pb

content in soils approximately 20 kilometers away from the La

Oroya metallurgical complex in Peru was 217.81 ± 39.48 mg/kg,

of which 9.5% was transferred to the surrounding grasses (Doris

et al., 2021). The Pb content in lettuce leaves and Chinese

cabbage grown in urban garden soils reached 0.05 mg/kg fresh

weight, and the Pb concentration in these vegetables was

positively correlated with the Pb soil levels (Gao et al., 2021;

Calabró et al., 2022). The over-standard rate of Pb in 673 plant

samples provided by a typical intensive production system in

Hainan Province is 2.67%, and leafy vegetables are more polluted

than non-leafy vegetables (Yang et al., 2021). Crop plants mainly

absorb Pb by absorbing Pb2+ ions found in the soil solution.

Thus, when the soil becomes acidic, insoluble PbCO3 is easily

released and absorbed by plants. Most of the Pb absorbed by

plants accumulates in the roots, whereafter it then migrates to

stems and leaves (Dalyan et al., 2018). Pb can hinder plant root

formation, resulting in decreased plant seed germination rates,

plant height, leaf number, biomass, and yield (Ye et al., 2018;

Kanwal et al., 2020). Thus, excessive soil Pb content threatens

plant growth and development, and can even cause plant death.

Pb stress is known to reduce chlorophyll pigment and gas

exchange characteristics, leading to plant oxidative damage

(Bamagoos et al., 2021). After Pb exposure (3000 mg/kg),

chlorophyll production, photosynthetic efficiency, and PSII

(the reaction center of photosystem II) decreases (Xie et al.,

2021). Moreover, Pb exposure affects ascorbic acid metabolism,

which results in oxidative and chloroplast damage (Zhang

et al., 2020).

In the study of plant stress physiology, the ascorbic acid-

glutathione (AsA-GSH) circulatory system participates in

resisting oxidative stress and scavenging reactive oxygen free

radicals in chloroplasts (Ahmad et al., 2010; Ahmad et al., 2019;

Kohli et al., 2019). AsA and reduced GSH levels are important

non-enzymatic antioxidants that are closely related to plant

stress resistance. In the AsA-GSH cycle, the ratio of AsA/

dehydroascorbate (DHA), as well as the ratio of GSH/oxidized

glutathione (GSSG), can be used to measure the response

of plants to environmental stress (Li et al . , 2022).

Dehydroascorbate reductase (DHAR), monodehydroascorbate

reductase (MDHAR), ascorbate peroxidase (APX), and
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glutathione reductase (GR), are important enzyme

components in the AsA-GSH cycle of plants, and important

for regenerating reduced AsA and GSH (Gao and Chen, 2005).

Drought stress can affect the antioxidant capacity of cotton

leaves. Consequently, AsA and GSH content increases under

drought stress, and the ability of the AsA-GSH cycle to eliminate

ROS is weakened (Raja et al., 2021). In salt-treated soybeans,

malondialdehyde (MDA), hydrogen peroxide (H2O2), catalase

(CAT), MDHAR, and DHAR content increases as salt levels

increase (Rahman et al., 2021). Therefore, the AsA-GSH cycle is

critical for preventing plant oxidative damage caused by stress.

Pb stress is known to impact plant growth and

photosynthesis (Ye et al., 2018; Kanwal et al., 2020; Xie et al.,

2021). Pakchoi (Brassica chinensis L.) is a type of miniature

Chinese cabbage, and is a subspecies of Cruciferae Brassicae. The

Chinese populace is fond of pakchoi due to its small size, high

nutritional value, and ease of growing. However, whether Pb

stress causes a dosage-dependent effect on the mineral element

content, AsA-GSH cycle, photosynthesis, and chloroplast

development in pakchoi, remains unclear. We therefore

studied pakchoi by using low, medium, and high dosage

exposure models of Pb stress (Zeng et al., 2007). We also

measured whole element content, AsA-GSH cycle levels,

antioxidant enzyme activities, photosynthesis, chlorophyll

content, and chloroplast development-related genes. This

study aimed to elucidate the dosage-dependent influences of

Pb stress on the AsA-GSH cycle and photosynthesis in pakchoi

to provide a reference for Pb toxicology.
Methods and materials

Planting and processing of pakchoi

The pakchoi variety used in this study was “April Slow”

(Wanlida, China). The purity of this variety is ≥ 92.0%, and its

germination rate is over 98.0%. There were four experimental

treatments: control (C), 300 mg/kg Pb (L), 600 mg/kg (M), and

900 mg/kg (H). We used (CH₃COO)2Pb from Aladdin (Cat. No.

301-04-2). Three replicates were used for each treatment. In the

experiment, 300 mm x 200 mm (upper diameter x height)

ceramic pots were used, which were filled with 3.0 kg of soil

and Pb mixture. We added deionized water along the pot edges

to ensure that the soil moisture content reached the maximum

capillary water holding capacity. After standing for 24 h, we

planted 15 pakchoi seeds per pot to a depth of 1 cm. Seedlings

emerged 3–5 days after sowing, and thinning was performed a

week later, thereby leaving six strong seedlings in each pot. We

arranged the potted plants randomly and changed their position

every day to ensure that each pot received an even amount of

light. During the entire experimental period, the temperature

was maintained at 18–22°C, the light was kept at 2×104 - 3×104

lux, and the soil moisture content at 50%. The experiment was
frontiersin.org

https://doi.org/10.3389/fpls.2022.1007276
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Tan et al. 10.3389/fpls.2022.1007276
carried out in the Tarim University greenhouse. The planting

date was March 4, 2021, and plants were harvested 45 days later.

The potted soil used is a sandy loam, and its basic

characteristics are shown in Table 1. A base fertilizer was

applied to the soil, and consisted of: 0.33 g/kg urea, 0.10 g/kg

potassium dihydrogen phosphate, 0.09 g/kg potassium chloride.

No top dressing was applied during the growing period.
Inductively coupled plasma mass
spectrometry analysis, principal
component analysis and
correlation analyses

Upon harvesting, cabbage leaves were collected and washed

with deionized water, whereafter they were oven dried first at

105°C for 30 min, and then at 60°C. Specific steps are given by

Farhat et al. (Farhat et al., 2022). After acid digestion, the

following elements were detected using ICP-MS technology

(iCAP Q, Thermo): Lithium (Li), Beryllium (Be), Boron (B),

Sodium (Na), Magnesium (Mg), Aluminum (Al), Phosphorus

(P), Potassium (K), Calcium (Ca), Titanium (Ti), Vanadium (V),

Chromium (Cr), Manganese (Mn), Iron (Fe), Cobalt (Co),

Nickel (Ni), Copper (Cu), Zinc (Zn), Gallium (Ge), Arsenic

(As), Selenium (Se), Rubidium (Rb), Strontium (Sr),

Molybdenum (Mo), Silver (Ag), Cadmium (Cd), Tin (Sn),

Antimony (Sb), Barium (Ba), Mercury (Hg), Thallium (Tl),

Lead (Pb) and Bismuth (Bi).

For the Pb-stressed pakchoi leaves, we used logarithmic

(base 10) values for total element content. Hereafter, we used

the SPSS (version 25.0) software to perform a PCA through

dimensionality reduction. Finally, we used the Origin (version

2021) software for correlation analysis.
Determination of photosynthetic
characteristics

The experiment was carried out between 9:00–11:00 AM on a

sunny day with occasional cloud cover. The light intensity was 800

mmol m−2 s−1, the CO2 consistence was 500 mmol mol−1, and the

humidity was 62%. We randomly selected three healthy pakchoi
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leaves from each group for photosynthetic index determination

and consistently used the same leaf position each time. Assuming

that the water pressure difference between the pakchoi leaves and

air was 1.0–1.2 kPa, we used a handheld photosynthetic

measurement system (LI-6400XT, Lincoln) to gauge the net

photosynthetic rate (Pn), transpiration rate (Tr), stomatal

conductance (Gs), intercellular CO2 concentration (Ci), vapor

pressure difference (VPD), and atmospheric CO2 concentration

(Ca), as well as other pakchoi indicators (Kamran et al., 2019).
Observation of the ultrastructure
of chloroplast

A small piece of 1 mm × 3 mm was cut from the middle of

the pakchoi leaf, avoiding the main lateral vein, and immediately

placed in 4% glutaraldehyde for pre-fixation, and then post-fixed

with 1% glutaric acid. Then, dehydration, infiltration,

embedding, aggregation, sectioning and staining (uranyl

acetate-lead citrate double staining) were performed according

to the conventional ultra-thin sectioning method, and then

observed and photographed with a transmission electron

microscope (GEM-1200ES, Japan).
Determination of fluorescence
characteristic parameters of pakchoi

According to a previous report (Li et al., 2018), we used a

portable chlorophyll fluorometer (FMS-2, UK) to measure the

fluorescence parameters of healthy pakchoi leaves under a set

light intensity, and using a consistent position for each leaf. Prior

to measurement, pakchoi leaves were dark treated for 15 min,

and a low light intensity (1 mmol m-2 s-1) was applied to gauge

the initial fluorescence (Fo). Hereafter, we used a saturated

pulsed light intensity (3000 mmol m-2 s-1) to gauge maximum

fluorescence (Fm), variable fluorescence (Fv = Fm-Fo),

maximum photochemical efficiency of PSII (Fv/Fm), potential

of PSII photochemical activity (Fv/Fo), 100 ms photoreaction

center closed purification rate (dVG/dto), and 300 ms
photoreaction center closed purification rate (dV/dto). Three

leaves were chosen for each treatment.
Determination of photosynthetic
pigment content pakchoi leaves

A total of 0.5 g fresh pakchoi leaves were placed in 95%

ethanol and protected from light for 24 h to extract

photosynthetic pigments. A spectrophotometer (Hitachi UV-

3100 UV/VIS; TECHCOMP, China) was used to measure

extract absorbances at 665, 649, and 470 nm. Calculation
TABLE 1 Physical and chemical properties of potting soil.

Soil properties Potting soil

pH 7.05 ± 0.04

Organic matter (g/kg) 23.5 ± 0.20

Total nitrogen (g/kg) 1.35 ± 0.02

Available phosphorus (mg/kg) 9.05 ± 0.1

Available potassium (mg/kg) 81.51 ± 1.04

Pb (mg/kg) 0.22 ± 0.05
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formulas for chlorophyll a, chlorophyll b, and carotenoids were

based on a previous report (Mr et al,. 2021). Three leaves were

chosen for each treatment.
AsA and DHA content in pakchoi

We used colorimetric and phenanthroline colorimetric

methods to detect the AsA and DHA leaf content in the four

treatment groups. Following the manufacturer’s instructions, we

used Vitamin C (VC) content (A009-1-1, Jiancheng Nanjing)

and DHA (TC2041, Leagene Beijing) test kits.

Detection of oxidative stress levels
in pakchoi

We used a phosphate buffer (pH 7.4) to grind a weighed 0.1 g

sample of pakchoi. The supernatant was collected after

centrifugation at 3500 r/min for 15 min. Hereafter, we analyzed

MDA content, as well as GSH-Px, SOD, T-AOC, GSH, and GSSG

activities, according to the manufacturer’s instructions (Nanjing

Jiancheng, China). The detailed product numbers were as follows:

MDA Determination Kit (Item No. A003-1-2), Glutathione

Peroxidase (GSH-Px) Determination Kit (Item No. A005-1-2),

Superoxide Dismutase (SOD) Test Kit (Item No. A001-1-2), Total

Antioxidant Capacity (T-AOC) Test Kit (ItemNo. A015-1-2), and

Total Glutathione (GSH)/Oxidized Glutathione (GSSG)

Determination kit (Item No. A061-2-1).
Analysis of pakchoi mRNA levels

A TRIzol™ reagent (Item No. 12183555, Invitrogen) was

used to collect total RNA from pakchoi leaves based on a

previously published method (Xu et al., 2021). We then used a

cDNA synthesis kit (BioFlux, China) to reverse transcribe total

RNA to cDNA. The primers of the genes detected by

quantitative reverse transcription polymerase chain reaction

(qRT-PCR) are given in Table S1. These primers referenced

the genomes of Chinese cabbage (Taxonomy ID: 51351) and

Brassica rapa (Taxonomy ID: 3711), which were synthesized by

Shanghai Sangon Biotechnology Co., Ltd. An endogenous

control, namely b-actin, was used to standardize other target

genes. The qRT-PCR reaction program was executed using a

SYBR Green fluorescent dye (BioFlux, China) according to the

manufacturer’s instructions. Relative mRNA levels and genes

were calculated using the 2−DDCt method (Ali Shah et al., 2021).
Statistical analysis

We used GraphPad Prism (version 8.0) and SPSS (version 25.0)

to perform a one-way analysis of variance on all data. The relevant
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experimental data of the Pb-stressed pakchoi leaves were all normally

distributed and passed the equal variance test. The results are

expressed in terms of mean ± standard deviation (M ± SD).

Groups with the same letter represent non-significant differences;

groups with different letters represent significant differences.
Results

Pb and total element content of
pakchoi leaves

The Pb content was 0.48518 mg/kg (C group), 3.108726 mg/

kg (L group), 6.696257 mg/kg (M group), and 12.96486 mg/kg (H

group) as determined by ICP-MS (Figure 1A). In the Pb stress

group, pakchoi leaf Pb content increased with increasing soil Pb

content. IRT (iron-regulated transporter 1), as a member of the

Zip family (ZRT IRT-like protein), participates in plant heavy

metal ions transport. Here, the levels of IRT1 and IRT2 mRNA in

M group increased by 147.3% and 75.0%, respectively, and the

levels of IRT1 and IRT2 mRNA in H group increased by 296.3%

and 159.1% (P < 0.05), respectively, while the increase in L group

was not statistically significant (P > 0.05) (Figures 1C, D). These

results indicate that soil applied Pb is transported to pakchoi

leaves and is dosage-dependent. A heat map of total element

content showed that Rb content in the H group decreased, while

V, Fe, Cu, Co, Cd, Zn, As, and Mo content increased. It is worth

noting that Mn content in the H group increased by nearly

twenty-fold (Figure 1B).

All-element principal component analysis results showed

that Pb, Cd, and As were negatively correlated with Se, Hg, B,

and Rb on the first and second components. Pb, Cd, As and Tl,

Ba, Ca, Be, Sr, Sn, Bi, Ti, Ag, Cr, P, Sb, Mg, Ni, Mo, Li, K, Na, V,

Co, Al were all negatively correlated with component one and

positively correlated with component two (Figure 2A).

Correlation analysis results showed that Pb was strongly and

negatively correlated with B, Rb, Se, Ba, Hg, and Tl. Pb had a

strong positive correlation with Cd, As, Ge, Zn, Cu, Co, Fe, Mn,

V, and Al (Figure 2B). These results indicate that increased Pb

content reduces the contents of B, Rb, Se, Hg, and Tl, and

increases the contents of Cd, As, Ge, Zn, Cu, Co, Fe, Mn, V,

and Al.
The effect of Pb stress on the AsA-GSH
cycle of pakchoi

An analysis of oxidative stress-related indicator (GSH-Px, T-

AOC, SOD, GSH, MDA, and GSSG) content and activity

(Figure 3A) showed that MDA content increased (P < 0.05),

while the activities of T-AOC, GSH-Px, and SOD experienced a

dosage dependent reduction (P < 0.05). This shows that the

oxidative stress levels of pakchoi gradually increase as Pb dosage
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increases. Additionally, the GSH contents of the M and H groups

decreased, while the GSSG content increased significantly to

134.05% and 151.95% of the control group, which appeared to be

dosage dependent (P < 0.05) (Figure 3A). Moreover, GSH/GSSG,
Frontiers in Plant Science 05
as a measure of plant response to ecological environmental

stress, showed a dosage-dependent decrease (P < 0.05)

(Figure 3B). Subsequently, the contents of AsA and DHA

decreased significantly in the M and H groups (Figures 3C, D).
A B

DC

FIGURE 1

Pb content and total element content of leaves of pakchoi. (A) Pb content (mg/kg) in the leaves of pakchoi (45 d). (B) After Pb exposure in
pakchoi, the heat map of total element content. High expression (red), Low expression (green). (C) qRT-PCR analysis of IRT1 mRNA level in
pakchoi leaves (45 d) (n=3). (D) qRT-PCR analysis of IRT2 mRNA level in pakchoi leaves (45 d) (n=3). The same letter indicates no significant
difference (P > 0.05); completely different letter indicates significant difference (P < 0.05).
A B

FIGURE 2

Principal component analysis and correlation analysis. (A) Use SPSS (version 25.0) software to carry out the PCA of total element content
(logarithm based on 10). The first component (x axis) is 51.018%, and the second component (y axis) is 38.070%. (B) Use Origin software to
perform correlation analysis on the rotated score matrix output by PCA. Positive correlation (red), negative correlation (blue). The color depth
and the size of the circle are related to the strength of the correlation. The “*” sign indicates significant difference.
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Glutamate dehydrogenase (GLDH) is a key rate-limiting enzyme

for AsA synthesis. APX and DHAR are genes related to the AsA-

GSH system. Thus, we analyzed their mRNA levels by qRT-PCR

(Figures 3E–G). In the M and H groups, the transcription level of

APX was up-regulated (P < 0.05) as the Pb dosage increased,

while the transcription levels of DHAR and GLDH were down-

regulated. These results confirm that the pakchoi AsA-DHA

system experiences a state of disorder under Pb stress.
Frontiers in Plant Science 06
Pb stress influences pakchoi
photosynthesis and is dose-dependent

Photosynthesis uses inorganic matter to produce organic

matter and store energy, which forms the basis for plant survival.

We used a hand-held photosynthesis meter to detect Pn, Tr, Gs,

Ci, VPD, and Ca to study the effect of Pb stress on pakchoi

photosynthesis. In the low-dosage Pb treatment, Pn, Tr, and Gs
A

B DC

E GF

FIGURE 3

The effect of Pb stress on the AsA-GSH cycle of pakchoi. (A) The contents and activities of MDA (mmol/mgprot), GSH-Px (U/mgprot), T-AOC (U/
mgprot), SOD (U/mgprot) (n=6), GSH (mmol/mgprot) and GSSG (mmg/mL) (n=4) in pakchoi. (B) The ratio of GSH/GSSG (n=4). (C) The content of
AsA (Vitamin C) (mg/mgprot) in pakchoi leaves (45 d) (n=8). (D) The content of DHA (mg/mL) in pakchoi leaves (45 d) (n=8). (E) qRT-PCR analysis
of APX mRNA level in pakchoi leaves (45 d) (n=3). (F) qRT-PCR analysis of DHAR mRNA level in pakchoi leaves (45 d) (n=3). (G) qRT-PCR
analysis of GLDH mRNA level in pakchoi leaves (45 d) (n=3). The same letter indicates no significant difference (P > 0.05); completely different
letter indicates significant difference (P < 0.05).
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levels did not increase significantly. The values of Pn

(Figure 4A), Tr (Figure 4B), and Gs (Figure 4C) reduced

significantly (P < 0.05) in the M and H groups, while Gs levels

remained similar (P > 0.05). Furthermore, the Ci values of the L

and M groups did not change significantly (Figure 4D), while H

group Ci levels decreased significantly (P < 0.05). Pb treatment

slightly decreased the value of VPD (Figure 4E), but the dosage

dependence was not significant between M and L groups. The

atmospheric CO2 concentration did not change significantly

among the four treatments (Figure 4F). Finally, we found that

Pb treatment decreased the fluorescence intensity of pakchoi

leaves over time (Figure 4G). Although no dosage-dependent

effect was found, the fluorescence intensity of the low-dose Pb

treatment decreased most significantly over time. These results

indicate that Pb stress weakens pakchoi photosynthesis, which

appeared to be dosage dependent.
Pb stress has a dose-dependent effect
on the PSII response system of pakchoi

To gauge the influence of Pb stress on the PSII reaction

system in pakchoi, we used a portable chlorophyll fluorometer to

determine the Fo, Fm, Fv/Fm, Fv/Fo, dVG/dto, and dV/dto

values. Fo levels increased after Pb treatment (Figure 5A).

Additionally, we found that Fm increased with an increased

Pb dosage (Figure 5B), while the medium dosage treatment also
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showed significant differences (P < 0.05). PSII reaction is the

photosynthetic unit in the light-reactive thylakoid membrane.

Fv/Fm can be used to measure the original light energy

conversion efficiency of PSII. Fv/Fm decreased significantly

with increased Pb dosage (P < 0.05) (Figure 5C), which

indicates that Pb stress inhibited the PSII response system of

pakchoi. Additionally, compared with the other three

treatments, high-dosage Pb exposure significantly decreased

the Fv/Fo value (Figure 5D), which means that the maximum

light energy conversion potential of PSII reaction was reduced.

We then selected the purification rate of extensive initiation

center closure at two time points, namely 100 ms and 300 ms
(Figures 5E, F). Both dVG/dto and dV/dto increased as the Pb

dosage increased; however, the dosage dependencies were not

obvious. These results indicate that Pb stress has a dosage-

dependent inhibitory effect on the PSII response system

of pakchoi.
The influence of Pb treatment on the
chlorophyll content and chloroplast
formation of pakchoi

From the perspective of chlorophyll content and chloroplast

formation, we explored the effect of Pb stress on pakchoi

chloroplasts. No significant changes were observed in

chlorophyll a and chlorophyll b between the control and the L
A B D

E F G

C

FIGURE 4

Effect of Pb stress on the dose-dependent effect of photosynthesis of pakchoi. (A) The net photosynthetic rate (Pn) in pakchoi leaves (44 d)
(n=3). (B) The transpiration rate (Tr) in pakchoi leaves (44 d) (n=3). (C) The stomatal conductance (Gs) in pakchoi leaves (44 d) (n=3). (D) The
intercellular CO2 concentration (Ci) in pakchoi leaves (44 d) (n=3). (E) The vapor pressure difference (VPD) in pakchoi leaves (44 d) (n=3). (F) The
atmospheric CO2 concentration (Ca) in pakchoi leaves (44 d) (n=3). (G) Over time, the fluorescence intensity (a. u.) of pakchoi in pakchoi leaves
(44 d) (n=3). The same letter indicates no significant difference (P > 0.05); completely different letter indicates significant difference (P < 0.05).
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groups (Figure 6A). In contrast, in the M group, we observed

that chlorophyll a and chlorophyll b content decreased by 22.7%

and 38.1%, respectively; additionally, the H group decreased by

17.4% and 37.4%, respectively (P < 0.05). Hereafter, the

carotenoid content changed slightly, and only slightly

decreased in the H group. In the control group, the

chloroplast envelope was clear and complete, and was close to

the cell membrane. The substrate layer was densely arranged and

clearly structured, with a small amount of starvation particles on

the surface (Figure 6B). In the L group, the chloroplasts were

swollen, and the grana lamella structure was clear and relatively

complete. In the M group, the chloroplast membrane began to

dissolve, and the gap between the stroma lamellae increased,

showing irregular arrangement. In the H group, the chloroplast

membrane was severely dissolved, the grana lamella was partially

disintegrated, and the chloroplast was separated from the cell

wall, resulting in more starvation granules.

Additionally, the vesicle-inducing protein plastid 1 (VIPP1)

is located in the thylakoid, and the transcription level of VIPP1

did not change significantly (Figure 6C). Subsequently, we

analyzed the transcription levels of the chloroplast

development-related genes Golden 2-like (GLK), Glutamine

synthetase 2 (GLN2), and ethylene-dependent geotropism

yellow-green 1 (EGY1). EGY1 was significantly reduced in the

high-dosage Pb treatment (P < 0.05) (Figure 6D). Compared

with the control and L groups, the transcription levels of GLK

and GLN2 in the M and H groups decreased, which appeared to
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be dosage dependent (Figures 6E, F). THF1 is a protein encoded

by a nuclear gene located in the chloroplast. We found that the

medium- and high-dosage Pb treatments reduced the mRNA

levels of THF1 (P < 0.05) (Figure 6G). Additionally,

phytochrome interacting factor (PIF) and high chlorophyll

fluorescence (HCF) are both involved in chloroplast

development and biosynthesis. The medium- and high-dosage

Pb treatments reduced the transcription levels of PIF and HCF

in a dosage-dependent manner (P < 0.05) (Figures 6H, I). The

mRNA expression of the light-harvesting chlorophyll a/b

protein complex (LHC) decreased, which appeared to be

dosage-dependent (Figure 6J). These results show that the

influence of Pb stress on pakchoi chlorophyll content and

formation is dosage-dependent. That is, chlorophyll content

and chloroplast formation decreased as the Pb dosage increased.
Discussion

Pb residues are found in both industrial and residential soils,

and are transferred to, and accumulated in plants (Doris et al.,

2021; Gao et al., 2021). Pb is known to cause chlorosis, oxidative

stress, and growth and development disorders in plant leaves

(Kanwal et al., 2020). This study evaluated the effects of different

dosages (300 mg/kg, 600 mg/kg, and 900 mg/kg) of Pb stress on

pakchoi leaf chlorosis, oxidative stress, and growth and

development. Pb stress caused dosage-dependent oxidative
A B

D E F

C

FIGURE 5

Pb stress has a dose-dependent effect on the PSII response system of pakchoi. (A) The initial fluorescence (Fo) of Pb stress pakchoi (44 d) (n=3).
(B) The maximum fluorescence (Fm) of Pb stress pakchoi (44 d) (n=3). (C) The maximum photochemical efficiency of PSII (Fv/Fm) in pakchoi leaves
(44 d) (n=3). (D) The potential of PSII Photochemical activity (Fv/Fo) in pakchoi leaves (44 d) (n=3). (E) The 100 ms photoreaction center closed
purification rate (dVG/dto) in pakchoi leaves (44 d) (n=3). (F) The 300 ms photoreaction center closed purification rate (dV/dto) in pakchoi leaves
(44 d) (n=3). The same letter indicates no significant difference (P > 0.05); completely different letter indicates significant difference (P < 0.05).
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stress (Figure 3), abnormal mineral content (Figures 1, 2),

inhibition of the AsA-GSH system and photosynthesis

(Figures 3, 4), abnormal chlorophyll content, and abnormal

expression of chloroplast development genes (Figure 6).

Heavy metal stress can cause a mineral imbalance in

humans, animals, and plants (Lei et al., 2021; Xu et al., 2021;

Bushra et al., 2022). In addition, Cd and As are known toxic

mineral elements that easily accumulate in plants, and affect

growth and development (Dai et al., 2019; Irshad et al., 2021).

The ICP-MS method can determine the content of all elements

in plant and animal tissues, and principal component analysis

and correlation analysis can simplify the complex relationships

between these elements (Xu et al., 2021) to reveal small-scale

changes in elemental content in pakchoi leaves that experience

Pb stress. This experiment found that, as the dosage of soil Pb

increased, the content of the important growth elements B and

Se decreased, while the content of toxic mineral elements such as

Cd, As, and Cu increased. These results indicate that Pb stress

decreases the absorption of beneficial elements in pakchoi leaves

in a dosage-dependent manner, while the deposition of other

toxic metal elements increases. Boron is a vital element for plant
Frontiers in Plant Science 09
reproduction and growth, and plays an important role in the

physiological processes of crop plant leaf expansion and

meristem development (Pinho et al., 2015). The PCA showed

that Se, B, Hg, Tl, and Ba belonged to the first component. In

contrast, Li, K, Na, Mo, V, Co, Al, Mn, Cu, Zn, and Fe belonged

to the second component. Se and B were positively correlated

with component one, while Pb was negatively correlated with

component one. Therefore, Se and B are negatively correlated

with Pb, which agrees with the results obtained by correlation

analysis. This also suggests that adding B or Se to Pb-stressed

pakchoi may be used as an antagonist for Pb stress. Pb treatment

can reduce Se content, while Se supplementation can also reduce

Pb content. There was a negative correlation between Pb and Se

(Huang et al., 2021).

The AsA-GSH system is composed of AsA (that is, vitamin

C)-DHA and GSH-GSSG processes, as well as enzymes involved

in these two processes, and resists environmental stresses such as

low light levels (Hu et al., 2019). According to reports, Cd and

Cu can accumulate in plants, thereby causing the activities of

MDHAR, APX and DHAR to decrease, abnormal levels of AsA

and DHA, and a decreased GSH and GSSG content, leading to
A B
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FIGURE 6

The effect of Pb stress on the chlorophyll content and chloroplast formation of pakchoi. (A) The content of chlorophyll a, chlorophyll b, and
carotenoids in pakchoi leaves (45 d) (n=3). (B) Observation on the ultrastructure of chloroplasts in pakchoi leaves (n=3). Scale: 20 × (1 µm), 40 ×
(500 nm). (C) qRT-PCR analysis of VIPP1 mRNA level in pakchoi leaves (45 d) (n=3). (D) qRT-PCR analysis of EGY1 mRNA level in pakchoi
leaves (45 d) (n=3). (E) qRT-PCR analysis of GLK mRNA level in pakchoi leaves (45 d) (n=3). (F) qRT-PCR analysis of GLN2 mRNA level in
pakchoi leaves (45 d) (n=3). (G) qRT-PCR analysis of THF1 mRNA level in pakchoi leaves (45 d) (n=3). (H) qRT-PCR analysis of PIF mRNA level
in pakchoi leaves (45 d) (n=3). (I) qRT-PCR analysis of HCF mRNA level in pakchoi leaves (45 d) (n=3). (J) qRT-PCR analysis of GLDH mRNA
level in pakchoi leaves (45 d) (n=3). The same letter indicates no significant difference (P > 0.05); completely different letter indicates significant
difference (P < 0.05).
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oxidative stress and imbalance of the AsA-GSH cycle (Zhou

et al., 2018; Jung et al., 2021). Salt-alkali mixed stress reduces the

key enzymes of the AsA synthesis pathway, as well as L-galactose

dehydrogenase (GDH) and L-galactose-1 ,4- lactone

dehydrogenase (GLDH) activities, and weakens AsA-GSH

cycle efficiency, thereby causing oxidative damage to naked

oats (Liu et al., 2021). Additionally, ammonia gas stress

decreases the activities of antioxidant systems (SOD, T-AOC,

and GSH-Px), but increases the MDA concentration in chickens

(Han et al., 2020). Boron (B) and chromium (Cr) stress increases

MDA and causes oxidative stress in wheat (Ashraf et al., 2022).

The results of this study are similar to the above-mentioned

literature. Furthermore, under medium and high Pb dosages,

AsA and vitamin C synthesis key enzyme (GLDH) content

continued to decrease, indicating that Pb has a dosage-

dependent inhibitory effect on the vitamin C synthesis of

pakchoi. With an increased Pb dosage, the oxidative stress

marker MDA continued to increase, and the activities of

antioxidant enzymes continued to decrease. This shows that

dosage dependent Pb stress causes decreased antioxidant

capacity and increases oxidative stress levels. We also found

that the tolerance of pakchoi to adverse environmental

conditions is reduced through the GSH/GSSG ratio. Using

APX and DHAR activity abnormalities, we can summarize the

above results as: Pb stress causes a dosage-dependent AsA-GSH

circulatory system imbalance, which in turn reduces the

tolerance of pakchoi to oxidative stress.

Photosynthesis occurs in chloroplasts. The chlorophyll

within the chloroplast absorbs light energy and participates in

normal photosynthetic processes. The net photosynthetic rate is

thus a key indicator for evaluating photosynthetic efficiency in

plants. Under high-dosage metal accumulation stress (60 mg/kg

Cd + 90 mg/kg Cu), the photosynthetic characteristics

(chlorophyll a and b content, as well as Pn, Tr, Gr, and Ci)

and nutrients of pea plants are reduced (Lei et al., 2021). This

experiment found that medium and high Pb dosages reduced the

values of Pn, Tr, and Gs, while high Pb dosages significantly

reduced Ci values, which explained the negative effects of Pb

stress on pakchoi photosynthesis. Additionally, PSII

photoreaction is an important stage of photoreaction (Ci et al.,

2009), and Fv/Fm and Fv/Fo values can be used to measure the

original light energy conversion efficiency and maximum light

energy conversion potential of the PSII system in pakchoi.

Under 100 mmol/L Cd hydroponic conditions, the Fv/Fo and

Fv/Fm photosynthetic parameters of elsholtzia serrata are

significantly reduced (Li et al., 2015). This study found that

Fv/Fm continued to decrease as Pb dosage increased, which thus

showed a dosage-dependent effect. Pb stress thus negatively

affects pakchoi photosynthesis via the abnormality of PSII

light response system. Additionally, the effects of the medium

and high Pb dosages on the contents of chlorophyll a and

chlorophyll b were reduced in a dosage-dependent manner.
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The ultrastructural observation of chloroplast showed that

with the increase of Pb dosage, the integrity of chloroplast and

stromal sheet was destroyed, which would directly affect the

photosynthesis and chlorophyll content. GLK expression is

known to lead to increased levels of chlorophyll and LHC (Li

et al., 2020), and genes such as PIF and HCF are also involved in

chloroplast development and chlorophyll synthesis (Schmitz

et al., 2012; Zhang et al., 2021). The EGY1 (Ethylene-

dependent gravitropism-deficient and yellow-green 1) gene

encodes for a thylakoid membrane-localized protease involved

in chloroplast development in the mesophyll cells (Sanjaya et al.,

2021). Our research also found that after Pb stress, the

expression of pakchoi chlorophyll synthesis (HCF and PIF)

and chloroplast development-related (GLK, GLN2, and EGY1)

genes were down-regulated to varying degrees, thereby further

confirming that Pb stress may affect pakchoi photosynthesis

through chloroplast development and the downregulation of

chlorophyll synthesis. These results indicate that Pb exposure

affects the PSII photoresponse system by affecting chloroplast

development and chlorophyll synthesis in a dosage-

dependent manner.

In conclusion, we found that Pb stress has an adverse

dosage-dependent effect on the mineral content of pakchoi, as

well as AsA-GSH and photosynthesis. Thus, Pb induces

oxidative stress in pakchoi in which photosynthesis and the

AsA-GSH cycle are weakened, which further leads to abnormal

chlorophyll content and decreasing chloroplast development

gene expression. Heavy metals accumulate in plants through

the environmental food chain, and thus threaten human and

animal health, and eventually the entire ecological environment.

The results of this study supplement the toxicology of heavy

metals, and provide instructions for pakchoi cultivation and

related warnings for heavy metal hazards.
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