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Long-term excessive application
of K2SO4 fertilizer alters
bacterial community and
functional pathway of
tobacco-planting soil

Ya Lu1†, Ping Cong1†, Shuai Kuang1, Lina Tang2, Yuyi Li3,
Jianxin Dong1* and Wenjing Song1*

1Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research
Institute of Chinese Academy of Agricultural Sciences, Qingdao, China, 2Tobacco Science Research
Institute, Fujian Tobacco Monopoly Administration, Fuzhou, China, 3Institute of Agricultural
Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
To improve tobacco leaf quality, excessive K2SO4 fertilizers were applied to soils in

major tobacco-planting areas in China. However, the effects of K2SO4 application

on soil microbial community and functions are still unclear. An eight-year field

experiment with three kinds of K2SO4 amounts (low amount, K2O 82.57 kg hm-2,

LK;moderate amount, K2O 165.07 kg hm-2, MK; high amount, K2O 247.58 kg hm-2,

HK) was established to assess the effects of K2SO4 application on the chemical and

bacterial characteristics of tobacco-planting soil using 16S rRNA gene and

metagenomic sequencing approaches. Results showed that HK led to lower pH

and higher nitrogen (N), potassium (K), sulfur(S) and organic matter contents of the

soil than LK. The bacterial community composition of HKwas significantly different

from those of MK and LK, while these of MK and LK were similar. Compared to LK,

HK increased the relative abundance of predicted copiotrophic groups (e.g.

Burkholderiaceae, Rhodospirillaceae families and Ellin6067 genus) and

potentially beneficial bacteria (e.g. Gemmatimonadetes phylum and Bacillus

genus) associated with pathogens and heavy metal resistance, N fixation,

dissolution of phosphorus and K. While some oligotrophic taxa (e.g.

Acidobacteria phylum) related to carbon, N metabolism exhibited adverse

responses to HK. Metagenomic analysis suggested that the improvement of

pathways related to carbohydrate metabolism and genetic information

processing by HK might be the self-protection mechanism of microorganisms

against environmental stress. Besides, the redundancy analysis and variation

partitioning analysis showed that soil pH, available K and S were the primary soil

factors in shifting the bacterial community and KEGG pathways. This study

provides a clear understanding of the responses of soil microbial communities

and potential functions to excessive application of K2SO4 in tobacco-planting soil.

KEYWORDS

tobacco-planting soil, K2SO4 fertilizer, soil physicochemical properties, bacterial
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Introduction

Tobacco (Nicotiana tobacum L.) is an economically

important crop that is widely planted worldwide. As a main

ingredient in tobacco, K is recognized as an important indicator

of quality by the cigarette industry. A higher K content in

tobacco leaves can improve the flammability, aroma and

processability of cigarettes (Zhang and Kong, 2014). K plays a

crucial role in cell expansion, the transportation of compounds,

stomatal opening and closing and the activation of enzymes,

which could promote the growth of tobacco (Hu et al., 2019).

China is a main producing country of flue-cured tobacco in the

world, while K deficiency of soil is a common problem in major

tobacco-producing areas. As a result, the K content in tobacco is

generally lower than the global standard for high-quality tobacco

(Ding et al., 2017). K2SO4 is a high-quality and efficient K

fertilizer with good solubility and a lack of chlorine, and the

application of K2SO4 is currently the most effective measure to

improve soil K content and tobacco quality. However, to pursue

higher tobacco quality, a large amount of K2SO4 fertilizer (270-

360 kg hm-2) is often applied to tobacco-planting soil in China.

The application rate of K fertilizer is far beyond the K

requirement of tobacco plants, leading to a large amount of K+

and SO2−
4 left in the soil. Moreover, long-term application of

K2SO4 possibly increased acidification in acidic and neutral soils,

mainly due to the H+ released by tobacco roots when it absorbed

excess K+ from the soil (Dai et al., 2021). These changes would

lead to loss of base ions and inhibition of microbial activity and

tobacco root growth (Shen et al. , 2018). Therefore,

environmental degradation caused by long-term excessive

application of K2SO4 greatly limits the sustainable

development of tobacco industry, which should be of concern.

Soil microbes are vital for maintaining soil quality and

ecosystem, including the turnover of organic matter (OM), the

degradation of toxic substances, the acceleration of nutrient

availability and the improvement of stress tolerance to

pathogens (Jin et al., 2022a). At the same time, soil microbes

are also closely related to nutrient uptake, disease occurrence,

growth and quality of tobacco (Zheng et al., 2021; Jin et al.,

2022b). The variety and quantity of microbes in tobacco-

planting soil are abundant. For example, Proteobacteria,

Actinobacteria, Acidobacteria, Firmicutes and Bacteroidetes

were always the dominant phyla in tobacco-planting soil

(Zheng et al., 2021). Arthrobacter and Lysobacter were

reported to be significant negative correlated with tobacco

bacterial wilt disease (She et al., 2017). The increase of

Codinaea acaciae and Saitozyma podzolica species were

adverse to tobacco nicotine (Wang et al., 2022). Fertilization is

an important means of shaping soil microorganisms. While

excessive fertilization leads to the deterioration of soil

physicochemical properties and microbial diversity and

communities, which in turn leads to a decrease in tobacco
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yield and quality (Xin et al., 2012). For instance, excessive K

fertilizer delays ripening and limits nicotine production (Henry

et al., 2019).

Previously, pH and contents of OM, AK and water were

considered to be key environmental factors, which significantly

shaped the microbial community and diversity of tobacco-

planting soils (Wang Z. B. et al., 2019; Shen et al., 2022).

Excessive application of K2SO4 reduced the pH, which is

widely recognized as the strongest predictor of microbial

activity and composition (Rath et al., 2019; Zeng et al., 2019)

and explain approximately 70% of species changes (Liu et al.,

2022). Previous studies showed that soil pH had significantly

positive relationships with soil bacterial a-diversity and bacterial
operational taxonomic unit abundance and influenced ecological

functions and biogeographic distribution (Wang C. et al., 2019).

Wan et al. (2020) demonstrated that enzymes and proteins

related to carbon (C), N, phosphorus (P) and S were

downregulated in more acidic soils (pH< 5.5) compared to

those in soils with pH values higher than 5.5. Wang W. et al.

(2019) found that with decreasing pH, the functions of

nitrification, ammonia oxidation, N fixation, nitrite

respiration, and denitrification were restrained, while the

functions of chemoheterotrophy, nitrate reduction and

aromatic compound degradation were enriched.

A large amount of residual SO2−
4 in soil not only increases

soil acidification but also activates Fe3+ and Al3+ in soil and

forms precipitation with Ca2+ and Mg2+ (Xu and Ji, 2001).

Under anaerobic conditions, excess SO2−
4 in soil may form

H2S, which destroys aerobic beneficial microorganisms and

promotes anaerobic harmful microorganisms (Liu et al., 2021).

SO2−
4 addition has been shown to significantly affect soil

microbial communities by enriching specific microbial taxa

associated with the bioavailability and transformation of

metals such cadmium, arsenic and iron (Fe) (Li et al., 2019;

Wang et al., 2021). Moreover, the addition of Na2SO4 altered the

bacterial composition of the dominant phyla by increasing the

relative abundance of Proteobacteria and Acidobacteria and

depleting Firmicutes (Tang et al., 2020).

Abundant K+ in soil has an antagonistic effect with Ca2+,

NH+
4 and so on (Nieder et al., 2011), leading to nutrient

imbalance in tobacco soils and plants. Twenty-one consecutive

years of KCl application alone significantly decreased the

Shannon, Simpson and McIntosh indices of the functional

diversity of microbial communities compared to no fertilizer

treatment in maize soil (Zhong et al., 2010).

However, studies on the regulation of soil chemical and

biological characteristics by K and S fertilizers mostly focus on

fertilizers such as KCl and Na2SO4. Moreover, many previous

studies have shown that a single application of N fertilizer causes

soil acidification and indirectly affects soil microbial

communities (Bai et al., 2020; Yang et al., 2020). However, the

effects of K2SO4 application and its resulting acidification on soil
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biological properties are still unclear, especially in tobacco fields.

Therefore, in this study, we applied 16S rRNA gene and

metagenomic sequencing technologies to analyze changes in

the microbial community structure and function of tobacco-

planting soil treated with three K2SO4 rates (LK, MK and HK)

based on an 8-year experiment. We hypothesized that, HK had a

negative and strong impact on the soil bacterial community and

functions, when compared to LK. And MK had less effect on soil

biological properties than HK. The variations of biological

properties were due to the altered soil physicochemical

properties, especially soil pH. The objectives of this study were

to investigate (1) the effects of 8-year application of K2SO4 on

soil physicochemical properties and nutrient uptake of tobacco

plants; (2) the effects of 8-year application of K2SO4 on soil

bacterial diversity and community composition of tobacco-

planting soil; (3) impacts of 8-year application of K2SO4 on

potential functional pathways of tobacco-planting soil; and (4)

the key soil environmental variables that strongly affected soil

microbial community and function.
Materials and methods

Site description and experimental design

This study was established in tobacco resources and

environment field scientific observation and experiment

station of the Chinese Academy of Agricultural Sciences (36°

26’54″N, 120°34’38″E, 75 m a.s.l.) in 2010 in Qingdao city,

Shandong province, China. This region has a temperate

monsoon climate with a mean annual rainfall of 708.9 mm,

average daily air temperature of 12.1°C, frost-free period of 200 d

and annual accumulated temperature of 4410°C. The typical soil

in this region is Alfisols (FAO Soil Taxonomic System). Before

the experiment began in May 2010, the soil at 0-20 cm depth had

a pH of 5.56, OM of 11.66 g kg-1, AN, available phosphorus (AP)

and AK of 52.69 mg kg-1, 10.60 mg kg-1 and 105.25 mg kg-

1, respectively.

Three treatments were included in the experiment: (1)

applying compound fertilizer (N 15%, P2O5 15%, K2O 15%)

550.5 kg hm-2 (LK); (2) applying compound fertilizer 550.5 kg

hm-2 and K2SO4 (K2O 50%, S 18%) 165 kg hm-2 (MK); and (3)

applying compound fertilizer 550.5 kg hm-2 and K2SO4 330 kg
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hm-2 (HK). The nutrient application amount of each treatment

is shown in Table 1. The experiment used a randomized block

design. Each plot (5 m long and 4.4 m wide) was separated by

concrete walls from others. Each treatment had 3 replicates,

giving a total of 9 pots. The variety used in the experiment was

NC89, and 40 tobacco plants were planted in each plot with a

line spacing of 1.1 m and row of 0.5 m. All fertilizers were

applied to the surface in a certain amount, and then mixing with

0-10 cm soil manually, ridging and planting tobacco. The

tobaccos were transplanted in the first ten days of June every

year. Irrigation was carried out according to the water

requirement of tobacco and rainfall during different growth

periods. The other field management practices were in

accordance with local farming practices.
Sampling

Soil and plant samplings were conducted in the mature

season of flue-cured tobacco on August 30, 2017. One composite

rhizosphere soil sample was taken from each plot consisting of

roots of 5 randomly selected tobacco plants. The roots were

uprooted by shaking the roots, removing the loose soil at the

roots, and collecting the soil at the roots with a sterile brush.

Then, the fresh soil was passed through a 2 mm sieve and

divided into two fractions. One part of the fresh soil was used for

the analysis of bacterial community and functions. The other

part was air dried for the determination of soil physicochemical

properties. After collecting soil, the 5 tobacco plants taken from

each plot were washed and then were mixed into one sample for

determining dry matter weight and nutrient content. Three

composite samples of both soil and plant were conducted for

each treatment.
Analysis of soil physicochemical
properties and plant indices

Soil physicochemical properties and plant nutrients were

determined according to Bao (2011). Soil pH was measured with

a soil-to-water ratio of 1:2.5 using a pH meter (Meter3100C the

US). The OM content was analyzed using dichromate oxidation.

The total nitrogen (TN) content was digested by H2SO4-
TABLE 1 Nutrient application rate of each treatment.

Treatments NPK ratio Nutrient input (kg hm-2)

N P2O5 K2O S

LK 1:1:1 82.57 82.57 82.57 66.06

MK 1:1:2 82.57 82.57 165.07 95.76

HK 1:1:3 82.57 82.57 247.57 125.46
frontier
LK, Low amount of K2SO4; MK, Middle amount of K2SO4; HK, High amount of K2SO4.
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K2Cr2O7 and measured by Kjeldahl digestion with automatic N

analyzer (KjeltecTM 8400 Denmark). The AN content was

determined by the alkali-diffusion method. Total potassium

(TK) and AK were digested by HClO4 and CH3COONH4,

respectively, and both were measured by flame atomic

absorption spectrophotometry with flame spectrometry

(Sherwood M410 Britain). Total sulfur (TS) and AS were

digested by Mg(NO3)2 and extracting agent of Ca(H2PO4)2
and CH3COOH, respectively, and both were determinated by

BaSO4 turbidimetry with UV-visible spectrophotometer

(SHIMADZU UV-2700 Japan).

The plant dry matter was weighed after drying at 105°C for

30 mins and subsequently at 80°C to a constant weight. Then,

the dry plant was ground and sieved to< 2 mm. The contents of

plant N and K were digested by H2SO4-H2O2 digestion and then

N content was determined by the Kjeldahl method with

automatic N analyzer and K content was measured by flame

photometry with flame spectrometry. The contents of plant S

were digested by HNO3-HClO4 and then measured by the

B a SO 4 t u r b i d im e t r i c m e t h o d w i t h UV - v i s i b l e

spectrophotometer. N (K, S) accumulation was calculated as

the product of dry matter and the N (K, S) content of the plant.
16S rRNA gene sequencing and analysis

Soil DNA was extracted using a PowerSoil DNA Isolation

Kit (MoBio Laboratories, Carlsbad, CA) following the manual.

The purity and quality of the genomic DNA were checked on

0.8% agarose gels.

The V3-4 hypervariable region of the bacterial 16S rRNA

gene was ampl ified w i th the p r ime r s 338F (5 ’ -

ACTCCTACGGGAGGCAGCAG-3 ’ ) and 806R (5 ’ -

GGACTACNNGGGTATCTAAT-3’) (Caporaso et al., 2012).

For each soil sample, an 8-digit barcode sequence was added

to the 5’ end of the forward and reverse primers (provided by

Allwegene Company, Beijing). PCR was carried out on a

Mastercycler Gradient (Eppendorf, Germany) using 25 ml
reaction volumes, containing 12.5 ml 2× Taq PCR MasterMix,

3 ml BSA (2 ng ml-1), 1 ml forward primer (5 mM), 1 mL reverse

primer (5 mM), 2 ml template DNA, and 5.5 ml ddH2O. The

cycling parameters were 95°C for 5 min, followed by 28 cycles of

95°C for 45 s, 55°C for 50 s and 72°C for 45 s with a final

extension at 72°C for 10 min. The PCR products were purified

using an Agencourt AMPure XP Kit.

The raw data were first screened, and sequences were

removed from consideration if they were shorter than 230 bp,

had a low-quality score (≤ 20), contained ambiguous bases or did

not exactly match to primer sequences and barcode tags and

separated using the sample-specific barcode sequences. Qualified

reads were clustered into operational taxonomic units (OTUs) at

a similarity level of 97% using the Uparse algorithm of Vsearch

(v2.7.1) software (Edgar, 2013). The Ribosomal Database Project
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(RDP) Classifier tool was used to classify all sequences into

different taxonomic groups against the SILVA128 database (Cole

et al., 2009). The sequencing was performed on Illumina Miseq

PE300 platform. The raw sequences of the 16S rRNA gene were

deposited into the NCBI database under the accession

number PRJNA805374.
Metagenome shotgun sequencing
and analysis

Total microbial genomic DNA samples were extracted using

the OMEGA Soil DNA Kit (D5625-01), following the

manufacturer’s instructions, and stored at -20°C prior to

further assessment. The quantity and quality of extracted

DNAs were measured using a NanoDrop ND-1000

spectrophotometer (Thermo Fisher Scientific, Waltham, MA,

USA) and agarose gel electrophoresis, respectively. The extracted

microbial DNA was processed to construct metagenome

shotgun sequencing libraries with insert sizes of 400 bp by

using Illumina TruSeq Nano DNA LT Library Preparation Kit.

Each library was sequenced by Illumina HiSeq X-ten platform

(Illumina, USA) with PE150 strategy.

Raw sequencing reads were processed to obtain quality-

filtered reads for further analysis. Firstly, sequencing adapters

were removed from sequencing reads using Cutadapt (v1.2.1)

(Martin, 2011). Secondly, low-quality reads were trimmed using

a sliding-window algorithm in fastp (Chen et al., 2018). Megahit

(v1.1.2) (Li et al., 2015) was used to assemble each sample using

the meta-large preset parameters. The generated contigs (longer

than 200 bp) were then pooled together and clustered using

mmseqs2 (Steinegger and Soding, 2017) with “easy-Linclust”

mode, setting the sequence identity threshold to 0.95 and

covering residues of the shorter contig to 90%. MetaGeneMark

(Zhu et al., 2010) was used to predict the genes in the contigs.

The CDSs of all samples were clustered by mmseqs2 (Steinegger

and Soding, 2017) with “easy-cluster” mode, setting the protein

sequence identity threshold to 0.90 and covering residues of the

shorter contig to 90%. To assess the abundances of these genes,

the high-quality reads from each sample were mapped onto the

predicted gene sequences using salmon (Patro et al., 2015) in the

quasi-mapping-based mode with “–meta –minScoreFraction =

0.55”, and the CPM (copy per kilobase per million mapped

reads) was used to normalize abundance values in metagenomes.

The functionality of the nonredundant genes was obtained by

annotation using mmseqs2 (Steinegger and Soding, 2017) with

the “search” mode against the protein databases of KEGG.
Statistical analyses

Analysis of variance was conducted to determine significant

differences in indices of soil physicochemical characteristics, a-
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bacterial diversity, plant dry matter and nutrient accumulation.

OTUs and pathways (Level 3) were analyzed by principal

coordinate analyses (PCoA) based on Bray–Curtis distance by

CANOCO 5.0. Permutational multivariate analysis of variance

(PERMANOVA) was conducted using the adonis function

(Vegan package, Rstudio) to evaluate similarities in the OTUs

and pathways. Venn diagrams were constructed to show the

number of shared OTUs by MOTHUR software (Schloss et al.,

2011). Post hoc analysis by Stamp was used to compare the

differences in the top 20 phyla and genera between different soil

samples. Differentially abundant OTUs between groups were

calculated using a moderate t-test, and the obtained P values

were adjusted using the Benjamini–Hochberg correction

method. Enriched OTUs were further visualized in volcano

and heatmap plots using the Limma R package and heatmap.2

function R package. Linear discriminant analysis effect size

(LEfSe) for detecting significant differences in KEGG pathways

was performed on the online Galaxy platform (http://

huttenhower.sph.harvard.edu/galaxy/) (Segata et al., 2011).

Redundancy analysis (RDA) and variation partitioning

analysis (VPA) were applied to clarify the influence of

environmental factors on the microbial community and

functional composition. RDA and VPA were implemented

using R project Vegan package (version 2.5.3) and CANOCO

5.0, respectively. Co-occurrence network analysis was used to

explore environmental factor-OTU and environmental factor-

pathway interactions. Only top100 OTUs and pathways with

coefficients>0.85 (or<-0.85) and FDR corrected P values<0.05

(Spearman’s correlation) were identified and established into a

network. All statistical analyses were performed using igraph

package in R (Csardi and Nepusz, 2006) and networks were

constructed and visualized in Cytoscape v.3.8.0 (Shannon et al.,

2003). Structural equation modeling (SEM) was performed by

SPSS-AMOS to analyze hypothetical pathways to explain soil

physicochemical characteristics, bacterial community and

KEGG pathways effects on plant biomass. The model fit was

assessed by a c2-test, the comparative fit index (CFI) and the

root square mean error of approximation (RMSEA). Mean

values ± SE were reported here.
Result

Soil physicochemical characteristics and
plant nutrient accumulation

The results of a comparative analysis of soil physicochemical

properties among different K2SO4 treatments are presented in

Figure 1. Applying medium and high amounts of K2SO4 (MK

and HK) promoted N (AN and TN), K (AK and TK) and S (AS

and TS) contents compared to LK, and the differences between

HK and LK was always remarkable. The OM contents were also

higher in MK and HK than in LK and there was significant
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difference between MK and LK. Unlike other soil nutrients, pH

dropped with the increasing K2SO4 rate, and the difference

between LK and HK was significant.

The N, K, S nutrient and dry matter accumulation of

different plots are displayed in Figure 2. The N and dry matter

accumulation of whole plant decreased with increasing K2SO4

amount, while the K accumulation showed the opposite trend.

Compared to LK, the dry matter accumulation was decreased by

10.50% and 26.05% in MK and HK, respectively. The differences

in accumulations of N, K and dry matter between LK and HK

were all remarkable.
a and b diversity of bacteria

Through the 16S rRNA gene sequencing analysis of 9 soil

samples, a total of 36020-40641 raw tags and 34116-337892

clean tags were obtained (Table 2). The sequencing coverage rate

was 0.9760-0.9778 with 97% similarity. The results basically

covered all the species in the tested samples, and further analysis

of the bacterial community structure could be carried out.

a-diversity analysis based on OTU showed that Chao1,

Observed_species, PD_whole_tree and Shannon were not

significantly different among the three treatments, signifying

that the addition of K2SO4 had little effect on bacterial a-
diversity (Figure 3).

PCoA is performed to determine the OTU compositions in

soils with different treatments (Figure 3). PERMANOVA results

showed that application of K2SO4 explained the variation in OTU

compositions significantly (P =0.045). The variance contribution

rates of the first and second principal components were 42.6% and

15.34%, respectively. The three treatments could be divided into

two groups along the PCoA1 axis. The three samples for the HK

gathered together on the left side of the abscissa PCoA1, well

separated from those of MK and LK. Most samples of MK and LK

were clustered together on the right half of the plot. It was

indicated that the bacterial composition of MK and LK was

similar, and HK significantly changed the bacterial community.

The Venn diagram (Figure 3) showed that the number of

OTUs unique to each treatment increased from 105 to 164 with

the increasing K2SO4 rate, and the number of OTUs shared by LK

andMK (2230) was greater than that shared byHK and LK (2129)

and HK and MK (2149). These sequencing data indicated that

applying a high amount of K2SO4 had a stronger stimulatory effect

on the soil bacterial community, but MK had little effect.
Bacterial community composition

Post hoc tests are used to detect significant differences in the

relative abundance of the top 20 phyla and genera (Figure 4).

Addition of K2SO4 significantly altered the bacterial composition

at the phylum and genus levels. HK enriched the relative abundances
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of Proteobacteria, Gemmatimonadetes, Bacteroidetes, Patescibacteria

phyla and Sphingomonas, Bacillus, Ellin6067 genera, while it reduced

the proportions of Acidobacteria, Chloroflexi phyla and

uncultured_Acidobacteria_bacterium, Bryobacter genera compared

with LK. Only one genus, Pseudolabrys, showed significant difference

between MK and LK, and there was no significant difference at the

phylum level between the two treatments. This result indicated that

HK greatly shaped the bacterial composition at the phylum and

genus levels, while MK had little effect on the bacterial community.

We further identified OTUs correlated with the differences

between different treatments to explore the enrichment or exclusion

of different bacterial taxa by fertilization (Figure 5). The number of

OTUs with significant differential relative abundance between the

HK and LK group was greater than those between the HK and MK

group and the MK and LK group, indicating that HK had a greater

effect on the composition of OTUs than MK.

To display the differences in the relative abundance of bacterial

operational taxonomic units (OTUs), a heatmap is constructed

based on the top 30 enriched OTUs (Figure 5). Compared with LK,

MK enriched 7 OTUs, and 4 of them belonged to
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uncultured_bacterium, and the other three were affiliated with

Lysobacter, Nitrolancea and Singulisphaera genera, respectively.

MK also depleted 3 OTUs belonging to Taibaiella ,

uncultured_bacterium and uncultured_Rhodocyclaceae. HK

improved 5 OTUs compared to LK, and 3 of them were affiliated

with Sphingomonas genus and the other two belonged to Ellin6067

and Pseudarthrobacter genera, respectively. There were 5 OTUs

downregulated in HK compared to LK. And 4 of them belonged to

uncultured_Acidobacteria_bacterium and the other belonged

to uncultured_bacterium.
Potential functional pathways

Phylogenetic investigation of communities by reconstruction of

unobserved states (PICRUSt) analysis predicts KEGG functional

pathways (Level 3) associated with the metagenomes of the three

treatments. PCoA analysis is carried out to investigate the effects of

the treatments on the composition of KEGG pathways (Figure 6).

PERMANOVA results confirmed that application of K2SO4 had no
A B D

E F G H

C

FIGURE 1

Soil physicochemical properties of plots with different fertilization regimes (A-H). Different lowercase letters above the boxes indicate significant
differences (P < 0.05) among the different treatments, as determined by ANOVA followed by the LSD test. LK, Low amount of K2SO4; MK, Middle amount
of K2SO4; HK, High amount of K2SO4. OM, organic matter; TN, total nitrogen; TK, total potassium; TS, total sulfur; AN, available nitrogen; AK, available
potassium; AS, available sulfur.
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significant effect on the composition of KEGG pathways (P =0.163).

The variance contribution rates of the first and second principal

components were 31.54% and 25.81%, respectively. The three

samples of HK could be completely separated from those of the

LK treatment. In comparison, the samples of MK were closer to

those of LK. This result indicated that HK had a greater effect on the

potential functional composition of microorganisms than MK. A

Venn diagram showed small differences in the number of shared

and exclusive pathways across the three treatments (Figure 6).

LEfSe analysis is conducted on the top 100 level 3 KEGG

pathways to determine pathways at level 3 KEGG gene
Frontiers in Plant Science 07
annotation with significant differences in abundance across the

three treatments. When comparing HK and LK (Figure 7), HK

was primarily associated with pathways of homologous

recombination, starch and sucrose metabolism, DNA

replication, glycolysis/gluconeogenesis, base excision repair,

aminoacyl-tRNA biosynthesis and the TCA cycle, while LK

was primarily associated with valine, leucine and isoleucine

biosynthesis, pantothenate and CoA biosynthesis and C5-

branched dibasic acid metabolism. In the MK and LK group

(Figure 7), MK was mainly associated with the functions of one

carbon pool by folate, streptomycin biosynthesis, monobactam
A B

DC

FIGURE 2

N (A), K (B), S (C) and dry matter (D) accumulation in plants under different treatments. Different lowercase letters above the bars indicate significant
differences (P< 0.05) among the different treatments, as determined by ANOVA followed by the LSD test. LK, Low amount of K2SO4; MK, Middle
amount of K2SO4; HK, High amount of K2SO4.
TABLE 2 Sequencing results of soil samples.

Treatments 16S Metagenomics

Raw_tags Clean tags Goods coverage ReadsCount BasesCount (bp) Q20 (%) Q30 (%)

LK 40641 37892 0.9761 117919397 17687909500 97.81 94.38

MK 39884 37688 0.9760 107915497 16187324600 97.85 94.47

HK 36020 34116 0.9778 116254271 17438140600 97.83 94.37
fron
LK, Low amount of K2SO4; MK, Middle amount of K2SO4; HK, High amount of K2SO4.
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biosynthesis and homologous recombination, while LK was

mainly associated with glyoxylate and dicarboxylate

metabolism, alanine, aspartate and glutamate metabolism,

RNA degradation and pantothenate and CoA biosynthesis.
Effects of physicochemical
characteristics on bacterial community
and functional pathways

The results of RDA analysis for the bacterial community and

functional pathways are visualized in Figure 8. The first two axes

explained 56.17% and 17.29% of the total variance in the

bacterial community, respectively, and 40.23% and 26.95% in

pathways. Among the 8 environmental variables, a remarkable

impact of pH (r2 = 0.636, P = 0.029) was found in the bacterial

community, as well as pH (r2 = 0.757, P = 0.025), AK (r2 = 0.74,

P = 0.023) and AS (r2 = 0.878, P = 0.004) on pathway
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composition (Table 3). VPA analysis showed that pH, AK, AS

and TK explained 29.23%, 26.03%, 24.84% and 4.95% of

bacterial community variation, respectively (Figure 8). AS, AK,

pH, TS and TK accounted for 14.61%, 13.09%, 11.42%, 7.53%

and 4.57% of pathway variation, respectively (Figure 8). In

summary, pH, AK and AS were the critical factors in shaping

bacterial community and functional composition.

Further, the interactions between environmental factors and

microbial communities and functions were investigated using

person’s correlation and were visualized by co-occurrence

networks (Figure 9). In the network of OTU, pH recorded the

highest node connectivity (34), followed by AK (31) and AS (21).

In most cases, pH had significantly or extremely significantly

negative correlations with OTUs belonged to Proteobacteria and

had positive correlations with OTUs belonged to Acidobacteria

(Table 1S). AS and AK showed the opposite trends. In the

network of pathways, AS recorded the highest node connectivity,

and was significantly negatively correlated with 21 pathways,
A B D

E F

C

FIGURE 3

Similarity and differentiation of the bacterial community with different fertilization treatments. (A-D). a-diversity of soils treated with different
fertilization treatments; (E). PCoA plot of bacterial communities at the OTU level; (F). Venn diagram of exclusive and shared bacterial taxa at the
OTU level. Values with the same lowercase letters are not significantly different among the different treatments (LSD test). LK, Low amount of
K2SO4; MK, Middle amount of K2SO4; HK, High amount of K2SO4.
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which belonged to pathways (L1) of Metabolism, Environmental

Information Processing, Human Diseases, Genetic Information

Processing, Cellular Processes, Organismal Systems (Table 2S).

And the node connectivities of AN, TS and pH were 11, 10, and

8, respectively.
Frontiers in Plant Science 09
SEM results showed that AK and pH significantly affected

abundance of KEGG pathway (SPC = -2.364, P< 0.001; SPC =

-1.622, P< 0.05), while no significant effect on abundance of

bacterial community (Figure 10). And all the three

physicochemical indicators and abundance of bacterial
A

B D

E

C

FIGURE 4

Comparative analysis of the top 20 species phyla and genera with significant differences between different treatments. (A) Differences at phylum
level between LK and HK. (B) Differences at phylum level between LK and MK. (C) Differences at genus level between LK and HK. (D) Differences
at genus level between MK and HK. (E) Differences at genus level between MK and LK. Only significant differences are shown (P< 0.05); LK, Low
amount of K2SO4; MK, Middle amount of K2SO4; HK, High amount of K2SO4.
A

B

D

C

FIGURE 5

The relative abundance of enriched or depleted OTUs in different fertilized soils after pairwise comparison. (A-C) Volcano plot showing the
differentially abundant OTUs between HK and LK, HK and MK, MK and LK. The position along the y-axis represents the log2 of average
abundance of each OTU, and the x-axis represents the log2 of fold change between two groups. (D) Heatmap of the relative abundance of
significantly enriched OTUs (top 30) among the different treatments.
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community and KEGG pathway had no significant effect on

plant biomass.
Discussion

Application of K2SO4 changed soil
physicochemical properties and plant
nutrient uptake

The results of the present study demonstrated that after the

8-year application of K2SO4 fertilizer significantly changed the

physicochemical properties of tobacco-planting soil. MK and

HK led to increase of soil acidification, when compared to LK

(Figure 1). The main reasons for this phenomenon may be as

follows. First, tobacco plant absorbed much more K+ than SO2−
4 ,

and H+ was released by root to maintain the charge balance in its

body (Wallace, 1994). Second, almost all the base ions (mainly

K+) absorbed by tobacco plant were taken away from soil at the

harvest time. When 1 mol of base ions were removed from the

soil, the acid buffer capacity of the soil decreased by 1 mol (Dong

et al., 2022). Third, to maintain the ion balance, when 1 mol of

SO2−
4 were leached from soil, the same amount of base ions

would also be washed to maintain charge balance (Xu and Ji,

2001). Our results also showed that the AN contents were higher

in MK and HK than that in LK (Figure 1 C and F). It might be

attributed to the following reasons. First, K application reduced

soil N (mainly N2O emissions) loss by reducing denitrification

(Li et al., 2021). Second, tobacco roots were damaged by the

excess H+ and Al3+ brought by MK and HK (Dai et al., 2021),

which inhibited the N uptake of plants (Figure 2) and left more

N in the soil. Additionally, MK and LK improved OM contents

(Figure 1), mainly because the increasing Fe and Al oxides of

soil, caused by low pH, could protect OM by adsorbing organic
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biomolecules (Berhe et al., 2012). This finding was in accordance

with previous studies (Wen et al., 2019; Huang et al., 2020),

which reported that long-term application of only N fertilizer or

combined application of NPK fertilizer improved soil OM

content by reducing soil pH.

In our study, dry matter weight and N and S accumulation

were restrained in the soil treated with HK (Figure 2). The main

reason was that excessive application of K2SO4 intensified soil

acidification, and the roots were harmed by the abundant H+

and Al3+ (Yang et al., 2018; Dai et al., 2021).
Application of K2SO4 altered bacterial
community and KEGG pathways

In our study, the percentages of Proteobacteria ,

Gemmatimonadetes, Bacteroidetes, Patescibacteria phyla and

Sphingomonas, Bacillus, Ellin6067 genera were significantly higher

in HK than in LK (Figure 4). And except for Bacillus, most members

of all these taxa are considered to be predicted copiotrophic bacteria

(Xia et al., 2005; Spain et al., 2009; Albertsen et al., 2013; Mowlick

et al., 2014; Naas et al., 2014; Brown et al., 2015; Banerjee et al., 2016),

which grow fastly in nutrient-rich conditions (Fierer et al., 2007),

such as Burkholderiaceae, Rhodospirillaceae and Rhizobiaceae

families in Proteobacteria phylum (Table 3S; Finn et al., 2021).

And all taxa (Acidobacteria , Chloroflexi phyla and

uncultured_Acidobacteria_bacterium, Bryobacter genera)

significantly reduced in HK were reported to be predicted

oligotrophic bacteria (Sorokin et al., 2012; Dedysh et al., 2017;

Kalam et al., 2020), which grow slowly and are able to metabolize

nutrient poor and recalcitrant C substrates (Fierer et al., 2007). These

shifts in community structure between HK and LK could be mainly

ascribed to the more OM supplied by HK (Figure 1B). Interestingly,

Gemmatimonadetes phyla, Bacillus and Sphingomonas genera
A B

FIGURE 6

Similarity and differentiation of KEGG pathways with different fertilization treatments. (A) PCoA plot of KEGG pathways at level 3; (B) Venn
diagram of exclusive and shared KEGG pathways at level 3. LK, Low amount of K2SO4; MK, Middle amount of K2SO4; HK, High amount of K2SO4.
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enriched in the HK treatment were considered to be potential

beneficial bacteria. Gemmatimonadetes facilitates P dissolution and

suppress diseases (Zeng et al., 2020). Bacillus (belongs to Firmicutes

phylum) has the abilities of resistance to pathogens, N fixation,

dissolution of P and K (Radhakrishnan et al., 2017). Sphingomonas is

reported to degrade recalcitrant compounds and fix N (Xu et al.,

2018). It was mainly because soil acidification of HK increased

harmful metals (e.g. Al3+ and Cd2+) (Dai et al., 2021) and pathogenic

bacteria (e.g. bacterial wilt) (Shen et al., 2018), resulting in the

improvement of resistant taxa. This was also a self-protection

mechanism of microorganisms against environmental stress. These

were in accordance with results of Chen et al. (2022), in which
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probiotics Bacteroidetes and Firmicutes phyla were higher in acid soil

than in non-acid soil. Additionally, Acidobacteria played an

important role in the degradation of various organic materials and

in the biogeosmic cycling of C, H and Fe (Kalam et al., 2020). And

Chloroflexi is associated with nitrification and degradation of

cellulose and polysaccharide (Sorokin et al., 2012). Both two phyla

involve in C and N metabolism and play a key role in microbial

community formation and stability under adverse environmental

conditions. In brief, compared with LK, HK favored the growth of

predicted copiotrophic groups and beneficial groups involved in

pathogens and heavy metal resistance and N fixation, dissolution of

P and K, while had negative with some oligotrophic taxa related to C,
A

B

C

FIGURE 7

Histogram of the LDA effect value of differentially enriched KEGG pathways at level 3. Lineages with LDA values higher than 2.5 are displayed.
(A) HK vs. LK; (B) HK vs. MK; (C). MK vs. LK.
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N metabolism. And the specific functions of potential beneficial

bacteria (Gemmatimonadetes phyla and Bacillus and Sphingomonas

genera) under environmental stress in tobacco-planting soils need to

be investigated in the further research.
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Different functional pathways could lead to different

physiological consequences. In contrast to LK, HK had higher

abundances of functional pathways mainly involved in

carbohydrate metabolism (L2), such as starch and sucrose

metabolism, glycolysis/gluconeogenesis and the TCA cycle

(Figure 7). All the three pathways can release a large amount of

energy for microbial life activities (Wang et al., 2015; Zhang et al.,

2018). The TCA cycle is also the final metabolic pathway and hub

of the three major nutrients (sugars, lipids, and amino acids).

Some intermediate products formed during the decomposition of

sucrose and starch can also be used as raw materials for the

synthesis of biological macromolecules such as lipids, proteins and

nucleic acids (Wang et al., 2015). In our study, pathways of

homologous recombination, DNA replication, base excision

repair and aminoacyl-tRNA biosynthesis, belonging to genetic

information processing (L1) were also up-regulated in HK

compared to LK (Figure 7). Homologous recombination plays

an important role in the processing, integration and

transformation of genes and is an important factor in

maintaining gene frequency and gene diversity (Wielgoss et al.,

2016). DNA replication enables genetic information to be passed
A B

DC

FIGURE 8

RDA analysis among soil samples based on all OTUs (A) and pathways_L3 (B), and VPA analysis of the effects of soil physicochemical properties
on OTUs (C) and pathways_L3 (D). LK, Low amount of K2SO4; MK, Middle amount of K2SO4; HK, High amount of K2SO4. OM, organic matter;
TN, total nitrogen; TK, total potassium; TS, total sulfur; AN, available nitrogen; AK, available potassium; AS, available sulfur.
TABLE 3 Contribution of environmental factors to OTUs and
pathways.

Environmental factors OTUs Pathways

P value r2 P value r2

pH
OM
TN

0.029
0.978
0.909

0.636
0.012
0.026

0.025
0.936
0.914

0.757
0.033
0.046

TK 0.416 0.25 0.167 0.428

TS 0.746 0.111 0.142 0.481

AN 0.781 0.089 0.933 0.022

AK 0.079 0.562 0.023 0.74

AS 0.086 0.593 0.004 0.878
OM, organic matter; TN, total nitrogen; TK, total potassium; TS, total sulfur; AN,
available nitrogen; AK, available potassium; AS, available sulphur.
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from parent to offspring, thus ensuring the continuity of genetic

information (Aklilu et al., 2014). Base excision repair is an

important DNA oxidative damage defense response (Bauer

et al., 2015). The primary function of aminoacyl-tRNA

biosynthesis is protein synthesis, but they also play a role in

gene expression, cell wall formation, protein labeling for

degradation, and antibiotic biogenesis (Ling et al., 2009).

Additionally, only three pathways of valine, leucine and

isoleucine biosynthesis, pantothenate and CoA biosynthesis and

C5-branched dibasic acid metabolism were enhanced in the soil of

LK. They belonged to amino acid metabolism, metabolism of

cofactors and vitamin and carbohydrate metabolism, respectively

(Figure 7). These results indicated that, compared with LK, the

addition of HK could provide more energy, promote microbial
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metabolism, and improve the functions of gene replication,

recombination and repair. Our study also showed that MK

promoted the functional pathways of one carbon pool by folate,

streptomycin biosynthesis, monobactam biosynthesis and

homologous recombination compared to LK (Figure 7).

Streptomycin and monobactam are both antibiotics that

effectively prevent disease (Li et al., 2017; Westhoff et al., 2019).

One pool of carbon by folate is involved in protein synthesis and

cell division (Ducker and Rabinowitz, 2017). Homologous

recombination plays an important role in DNA damage repair

and mutation processes (Wielgoss et al., 2016). The pathways of

glyoxylate and dicarboxylate metabolism, alanine, aspartate and

glutamate metabolism, RNA degradation and pantothenate and

CoA biosynthesis were depleted in MK (Figure 7), which were
frontiersin.org
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FIGURE 9

Network analysis revealing associations between soil physicochemical properties and top100 OTUs (A) and pathways (B). A blue line indicates a
negative interaction, while a red line indicates a positive interaction. The numbers in the figure represent the numbers of the OTU or pathway.
LK, Low amount of K2SO4; MK, Middle amount of K2SO4; HK, High amount of K2SO4. OM, organic matter; TN, total nitrogen; TK, total
potassium; TS, total sulfur; AN, available nitrogen; AK, available potassium; AS, available sulfur.
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related to sugar, fat and amino acidmetabolism and cell regulation

(Hjorth et al., 2006; Rubio et al., 2008). It was indicated that MK

had both positive and negative effects on soil functions. All in all,

we speculate that these pathways in microbes may have

implications for plant survival and acid tolerance to some

extent, which need further research.
Soil properties shaped compositions of
bacterial community and pathways

Previous studies reported that soil physicochemical properties

played an important role in regulatingmicrobial communities and

functions (Lu et al., 2020; Kang et al., 2021). Our study showed

that pH significantly shaped soil microbial community and

functional composition. This result was consistent with many

previous studies showing that pH was the most important

indicator for determining bacterial composition, which was due

to the relatively narrow growth tolerances of most bacterial taxa

(Zhou et al., 2015). In this study, AK also significantly affected

microbial community and KEGG pathways. The probable reason

was that, excessive AK in the soil can affect the availability of other

elements (e.g. Ca and N) (Nieder et al., 2011), thereby indirectly

affecting the microbial community and function. Additionally, AS

was another key factor in soil, which was significantly negatively

correlated with multiple taxa and pathways (Figure 9). This was

mainly attributable to damage to microorganisms caused by

excess S in soil (Ma et al., 2020).
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In summary, these results are broadly consistent with our

hypothesis and advance our understanding of the impacts of

K2SO4 application on the physicochemical and microbial

properties of soils in typical tobacco fields, with implications

for the scientific and reasonable application of K fertilizer in

tobacco production. The common K2SO4 rate of 495 kg hm
-2 in

tobacco planting areas with Alfisols risks exacerbating soil

acidification and adversely affecting plant growth. Considering

yield, efficiency and environment, the optimal K2SO4 rate was

165-330 kg hm-2. Moreover, calcium magnesium phosphate

fertilizer or organic fertilizer should also be used to prevent

soil acidification.
Conclusions

The present data showed that, compared with LK, HK

promoted the N, K, S and OM contents of soil, while

increased soil acidification. Due to this change, addition of HK

resulted in higher percentages of predicted copiotrophic groups

and beneficial bacterium and lower percentages of some

oligotrophic taxa. According to the changes of KEGG

pathways, carbohydrate metabolism and genetic information

processing might improve in soils treated with HK.

Additionally, the responses of soil physicochemical properties,

composition of microbial community and functions to MK were

less sensitive than HK. These results provide critical information

to support the rational application of K fertilization in tobacco
FIGURE 10

SEM of the effects of soil physicochemical characteristics, bacterial community and KEGG pathways on plant biomass. Square boxes denote
variables included in the models. Values associated with solid arrows represent standardized path coefficients (SPCs) and asterisks mark their
significance: *P< 0.05; ***P< 0.001. Solid arrows denote the directions and effects that were significant (P< 0.05). Dashed arrows represent the
directions and effects that were non-significant (P< 0.05). Green arrows indicate a positive relationship (P< 0.05), while red indicates a negative
correlation. CFI = 0.885 is result from the chi-squared value is less than the degrees of freedom in this SEM. Abundance of bacterial community,
PCA1 of the abundance of the top 100 OTUs; Abundance of the abundance of the top 100 pathways; AK, available potassium; AS, available sulfur.
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planting. However, further studies are required to investigate the

variations of soil basic cations, heavy metal element, pathogenic

bacteria and functional genes (C, N, P and S) to comprehensively

and deeply evaluate the effect of excessive application of K2SO4

on ecological environment of tobacco-planting soil.
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