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plant biomass and
microbiological characteristics
of post-harvest soil
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Improvement of manure by co-composting with other materials is beneficial to

the quality of the amended soil. Therefore, the manure was supplied with either

biochar, elemental sulphur or both prior to fermentation in 50 L barrels for a

period of eight weeks. The manure products were subsequently analyzed and

used as fertilizers in a short-term pot experiment with barley fodder (Hordeum

vulgare L.). The experiment was carried out under controlled conditions in a

growth chamber for 12 weeks. The sulphur-enriched manure showed the

lowest manure pH and highest ammonium content. The co-fermentation of

biochar and sulphur led to the highest sulphur content and an abundance of

ammonium-oxidizing bacteria in manure. The biochar+sulphur-enriched

manure led to the highest dry aboveground plant biomass in the amended

soil, whose value was 98% higher compared to the unamended control, 38%

higher compared to the variant with biochar-enriched manure and 23% higher

compared to the manure-amended variant. Amendment of the sulphur-

enriched manure types led to the highest enzyme activities and soil

respirations (basal, substrate-induced). This innovative approach to improve

the quality of organic fertilizers utilizes treated agricultural waste (biochar) and
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a biotechnological residual product (elementary sulphur from biogas

desulphurization) and hence contributes to the circular economy.
KEYWORDS

manure enrichment, soil nutrients, organic matter, soil amendments, fertilizers,
modified biochar
1 Introduction

Widely observed soil degradation is currently one of the main

global concerns. It is caused by a combination of natural and

anthropogenic detrimental processes, such as pollution,

deforestation and consequences of poor land management and

unsustainable agricultural practices: wind and water erosion,

physicochemical changes as compaction, salinization,

acidification, loss of soil organic matter (SOM) and nutrients

(Virto et al., 2014; Tetteh, 2015; EC, European Commission, 2021).

Additionally, agriculture intensification, driven by a necessity to

meet human needs, has resulted in serious threats of soil pollution,

environmental degradation and climate change (Lal, 2020).

The loss of SOM is closely related to the decline in soil

fertility and the biological function of soils (Lal, 2009).

Application of organic fertilizers in this regard can restore and

preserve the sustainable SOM content in soil (Liu et al., 2011).

Farmyard manure is the most common type of organic fertilizer.

It plays a significant role in maintaining high quality healthy

arable soils and sustainable agriculture (Kirchmann and

Thorvaldsson, 2000). According to the recent literature,

manure application to agricultural soil has a positive effect on

the build-up of SOM and thus improves the soil structure as well

as the intrinsic fertility of the soils (Mustafa et al., 2020; Mustafa

et al., 2021). In addition, manure application may significantly

increase the soil water storage and crop yield and has a positive

effect on soil microbial activity (Wang et al., 2016; Hoover et al.,

2019; Ashraf et al., 2021). It represents a good source of

nutrients, especially carbon (C), nitrogen (N), phosphorus (P)

and minerals, for both plants and soil organisms, including

microbes (Qaswar et al., 2019). However, the properties of

manure are variable and depend mainly on the type of

livestock, bedding material and the conditions of fermentation,

which can be modified to achieve the intended quality of product

(Naveed et al., 2021).

Therefore, amendment of soil with manure as the primary

source of organic matter, enriched with biochar and elemental

sulphur (S), has brought promising results in previous studies.

Fermentation of biochar-enriched manure mitigated emissions

of greenhouse gases (Rogovska et al., 2011; Maurer et al., 2017),

ammonia (Janczak et al., 2017), prevented nutrient losses

(Hagemann et al., 2018). Biochar addition modified the
02
thermodynamics and heat generation in the fermentation

process (Czekała et al., 2016) and changed the content and

functional diversity of microorganisms (He et al., 2018), as well

as microbial mineralization (Jindo et al., 2012) in manure.

Moreover, the effect of S on manure composting is the

subject of several studies in the recent literature. Sulphur is

not only a useful nutrient for microorganisms and plants

(Skwierawska et al., 2016; Bouranis et al., 2019), but also

serves as soil conditioner improving the physicochemical

properties of soil (Skwierawska et al., 2008; Abou Hussien

et al., 2020). It has also been shown to increase crop yields

(Soltanaeva et al., 2018). The S deficiency in Europe’s

agricultural soils is linked to a significant decline in sulphur

dioxide (SO2) emissions, which have been reduced by 70–80%

over the last 30 years (Hoesly et al., 2018). For example, the

available results of soil analyses carried out in the Czech

Republic show that 85% of samples have low S content

(Kulhánek et al., 2018). The effect of elemental S (upon the

combined treatments with manure or biochar) on manure

quality, soil properties and plant growth has been reported in

only a few studies, e.g. (Mahimairaja et al., 1994b; de la Fuente

et al., 2007; Godlewska, 2018b), and thus has left room for

further studies. Moreover, the amendment of co-composted

manure with elemental S may significantly alter soil enzyme

activity (Malik et al., 2021), with a putative benefit of increased

rate of nutrient transformation via enhancement of microbial

activity and abundance by combination of external organic

matter and elemental S amendment (Hammerschmiedt et al.,

2021; Malik et al., 2021). Biochar addition to soil was also

referred to affect activity of nutrient-transforming enzymes in

soil not only negatively (Li et al., 2018; Song et al., 2019), but also

positively (Azeem et al., 2019; Zhang et al., 2021). The novelty of

this research lies in the pre-maturation enrichment of manure

with elemental S, which is assumed to be promoted during the

manure fermentation to the accelerated transformation into

plant-available form and modulated in this process by a

presence of biochar.

The objectives of this study were to evaluate (I) the impact of

manure enrichment (prior to fermentation) with biochar,

elemental S and a combination of both on the fertilizing

properties of produced manure types, (II) the effect of soil

amendment with these various manure types on the chemical
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and biological properties (i.e. activity of nutrient-transforming

soil enzymes), and biomass of a test crop, barley fodder

(Hordeum vulgare L.). It was hypothesized that the acidifying

effect of elemental S would counteract the alkalizing effect of

biochar in the case of their co-fermentation in manure, and that

it could modify the biological properties of manure via S

oxidation-promoted nutrient mineralization, accompanied by

reduced ammonia emission.
2 Materials and methods

2.1 Collection, preparation, and analysis
of modified manure

Animal manure was collected from a cattle-breeding farm of

Research Institute for Cattle Breeding Ltd., located in the village of

Rapotin, Czech Republic, Central Europe (49°58’46.4” N, 17°

0’26,6” E). Experimental matured manure was prepared in the

50 L sealable containers (three containers per variant), filled with

10 kg of collected manure, which was (optionally) mixed with

biochar and elemental S to create four experimental variants: [M]

manure, [M+B] manure + biochar (40 g·kg-1), [M+S] manure +

elemental S (1.4 g·kg-1), [M+B+S] manure + biochar (40 g·kg-1) +

elemental S (1.4 g·kg-1). Each variant was prepared in three

replicates. Used biochar was produced from agricultural waste

at 600°C (Sonnenerde GmbH, Riedlingsdorf, Austria), and its

properties were according the analyses of manufacturer as follows:

elements (in g·kg-1) - C 866, N 3.0, O 10.0, H 14.2; Ash550°C 11.7%,

salts 0.42%, pH (CaCl2) 8.5. Elemental S was a waste product

obtained during desulphurization of biogas at sugar factory biogas

plant in THIOPAQ scrubber (Paques, Netherlands).

The activation process ran for eight weeks at a laboratory-

controlled temperature (20 ± 2°C) at stable air humidity (measured

weekly). At the end of the process, a mixed sample from each

variant was taken and analyzed. Manure pH in CaCl2 was

determined according to (ISO 10390:2005); total Kjeldahl

nitrogen (TKN) was determined according to (ISO 11261:1995);

and ammonium nitrogen (N-NH4) was measured according to

(ISO 15476:2009). The available P was determined according to

(Egnér et al., 1960); dry matter (DM) was measured gravimetrically

(Hoskins et al., 2003); and organic C (Corg) was measured

according to (EN 15936:2012). Total S was determined according

to (EN 15749:2009), ammonium-oxidizing bacteria (AOB)

according to (Rotthauwe et al. , 1997), denitrifying

microorganisms (nirS) according to (Kandeler et al., 2006) and S-

reducing microorganisms (dsr) according to (Ben-Dov et al., 2007).
2.2 Pot experiment

All four produced manure types were used as soil

amendments in pot experiments with barley fodder (Hordeum
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vulgare L.) as a test crop. All experimental pots (volume 5 L)

were filled with soil substrate: fine quartz sand (0.1–1.0 mm)

mixed with sieved (2.0 mm) topsoil (0–15 cm) from the rural

area near the town of Troubsko, Czech Republic - 49°10’28”N

16°29’32”E in ratio 1:1, w/w. The soil was a silty clay loam

(according to USDA Textural Triangle), Haplic Luvisol

[according to WRB soil classification (FAO, Food and

Agriculture Organization of the United Nations, 2014)], and

its properties were as follows: soil macronutrients (g·kg-1) - total

C 14.00, total N 1.60 - available nutrients (mg·kg-1) - P 97, S 100,

Ca 3259, Mg 236, K 231; mineral N forms (mg·kg-1) – Nmin

62.84, N-NO3 56.80, N-NH4 6.04; pH (CaCl2) 7.3.

The four pot experimental variants were made by

thoroughly mixing a soil:sand blend (5 kg) with the particular

manure type in amounts of 200 g per pot (the manure amount

being equal to 50 t·ha-1). An unamended control contained only

5 kg of soil:sand blend. The treatments included (1) control, (2)

manure (M), (3) manure + biochar (M+B), (4) manure +

elemental S (M+S), (5) manure + biochar + elemental S (M+B

+S). Each variant was prepared in five replicates. Each pot was

sown with 16 barley seeds 2 cm under the soil surface and was

watered with distilled water to achieve 65% water-holding

capacity (WHC). This moisture level was maintained

throughout the entire experiment. All pots were placed

randomly into a growth chamber (CLF Plant Climatics

GmbH, Germany). Controlled conditions were set as follows:

12-hours photoperiod, light intensity 20 000 lx, temperature

(day/night) 20/12°C, relative air humidity (day/night) 45%/70%.

After 14 days, the number of plants was reduced to 12 in

each pot. Moreover, the pots were randomly rotated every

other day to ensure the homogeneity of the conditions for

the treatments.
2.3 Plant biomass measurements

The barley plants were grown for 12 weeks. After that, the

shoots were cut at the ground level, washed with distilled water

(Iocoli et al., 2019), and dried at 60°C until a constant weight was

obtained. The dry aboveground biomass (AGB) was determined

gravimetrically using the analytical scales.
2.4 Post-harvest soil characterization
and statistical analysis

The soil samples were taken after the harvesting of AGB of

barley. The homogenization of the samples was done by sieving

through a 2 mm mesh. The samples for the enzyme activity

assays (ISO 20130:2018) – b-glucosidase (GLU), arylsulfatase

(ARS), phosphatase (Phos), N-acetyl-b-D-glucosaminidase

(NAG) and urease (Ure) – were freeze-dried. The samples

stored at 4°C were used for determination of dehydrogenase
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activity (DHA), soil basal (BR) and substrate induced

respirations (Campbell et al., 2003): D-glucose (Glc-SIR), D-

trehalose (Tre-SIR), citric acid (Cit-SIR), N-acetyl-b-D-

glucosamine (NAG-SIR), L-alanine (Ala-SIR), L-lysine (Lys-

SIR) and L-arginine (Arg-SIR). The total soil carbon (TC) and

nitrogen (TN) content (ISO 10694:1995, ISO 13878:1998) were

analyzed using air-dried samples.

DHA was measured by 2,3,5-triphenyltetrazolium chloride

(TTC)-based method. The p-nitrophenol (PNP)-derivatives of

the specific soil substrates were used for Vis spectrophotometric

measurement (Infinite M Nano, Tecan Trading AG,

Switzerland) at L = 405 nm (b-glucosidase, arylsulfatase,

phosphatase, and N-acetyl-b-D-glucosaminidase). Urease

activity was determined as an amount of ammonium produced

from the substrate urea, detected Vis spectrophotometrically by

the reagent cyanurate (L = 650 nm). Other soil properties were

determined by the standard methods and the data obtained was

statistically analyzed as listed in (Table 1).

The Shapiro–Wilk and the Levene tests (at p ≤ 0.05) were

performed for the verification of normality and homogeneity of

variances. Principal component analysis (PCA), and one-way

analysis of variance (ANOVA) type I (sequential) sum of squares

at 5% significance level were used for characterization of

relationship between the treatments and selected soil

properties. Tukey’s HSD (honestly significant difference) test

was used for detection the statistically significant difference

among factor level means, and “treatment contrast” was

calculated as factor level means for each treatment. The results

were also graphically presented with Rohlf biplot for

standardized PCA. Pearson correlation analysis was performed

for measuring the linear dependence between soil properties.

Pearson correlation coefficient was interpreted as follows: 0.0<

r< 0.3 (negligible correlation), 0.3< r< 0.5 (low correlation), 0.5<

r< 0.7 (moderate correlation), 0.7< r< 0.9 (high correlation), and

0.9< r< 1.0 (very high correlation).
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3 Results

3.1 Effect of added amendments on pH
and nitrogen forms in manure

It was observed that both M+S and M+B+S exerted

significantly lower pH values (6.85 ± 0.01 and 7.21 ± 0.01,

respectively) compared to the M and M+B (9.04 ± 0.01 and

9.05 ± 0.01, respectively) – (Figure 1A). The S enrichment of the

M+S variant caused a significantly lower TKN (by 4.8%) value

but a significantly higher N-NH4 (by 83.1% as compared to

the M) – (Figures 1B, C). The M+S manure did not differ in both

TKN and N-NH4 content from the M+S+B manure, whereas this

variant showed significantly decreased total TKN (by 7.2%) and

increased N-NH4 (by 161%) content compared to the M+B.
3.2 Effect of added amendments on
manure – derived phosphorus and
organic carbon

In both S-enriched variants (M+S and M+B+S), the available P

was decreased compared to the M (by 39% and 32%, respectively) –

(Figure 1D). The M+B variant showed significantly lower Corg

compared to theM (by 3.7%) andM+B+S. A similar decrease in the

Corg content was detected in the M+S variant (by 5.5% compared to

M) – (Figure 1E).
3.3 Effect of added materials on sulphur
content in manure

A significantly decreased total S value for the M+B manure

(by 62% compared to the M) was received, whereas the M+B+S
TABLE 1 Determined soil properties, methods used for measurement and statistics, relevant references.

Property Method Unit Reference

Total soil carbon Dry combustion using, LECO TruSpec analyzer (MI USA) mg·g-1 (ISO 10694:1995)

Total soil nitrogen (ISO 13878:1998)

Dehydrogenase activity Triphenyl tetrazolium chloride (TTC)-based method µg TPF·g-1·h-1 (Doi and
Ranamukhaarachchi,
2009)

Soil enzyme activities
(GLU, ARS, Phos, NAG,
Urea)

Microplate incubation, Vis spectrophotometry µmol PNP·g-1·h-1,
µmol NH3·g

-1·h-1
(ISO 20130:2018)

Basal soil respiration MicroResp® device mg CO2·g
-1·h-1 (Campbell et al.,

2003)Substrate induced soil
respiration

MicroResp® device + inducers (sugars, amino acids)

Processing Method Tool Reference

Statistical analysis Multivariate analysis of variance (MANOVA), one-way analysis of variance (ANOVA) with
Tukey’s post-hoc test, principal component analysis (PCA), Pearson’s correlation analysis

Program R
version 3.6.1.

(Holatko et al., 2020)
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variant was significantly the highest (41% higher than M) –

(Figure 1F). The total S in manure was significantly related to the

microbiological traits of dsr (p ≤ 0.05, r = 0.51), and (at p ≤ 0.00)

AOB (r = 0.76), nirS (r = -0.82), and to the N-NH4 nitrogen (r =

0.76) (Figure 2). These relationships are apparent also from the

PCA biplot (Figure 3).
3.4 Effect of added amendments on
microbial abundance in manure

Significantly increased dsr (determinant of the S-reducing

microorganisms) was found the in the M+S andM+B+S variants

(supplied with S) compared to the M and M+B (non-supplied

with S): the values were ∼10-fold and ∼7.7-fold higher (than M),

respectively (Figure 4A). The addition of S to the unmatured

manure was crucial for the abundance of N-transforming

microbiota: dsr correlated positively (p ≤ 0.001) with AOB

(r = 0.82) and N-NH4 (r = 0.93), whereas nirS correlated

negatively (p ≤ 0.001) with N-NH4 (r = -0.81), S (r = -0.82),

AOB (r = -0.64) and dsr (r = -0.56) (Figure 2).

The AOB was significantly increased in the M+S and M+B+S

variants (by 102% and 169%) compared to the M and M+B; the

significantly highest AOB value was detected in theM+B+Smanure

(Figure 4B). The significantly lowest nirS value was revealed in the

M+B+S variant (20.5% lower than M) and the significantly highest

in the M+B variant (27.4% higher than M) (Figure 4C)
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3.5 Effect of manure types on soil fertility
and plant biomass yield

All manure-amended variants (M, M+B, M+S, M+B+S)

showed a significant increase (by 62%, 43%, 86%, 98%,

respectively) of AGB compared to the AGB of the control

(Figure 5A). Further, the AGB value of the variant M+B+S was

significantly higher than the AGB of M+B. The positive significant

correlation (p ≤ 0.001, r = 0.69) that was found for AGB and TC,

BR, Ure, corroborated the relation between plant biomass and soil

nutrient availability. These values were significantly increased in

M+B+S soil compared to the control soil (Ure) as well as

compared to both the control and M variant (TC, BR).

The TC and TN content in the amended soil variants (M,

M+B, M+S, and M+B+S) was significantly higher compared to

the control: by 9%, 17%, 16%, 18% (TC) and by 13%, 18%, 17%,

19% (TN) (Figures 5B, C). TN values were similar among all these

manure-supplied variants, whereas the TC was significantly lower

in the M variant compared to the M+B, M+S and M+B+S. The

variants did not differ significantly in C:N ratio (Figure 5D).
3.6 Effect of manure types on soil
microbial activity

Significantly increased DHA was reached in all manure-

amended variants (M, M+B, M+S, M+B+S) compared to the
B C

D E F

A

FIGURE 1

Properties of the maturated manures enriched with additives (biochar and S). (A) pH, (B) total Kjeldahl nitrogen, (C) ammonium nitrogen,
(D) available phosphorus, (E) organic carbon, (F) total sulphur. Different letters indicate differences at level of significance p ≤ 0.05.
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control: the values were higher by 35%, 53%, 67%, 50%

(Figure 5E). Furthermore, the significantly higher DHA value

was obtained in the M+S variant compared to the M variant. It

assumed a general effect of M+S amendment on the microbial

soil activity because DHA correlated significantly (p ≤ 0.001)

positively with Ure (r = 0.79), BR (r = 0.54) and GLU (r = 0.53).

The values of ARS in the soil variants amended with S-enriched
Frontiers in Plant Science 06
manures (M+S, M+B+S) were not significantly higher than in

the control soil (Figure 5F), whereas the variants M and M+B

showed significantly lower ARS values (by 29% and 12%,

respectively). Nevertheless, the amendment of S-enriched

manures to soil resulted in a demonstrated significant increase

(in M+S and M+B+S, compared to the control) of Ure (by 64%

and 55%, Figure 5G), Phos (by 28% and 42%, Figure 5H), NAG
FIGURE 2

The Pearson’s correlation matrix of the maturated manure properties. Explanation: Significance at · p ≤ 0.10; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001.
FIGURE 3

The PCA biplot of the maturated manure properties.
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(by 37% and 11%, Figure 5I) and GLU (by 21% and 16%,

Figure 5J) activities. The values in M+S were significantly higher

for Ure, NAG and GLU compared to the M and M+B values.

The Phos was highest in M+B+S.

Compared to the control, BR was significantly increased in

variants amended with all types of manure. Moreover, the

received BR values were significantly higher in the S-enriched

manure-treated variants (M+S and M+B+S, by 54% and 51%

compared to control) than in the non-enriched manure variant

M (by 24% higher than control) – (Figure 5K).

Results similar to the BR determination were obtained for

substrate induced respirations, Glc-SIR, Tre-SIR, Lys-SIR; the

control soil exerted significantly lower respiration values

compared to the amended soil variants, and these showed

significantly higher values due to the addition of enriched

manures (M+B, M+S, M+MB+S) than after the addition of the

control sole manure M (Figures 5L-N). On the contrary, the Ala-

SIR (Figure 5O) and Arg-SIR (Figure 5P) showed in variants

M+B and M+B+S no difference to the M variant, whereas the

Ala-SIR in M+S was lower compared to the M variant. NAG-SIR

was significantly decreased in non-biochar-amended variants

(M and M+S) compared to the biochar-treated variants (M+B

and M+B+S) (Figure 5Q).
4 Discussion

4.1 Effect of added amendments on pH
and nitrogen forms in manure

The lower pH of the M+S and M+B+S variants (compared to

the M and M+B) was ascribed to the acidifying potential of the

elemental S addition, which was already reported (de la Fuente

et al., 2007). Such biological oxidation of elemental S added to the

alkaline mixed manure was referred to by (Costello et al., 2019).

On the contrary, biochar in the manure M+B caused no pH

change compared to the unamendedmanure (M), probably due to

a negligible difference in the pH of the blended materials (manure

and biochar). A significantly higher pH in M+B+S compared to
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the M+S variant was presumably caused by the neutralizing effect

of added biochar, due to the sorption of S on its surface, such as

reported by (Xu et al., 2014). These findings corroborated our

hypotheses. The pH effect on other manure properties was

ascribed from pH-significant (p ≤ 0.001) correlations: positive

with TKN (r = 0.77), P (r = 0.79), nirS (r = 0.72), and negative with

N-NH4 (r = -0.97), AOB (r = -0.85), dsr (r = -0.98) – these

relations are also apparent from the PCA biplot.

Whereas the M+S variant showed significantly decreased TKN

but significantly increased ammonium nitrogen compared to the

unenriched manure; the M+S+B manure exerted significantly

increased N-NH4 content and decreased TKN compared to the

M+B. The S-enriched variants (M+S, M+B+S) showed higher

ammonium content than non-S-enriched ones, putatively due to

increased acidity, which was coupled with the microbial production

of H2SO4. Sulphuric acid may promote activity of proteolytic

bacteria, neutralize and protonate NH3 and, thus, mitigate its

release from the manure. This mechanism is in line with the

findings of (Mahimairaja et al., 1994b). Moreover, nitrification

activity has a pH optimum for oxygen uptake between 7.0 and

7.4. Despite the presumed reduction in N loss via volatilization with

S-treatment of the manure, higher TKN content in M andM+B (as

compared to M+S and M+B+S) was observed. Concurrent with the

previously reported benefit of acid manure to nitrification, an acidic

pH increased the formation of bicarbonate during the hydrolysis of

uric acid and urea (Vlek and Stumpe, 1978). Bicarbonate in manure

may (opposite to the effect of sulphuric acid) cause higher losses of

NH3. The reduction in nitrogen losses due to its immobilization

during co-composting with carbonaceous biochar-derived

materials, referred to by (Wang et al., 2018; Nguyen et al., 2022),

could also be involved.
4.2 Effect of added amendments on
manure – derived phosphorus and
organic carbon

The availability of P in the manure variants seemed to be pH-

dependent and significantly related to the S reduction (r = -0.82,
B CA

FIGURE 4

Microbial properties of the maturated manures enriched with additives (biochar and S). (A) sulphur-reducing, (B) ammonia-oxidizing, and (C) denitrifying
microorganisms in the maturated manures enriched with additives. Different letters indicate differences at level of significance p ≤ 0.05.
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p ≤ 0.001) and ammonium content (r = -0.70, p ≤ 0.01). Both M

+S and M+B+S exerted the available P content lower than the

manure M. These results may be explained by the acidifying effect

of either sulphuric acid (H2SO4) or hydrogen sulphide (H2S) and

increased access of protons from acidified ammonium (NH+
4 ), all

of which factors favored the precipitation of P. Previous studies

(Mahimairaja et al., 1994a; Penn and Camberato, 2019) referred

to these mechanisms, which make phosphates less soluble at a

low pH. The single-enriched variants (M+B, M+S) showed

significantly lower Corg compared to the M and M+B+S. The
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TC content was close to the TN content. The access of biochar

carbon putatively affected the Corg content in the variants M+B

(and also M+B+S), which showed highest decomposition and C

mineralization level. The highest composting rate could lead to

increased C volatilization in the form of CO2 (or CH4) (Jiang

et al., 2011). However, no excessive Corg source was added to the

unmatured manure of this variant. Elemental S was presumed to

increase microbial abundance and stimulate the microbial

decomposing activity (Roig et al., 2004). Moreover, elemental S

may enhance the formation of sulphuric acid, as was described by
B C D

E F G H

I J K L

M N O P

Q

A

FIGURE 5

Dry plant above ground biomass and soil properties of variants amended with various manure types. (A) dry above ground biomass, (B) total
carbon, (C) total nitrogen, (D) C:N ratio, (E) dehydrogenase activity, (F) arylsulfatase act., (G) urease act., (H) phosphatase act., (I) N-acetyl-b-D-
glucosaminidase act., (J) b-glucosidase act., (K) basal respiration, (L) D-glucose-induced resp., (M) D-trehalose-induced resp., (N) L-lysine-
induced resp., (O) L-alanine-induced resp., (P) L-arginine-induced resp., (Q) N-acetyl-b-D-glucosamine-induced resp. Different letters indicate
differences at level of significance p ≤ 0.05.
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de la Fuente et al. (2007). The authors of the study revealed that

sulphuric acid combined with carbonate materials leads to the

production of sulphates and the removal of carbonates (in the

form of CO2). A significantly higher microbial activity in the

M+B+S variant was presumed too and related to the evidence of

increased aeration, which may cause desiccation similar as

reported severe drying in the compost (Sundberg, 2005).
4.3 Effect of added materials on sulphur
content in manure

The M+B manure contained a significantly less total S

compared to the unenriched manure, whereas the total S value

of the M+B+S variant was significantly the highest. The M+B

manure was supplied with the biochar, i.e. the material with

significantly lower S content compared to the unmatured manure,

whereas the M+B+S was enriched by the excessive dose of

elemental S together with biochar. The pyrolyzed matter has the

potential to adsorb and stabilize any form of S transformation

(Zhang et al., 2016; Lin et al., 2021) and mitigate its putative

volatilization, e.g. in the form of H2S. Under insufficient aerobic

conditions, one can expect a partial reduction of elemental S to

H2S and its release into the environment.
4.4 Effect of added amendments on
microbial abundance in manure

The co-fermentation of elemental sulphur and manure

significantly modified biological properties; it led to the

increased biomass of ammonia oxidizers and sulphur reducers.

The addition of elemental S to the unmatured manure was

crucial also for the abundance of microbiota. The significantly

highest dsr value in the M+S was attributed to the absence of the

putative biochar-mediated adsorption (as assumed for M+B+S)

of elemental S, as described by Turk et al. (1992), which may

function as a hindrance to the S reduction to H2S (Lovley and

Phillips, 1994).

The abundance of ammonium oxidizers was significantly

increased in the M+S and M+B+S variants compared to the

unenriched manure and M+B; the highest AOB biomass was

found in the M+B+S manure (Figure 2B). The obtained results

may be explained by the increased availability of the substrate for

the AOB-mediated oxidation (acidified ammonium NH+
4 ) in the

respective S-supplied manures, which the finding agreed with the

previous observations (Gu et al., 2011; Soaud et al., 2011).

The higher abundance of AOB in M+B+S was presumably due to

a higher Corg and to general biochar-stimulated microbial growth.

The results of nirS determination (an indicator of

denitrifying microflora in manure) were contrary to the AOB
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values: the lowest value in the M+B+S variant (significantly

decreased compared to the control manure) and significantly the

highest value in the M+B variant. Denitrification is the biochar-

mediated and stimulated process that may occur simultaneously

with nitrification (Cayuela et al., 2013). However, a low pH

strongly interferes with the nitrate oxidation (Brenzinger et al.,

2015), which present a considerable reason for the lower

abundance of denitrifying microorganisms in the S-

supplied variants.
4.5 Effect of manure types on soil fertility
and plant biomass yield

The dry ABG was the key property for the evaluation of the

agriculture benefit of the co-composted manure. Compared to

the control, amendment of any type of manure to soil led to the

significantly higher AGB. The highest AGB value was found in

the M+B+S variant. The best fertilizing properties of M+B+S

from all four used amendments were ascribed from the

significantly highest content of dry biomass and total S in the

respective manure. AGB correlated significantly (p ≤ 0.01)

positively also with DHA (r = 0.66) and Ala-SIR (r = 0.62).

The study by Yu et al. (2017) referred to a positive correlation

between crop yield and soil N-NH4, the available P and K and

microbial diversity or microbial abundance preservation. A

beneficial increase of corn plant biomass in the soil amended

with S-enriched biochar, which occurred due to the enhanced

plant uptake of S (Zhang et al., 2016), corroborated the results

with M+B+S manure.

All manure-amended variants increased the soil TC and TN

content compared to the control. The TN values among all manure-

amended variants were comparable. Albeit the non-enriched M

manure was markedly Corg-abundant; the soil M variant showed a

significantly decreased TC compared to the M+B, M+S, M+B+S.

However, both M+B+S and M+S manures showed higher

ammonium nitrogen content and nitrification potential (AOB

marker) compared to the M variant, and this indicated their

higher N mineralization rate. Thus, enhanced C sequestration

was presumably achieved due to application of manure with

increased N conversion. The C:N ratio did not differ significantly

between all variants. Both TC and TN correlated significantly (p ≤

0.001) positively with DHA (r = 0.82 and 0.66, respectively), Ure

(r = 0.77 and 0.66, respectively) and substrate-induced respirations,

e.g. Tre-SIR (r = 0.64 and 0.55, respectively), NAG-SIR (r = 0.68 and

0.57, respectively), Lys-SIR (r = 0.67 and 0.54, respectively) and

Arg-SIR (r = 0.76 and 0.66, respectively). These relations proved

that the amendment of enriched manures (M+S, M+B+S,

eventually M+B) enhanced microbial activity and mineralization

due to the derived higher nutrient content and availability (Holatko

et al., 2022).
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4.6 Effect of manure types on soil
microbial activity

The manures applied to the pot experiment with barley

(Hordeum vulgare L.) led to differences in soil properties

compared to the control unamended soil, and between the

variants amended with unenriched manure and the enriched

manures. All manure variants, applied to the soil, significantly

enhanced DHA activity compared to the control (Figure 3E).

The increase in DHA due to the combined effect of manure and

biochar was already reported (Brtnicky et al., 2019; Yilmaz and

Ergun, 2019). Furthermore, a significantly higher DHA value

was obtained in the M+S variant compared to the M variant

because the S-enriched manure exerted properties (lowest pH,

highest N-NH4 and S-reducing microflora among the manures)

that most enhanced the decomposing microbial activity in the

amended soil. The higher access of S in the soil was reported to

correlate with higher DHA (Katkar et al., 2011; Lemanowicz

et al., 2020).

The elemental S amendment to manures (M+S, M+B+S) did

not significantly change the soil ARS compared to the control,

and the variants M and M+B showed even significantly lower

ARS values. Our presumption of elemental S-stimulated

enhancement of soil organic S mineralization (catalyzed by

ARS), ascribed from (Castellano and Dick, 1991), was denied.

On the contrary, the results imply the retarded S mineralization

in the M and M+B soil variants due to the putatively higher

portion of added mineral and readily available S, which might be

caused by efficient ARS-mediated mineralization during the

manure (M, M+B) fermentation. A similar significant biochar-
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derived increase in ARS was referred to in the soil environment

(Khadem et al., 2019).

Significantly increased Ure, Phos, NAG and GLU activities

were observed in the variants M+S and M+B+S, compared to the

control. The M+S variants also induced the Ure, NAG and GLU

values compared to the M and M+B enzyme values. The Phos

was the highest in M+B+S. Previously, elemental S amendment

was referred to increase soil ARS, Phos and Ure (Godlewska,

2018a). A significant (p ≤ 0.001) positive correlation of Phos

with Tre-SIR and Arg-SR (r = 0.66 and 0.59, respectively) and

with dry AGB (r = 0.69) was found. NAG also correlated with

AGB (r = 0.53; p ≤ 0.05). These relations implied that S-

amendment mediated enhanced organic matter decomposition

led to higher transformation and anticipated increased nutrient

uptake for higher plant biomass yield. A similar benefit of

combined use of biochar and poultry manure was referred to

by Lu et al. (2015) to enhance microbial growth and enzyme

activities (e.g. Ure). However, the significant beneficial synergic

effect of elemental S and manure on the soil enzyme activities

was novel and not yet mentioned in the literature. The enzyme

activity dependence on SOM decomposition and their positive

relation is known (Wutzler et al., 2017) and was shown in the

PCA biplot (Figure 6).

S-enriched manure-treated variants (M+S and M+B+S)

exerted higher basal respiration compared to both the control

and the non-enriched manure variant M (Figure 3K). It verified

our presumption of a significantly stimulating effect of S (co-

composed with manure) on the enhancement of soil microbial

abundance and activity. Enhanced microbial BR implied the

intensified mineralization and putatively increased availability of
FIGURE 6

The PCA biplot of the soil properties.
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nutrients for plants, which lead to higher plant biomass yield, TC

and TN, as shown on the positive significant (p ≤ 0.001)

correlation of BR and AGB (r = 0.69), TC (r = 0.57), and TN

(r = 0.46, p ≤ 0.01) (Figure 7).

The results of all types of substrates-induced respirations

seemed to be close to the results of BR, as shown by the

significant (p ≤ 0.001-0.05) moderate to high correlation (r up

to 0.79). Nevertheless, it was ascribed that manure enriched with

biochar tended to stimulate more respiration inducible by N-

rich substrates, whereas the application of S-enriched manure

promoted higher respiration inducibility by the (non-nitrous)

sugars. These differences implied a variable impact of used types

of manure on functional soil diversity with the final consequence

in the changes in the nutrient and other soil properties that

affected the plant growth and biomass yield.
5 Conclusions

The sulphur-enriched manure showed the most lowered

manure pH at the concurrent highest ammonium content.

When manure, biochar and sulphur were co-fermented, the

highest sulphur content and abundance of ammonium-

oxidizing bacteria was observed. When added to soil, this

biochar+sulphur-enriched manure promoted the highest dry

aboveground plant biomass, the value was 98% higher

compared to the unamended control, 38% higher compared to

the amendment of biochar-enriched manure and 23% higher

compared to the manure-amended variant. Sulphur-enriched

manure types enhanced the most enzyme activities and soil

respirations (basal, substrate-induced). Based on the results

obtained, it was concluded that the co-fermentation of

biological manures with bio-based materials, such as biochar
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and sulphur resulting as a by-product of biogas, is an attractive

approach, not only to improve the enriched manure product but

also to enhance soil fertility, health and crop productivity. This

improvement of organic fertilizers may contribute to the circular

economy and it will be further investigated by up-scaling on the

field level.
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