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Nutrient deficiency in wild plant species, including quinoa (Chenopodium

quinoa Willd), can be overcome by applying mineral-solubilizing bacteria.

Quinoa is a gluten-free, nutritious food crop with unique protein content.

The present study aimed to characterize mineral-solubilizing rhizobacterial

strains and to evaluate their plant growth-promoting potential in quinoa

seedlings. More than sixty rhizobacterial strains were isolated from the

quinoa rhizosphere and found eighteen strains to be strong phosphate

solubilizers. Most of these bacterial strains showed zinc solubilization, and

more than 80% of strains could solubilize manganese. The selected strains

were identified as Bacillus altitudinis Cq-3, Pseudomonas flexibilis Cq-32,

Bacillus pumilus Cq-35, Pseudomonas furukawaii Cq-40, Pontibacter

lucknowensis Cq-48, and Ensifer sp. Cq-51 through 16S rRNA partial gene

sequencing. Mainly, these strains showed the production of organic acids,

including malic, gluconic, tartaric, ascorbic, lactic, and oxalic acids in insoluble

phosphorus amended broth. All strains showed production of gluconic acids,

while half of the strains could produce malic, ascorbic, lactic, and oxalic acids.

These strains demonstrated the production of indole-3-acetic acid in the

presence as well as in the absence of L-tryptophan. The bacterial strains also

demonstrated their ability to promote growth and yield attributes, including

shoot length, root length, leave numbers, root and shoot dry biomass, spike

length, and spikes numbers of quinoa in pots and field trials. Increased

physiological attributes, including relative humidity, quantum flux, diffusive

resistance, and transpiration rate, were observed due to inoculation with

mineral solubilizing bacterial strains under field conditions. P. lucknowensis

Cq-48, followed by P. flexibilis Cq-32, and P. furukawaii Cq-40 showed

promising results to promote growth, yield, and physiological attributes. The
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multi-traits characteristics and plant growth-promoting ability in the tested

bacterial strains could provide an opportunity for formulating biofertilizers that

could promote wild quinoa growth and physiology.
KEYWORDS

Chenopodium quinoa, Indole-3-acetic acid, minerals solubilization, phosphate
solubilization, Pontibacter spp., Pseudomonas spp., 16S rRNA sequencing
Introduction

Quinoa (Chenopodium quinoa Willd) is a nutritious food

crop farmed in South America for thousands of years. It is a

significant food crop in the Andean mountains, but recently, its

demand has increased in the United States, Europe, and Asia

(Jacobsen, 2003). It has unique protein content and a high

concentration of various vitamins and minerals (Cauda et al.,

2013; Al-Barakah and Sohaib, 2019). It is one of the crops

intended to offer food security in the coming times (Jaikishun

et al., 2019; Maliro et al., 2021). Primarily, it is used in cooking,

baking, and preparing gluten-free products, animal feed, green

fodder, and pellets. It is used to prepare modified food items,

including breakfast cereals, pasta, pastries, fermented beverage,

industrial usage of carbohydrates, protein, saponin, and a game

cover crop (Jacobsen, 2003; Urquizo et al., 2017; Tan, 2020).

Quinoa grains are gluten-free, which is beneficial for sensitive

people having lactose intolerance, can provide nutrition to high-

activity athletes and women at risk of osteoporosis, and possess

therapeutic properties for diabetes, dyslipidemia, obesity,

anemia, and celiac disease (Navruz-Varli and Sanlier, 2016;

Vilcacundo and Hernández-Ledesma, 2017; Guo et al., 2021).

Current farming practices largely depend on chemical

fertilizers, which cause detrimental effects on crop products

and consumers (Suyal et al., 2016). Indiscriminate application

of chemical fertilizers causes food contamination and soil

toxicity and deteriorates the physicochemical properties of soil

(Alori and Fawole, 2017). The growing knowledge of health risks

associated with eating low-quality crops has prompted a search

for new and improved technologies to enhance crop quantity

and quality without harming human health (Alori and Babalola,

2018). Microbial biofertilizers are a viable alternative to chemical

inputs, promote plant development, and are involved in the

biocontrol of phytopathogen (Khalid et al., 2017). They consist

of plant growth-promoting microorganisms, which play a

dynamic role in the accessibility of various minerals, especially

nitrogen, phosphorus (P), potassium (K), zinc (Zn), and

manganese (Mn) (Lalitha, 2017). Biofertilizers are the primary

component of integrated nutrient management, resulting in

sustainability (Kour et al., 2020b). These could be cost-effective

inputs to enhance crop productivity by reducing fertilizer
02
application and, ultimately, getting more nutrients from the

soil. They are composed of living cells of efficient microbial

strains that increase nutrient uptake in plants due to their

associations with the rhizosphere (Mac̨ik et al., 2020; Mumtaz

et al., 2022).

Minerals are essential macronutrients and micronutrients that

play a vital role in plant growth and development (Soetan et al.,

2010). It is present in variable concentrations in the soil. However,

many minerals’ solubilities are very low and unavailable to plants

(Penn and Camberato, 2019). Mineral solubilizing bacteria (MSB)

showed their ability to convert the insoluble form of minerals,

including P, K, and Zn, to a soluble form and promote its uptake

in plants (Divjot et al., 2021; Maharana and Dhal, 2022). This

conversion is accomplished by acidification, exchange reactions,

chelation, and the production of acid phosphatases and phytases

(Kumar et al., 2013). These MSB also produce various secondary

metabolites, including phytohormones (indole-3-acetic acid) and

siderophores, contributing to plant productivity (Hariprasad and

Niranjana, 2009). Different bacterial genera including

Achromobacter, Acinetobacter, Aeromonas, Anabaena, Bacillus,

Brevibacterium, Burkholderia, Calothrix, Corynebacterium,

Erwinia , Flavobacterium , Escherichia , Micrococcus ,

Mycobacterium , Nostoc , Paenibacillus , Pseudomonas ,

Rhodococcus, Sarcina, Scytonema, Serratia, Tolypothrix, and

Xanthomonas were isolated from soil and rhizosphere of various

crops exhibited the mineral-solubilizing ability (Mishra et al.,

2014; Zhang et al., 2017; Leite et al., 2018; Martıńez-Gallegos

et al., 2018; Singh et al., 2019; Divjot et al., 2021; Amy et al., 2022).

A limited number of studies on the bacterial interaction with

quinoa were reported by Chumpitaz-Segovia et al. (2020); Mahdi

et al. (2020); Yang et al. (2020); Yanez-Yazlle et al. (2021), and

Testen et al. (2022). Mahdi et al. (2020) reported plant growth-

promoting (PGP) characteristics, including IAA, production of

siderophores, extracellular enzymes, ammonia, and hydrogen

cyanide in PSB strains Bacillus licheniformis QA1 and

Enterobacter asburiae QF11 isolated from quinoa rhizospheric

soil. Thus, the objectives of the current study were: to isolate and

screen the ability of rhizospheric strains from the quinoa

rhizosphere for mineral solubilization, to characterize the

potential MSB strains for in vitro plant growth-promoting

attributes, to identify selected MSB strains based on 16S rRNA
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gene sequencing, and to evaluate the ability of MSB strains to

promote quinoa growth in pot and field trails.
Materials and methods

Isolation of rhizobacteria

Rhizospheric samples of C. quinoa were collected from the

University of Lahore (UOL) research area at 31.5204° N latitude,

74.3587° E longitude, and 217 m elevation. Samples were placed

individually in sterile plastic bags and brought to the Laboratory

of Microbial Biotechnology, Institute of Molecular Biology and

Biotechnology (IMBB), UOL, Pakistan, under low temperature.

Rhizospheric bacterial isolates were isolated from rhizospheric

soil on a Luria Bertani (LB) agar medium composed of tryptone

(10 g L-1), yeast extract (5.0 g L-1), NaCl (5.0 g L-1), and agar

(15.0 g L-1) through serial dilution method as described by

Somasegaran and Hoben (1994). The inoculated agar plates were

incubated at 28 ± 1°C till the appearance of bacterial colonies.

Individual colonies were picked and streaked on LB agar plates

for purification. Single colonies were repeatedly re-streaked till

the purified cultures were obtained. The purified bacterial

cultures were preserved in 50% sterile glycerol stock at -20°C

until further characterization.
Determination of
phosphate solubilization

Rhizobacterial isolates were characterized for phosphate

solubilization using Pikovskaya (PVK) agar medium, as

reported by Pikovskaya (1948). Bacterial strains with diverse

colony morphology were inoculated in the center of PVK agar

medium with the help of inoculating loop in triplicate and placed

at 30 ± 1°C for seven days. The diameter of the halo zone and

colony growth were measured, and phosphorus solubilization

index (PSI) and solubilization efficiency (PSE) were determined

using formulas described by Vazquez et al. (2000). Quantitative

phosphate solubilization was determined by using the Pikovskaya

brothmedium in triplicate. The freshly grown colonies of bacterial

strains were inoculated in Pikovskaya broth medium and kept on

an orbital shaker at 100 rpm and 30 ± 1°C for ten days. The

cultures were centrifuged at 10,000×g rpm for 5 min. The

supernatant was filtered through a 0.22 µm filter (Millipore,

USA). The solubilized phosphorus contents in culture filtrate

were determined by adopting the method of Ryan et al. (2001).

The production of organic acids in response to tri-calcium

phosphate was determined by injecting culture filtrate in high-

performance liquid chromatography (HPLC) equipped with

Turbochrom Software (Perkin Elmer, USA) and a C-18 column.

The flow rate was kept at 0.6 mL min-1, and used mobile phase

was methanol and water (30:70 v/v). The remaining conditions
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were similar, as Mumtaz et al. (2019) reported. The peaks of

unknown samples were compared to the standard organic acids,

including gluconic acid, lactic acid, malic acid, tartaric acid, acetic

acid, and citric acid, as described by Park et al. (2010).
Zn and Mn solubilization assay

The selected PSB strains were screened for Zn solubilization

as Fasim et al. (2002) described. The bacterial strains were spot

inoculated on tris-minimal salt agar, amended with 1% zinc

oxide, and incubated at 30 ± 1°C for seven days to observe the

clear halo zone (Mumtaz et al., 2017). The Zn solubilizing index

(ZSI) and Zn solubilizing efficiency (ZSE) were calculated by

following the method of Vazquez et al. (2000) and Mumtaz et al.

(2017). These strains were also screened for Mn solubilization by

growing bacterial strains on nutrient agar amended with MnO2

(50 mM) at 30 ± 1°C for 72 h (Sanket et al., 2017). After

incubation, Mn amended nutrient agar plates were flooded with

iodine solution as an indicator to observe a clear halo zone (Ijaz

et al., 2021). The clear halo zone and bacterial growth zone

diameters were recorded through meter rod, and Mn

solubilization index (MSI) and Mn solubilization efficiency

(MSE) were calculated by following formulas reported by Ijaz

et al. (2021).
Determination of indole acetic acid

The selected MSB strains were tested for indole-3-acid (IAA)

production by inoculating the LB broth amended with and

without L- tryptophan (100 mg L-1) incubated at 30 ± 1°C for

three days. After incubation, the supernatant was obtained by

centrifuging the broth culture at 12000×g for 10 min. The

supernatant of each bacterial culture was mixed with 100 µl of

Salkowski reagent in a 1:1 ratio. The tubes were kept in the dark

and visualized after 60 min for the development of color. The

color intensity was determined at 530 nm help of a

spectrophotometer. Auxin’s production by bacterial cultures in

the presence and absence of L-tryptophan was estimated by

plotting the standard curve of reading from the optical density of

the standards solution.
Identification of rhizobacterial strains
through 16S rRNA gene sequencing

The 16S rRNA gene was amplified, sequenced, and analyzed

through bioinformatics to identify MSB strains. The genomic

DNA of bacterial strains was extracted with slight modifications

by cetyl trimethyl ammonium bromide (CTAB; Wilson, 2001).

Overnight grown bacterial cultures in LB medium at 30 ± 1°C
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were used for DNA extraction. Cells harvested by centrifugation

at 12000 x g were re-suspended in 567 µL of tris-EDTA buffer

(tris 10 mM; EDTA 1 mM), lysed with the 3 µL of proteinase-K,

and 30 µL of 10% sodium dodecyl sulfate, followed by incubation

at 30°C for an hour to allow complete lysis. The 100 µL of 5 M

NaCl and 80 µL of CTAB extraction buffer (CTAB 10%; NaCl

0.7 M) was added, and the lysate was mixed thoroughly and

incubated at 65°C for 10 min. DNA was purified by sequential

phenol, phenol-chloroform, and chloroform extractions,

followed by isopropanol precipitation. The pellets were washed

with 70% ethanol and re-suspended in 100 µL of a tris-EDTA

buffer. The samples were stored at -20°C until use.

The 16S rRNA gene of extracted genomic DNA was

amplified through PCR amplification of the genes as described

by Katsivela et al. (1999) using universal forward 9F (5′-
GAGTTTGATCCTGGCTCAG-3′) and reverse primers 1510R

(5′-GGCTACCTTGTTACGA-3′). Amplified PCR products of

16S rRNA were separated on 1% agarose gel in 0.5X Tris-EDTA

buffer containing 2 µL ethidium bromide. The ladder l Hind-III

was used as a size marker. The gel was viewed under UV light

and photographed using a gel documentation system. Amplified

PCR products of full-length 16S rRNA genes were purified using

a PCR purification kit (QIAGEN) according to the standard

protocol recommended by the manufacturer (Laghari et al.,

2010). The sequence results obtained were blasted through the

DNA data bank of Japan (DDBJ). The sequence of all the related

species was retrieved to get the exact terminology of the

rhizobacterial strains. Phylogenetic analysis was also carried

out using the bioinformatic tool molecular evolutionary

genetic analysis (MEGA) software version 7.0.26 (Tamura

et al., 2007). The 16S rRNA gene sequences of identified

strains were submitted DDBJ database, and accession numbers

against each rhizobacterial strain were obtained.
Pot trial

A non-sterile soil culture pot experiment was conducted to

check the ability of the MSB strain’s growth and yield attributes

of quinoa. Fresh bacterial cultures were prepared in nutrient

broth under shaking (100 rpm) conditions at 30 ± 1°C for two

days. Quinoa seeds of a variety NARC-9 were soaked in the 10-5

CFU bacterial inoculum for half an hour. The uninoculated

control treatment was prepared by soaking quinoa seeds in two

days old nutrient broth without bacterial inoculation. This trial

was conducted at Latitude: 31.39N, Longitude: 74.24E, and 206

meters above sea level under natural climatic conditions. The

study area has a semi-arid climate characterized by foggy winter,

pleasant spring, summer with dust, rainstorms, heatwave, cool

winters, rainy monsoon, and dry autumn; the hottest month is

June, and the coolest month is January with dense fog. The

current experiment was conducted in mid of November during

the winter season.
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The soil used for the pot trial was collected from a research

field and analyzed for physicochemical characteristics using the

standard method of Ryan et al. (2001) and revealed sandy loam

texture, 8.10 pH, 0.47 dS m-1 electrical conductivity, 0.29%

organic matter, 0.02% total N, 6.0 mg kg-1 available P, and 176

mg kg-1 extractable K. Earthen pots were filled with 5 kg of non-

sterilized sieved (2 mm) soil. A total of eight quinoa seeds

inoculated with respective bacterial strains were sown in each

pot, and three quinoa seedlings after germination were

maintained in each pot. The pots were placed in a wire-house

under natural environmental conditions in a completely

randomized design (CRD), having three replications. The N

(70 kg ha-1), P (40 kg ha-1), and K (30 kg ha-1) were applied in

terms of urea, diammonium phosphate, and sulfate of potash.

The total dose of P, K, and half dose of N was used as basal dose,

and the remaining half of N was applied after one month of

germination. The pots were irrigated before sowing of seeds, and

after germination, pots were irrigated four times at the two-leave

stage, tillering, booting, and flowering stages. The weeds were

manually pulled out by hand. Plant height, root length, and

panicle length were observed at physiological maturity through a

meter rod. The number of leaves and panicles in each plant was

manually counted. Shoot and root were shade dried and

weighted through weight balance.
Field experiment

A field experiment was conducted to evaluate the effects of

plant growth-promoting MSB strains to increase quinoa growth,

physiology, and yield attributes. The bacterial cultures of 48 h

were prepared in nutrient broth, and the cell pellet was obtained

through centrifugation at 10000×g. The cell pellet was washed

and re-suspended in 100 mL saline solution (0.85%). Seeds were

added to the cell suspension and autoclaved powdered filter-

mud as carrier material. The uninoculated control seeds were

coated with autoclaved filter-mud and saline solution without

bacterial cell pellet. This experiment was conducted adjacent to

the pot trial at the same place and same time. The soil of the field

experiment was sandy loam texture, 8.10 pH, 0.28 dS m-1

electrical conductivity, 0.88% organic matter, 0.05% total N,

4.6 mg kg-1 available P, and 169 mg kg-1 extractable K. The field

was ploughed twice, and fine seedbeds were prepared through

ridger. With three replications, the coated quinoa seeds were

sown under sufficient moisture conditions in Randomized

Complete Block Design (RCBD). The space between plants

and rows was maintained at 20 cm and 75 cm, respectively.

The doses and sources of N, P, and K nutrients were the same as

reported in the pot trial. After seeds germination, plots were

irrigated three times before flowering and one time at the

flowering stage. The weeds were removed through a manual

method. At the booting stage, physiological attributes, including

relative humidity, quantum reflux, diffusive resistance, and
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transpiration rate, were measured by a leaf porometer in a steady

state during morning hours when the sky was cleared. The

porometer was calibrated to ensure accurate readings before the

measurements. Fresh, fully developed leaves from the top of

randomly selected plants were used to record the physiological

attributes. The operating environment for the porometer was 5-

30°C and 10-70% relative humidity. At maturity, plants were

harvested, and plant growth attributes, including plant height,

root length, panicle length, number of leaves, number of

panicles, shoot dry weight, and root dry weight, were recorded.
Statistical analysis

The data from in vitro assay, including solubilization of P, Zn,

Mn, and production of IAA, were analyzed through a one-way

analysis of variance (ANOVA) in CRD arrangement. One-way

ANOVA in pot and field trials (in vivo experiments) was

employed using CRD and RCBD design, respectively. The

obtained means of three replications from all in vitro

experiments were subjected to the Tukey test, while in vivo

experiments were analyzed through the least significant

difference (LSD) test at 5% probability (Steel et al., 1997). The

mean values were compared by calculating standard error in

Microsoft Excel-2019 and alphabetical letters, demonstrating

values sharing the same letter do not differ significantly (P≤ 0.05).
Frontiers in Plant Science 05
Results

Isolation of rhizobacteria

More than sixty bacterial strains were isolated from quinoa

rhizospheric soil and tested for phosphate-solubilization PVK

agar medium amended with tri-calcium phosphate. Eighteen

rhizobacterial strains enlisted in Table 1 showed solubilization of

P. The solubilization zone diameter ranged from 12.00 ± 0.88

mm to 25.66 ± 0.76 mm, whereas the PSB strain growth

diameter ranged from 6.00 ± 0.22 mm to 9.67 ± 0.57 mm. A

maximum phosphate-solubilization zone diameter of 25.66 ±

0.76 mm followed by 24.00 ± 0.66 mm was reported by strains

Cq-51 and Cq-40, respectively. The diameter of spot inoculated

phosphate-solubilizing bacterial growth was highest in the case

of Cq-15 (9.67 ± 0.57 mm) and Cq-51 (9.66 ± 0.57 mm). Strain

Cq-31 reported a minimum phosphate-solubilization zone

diameter of 12.00 ± 0.88 mm, while 6.00 ± 0.22 mm of the

phosphate-solubilization growth zone of strain Cq-10 was the

lowest. Strain Cq-10 also demonstrated lowest phosphate-

solubilization index (2.72 ± 0.31) and phosphate-solubilization

efficiency (172.62 ± 4.16%). A maximum phosphate-

solubilization index of 4.00 ± 0.33 was reported by strain Cq-

40, followed by strain Cq-32 having a 3.90 ± 0.38 phosphate-

solubilization index. Strain Cq-40 and Cq-32 reported

maximum phosphate-solubilization efficiency of 300.0 ±
TABLE 1 Phosphate solubilization by rhizobacterial strains isolated from quinoa rhizosphere.

Strains PSZ (mm) BG (mm) PSI PSE (%) PSC (ppm)

Cq-3 19.00 ± 1.15 b-e 8.00 ± 0.30 abc 3.37 ± 0.37 a-d 237.90 ± 7.40 a-d 54.04 ± 1.63 cd

Cq-10 13.33 ± 0.57 efg 7.66 ± 0.33 abc 2.72 ± 0.31 d 172.62 ± 4.16 d NT

Cq-13 14.00 ± 0.57 e-g 6.00 ± 0.22 c 3.36 ± 0.27 a-d 236.98 ± 11.98 a-d 33.06 ± 1.19 g

Cq-15 21.66 ± 0.57 a-d 9.67 ± 0.57 a 3.24 ± 0.46 a-d 224.07 ± 11.60 a-d 44.79 ± 1.41 e

Cq-28 13.00 ± 0.76 fg 7.33 ± 0.32 abc 2.82 ± 0.37 cd 181.94 ± 7.40 cd NT

Cq-31 12.00 ± 0.88 g 6.66 ± 0.10 bc 2.82 ± 0.09 cd 182.14 ± 9.79 cd NT

Cq-32 21.33 ± 1.45 a-d 7.33 ± 0.33 abc 3.90 ± 0.38 ab 290.48 ± 9.21 ab 57.59 ± 1.01 c

Cq-34 17.00 ± 0.64 d-g 7.33 ± 0.36 abc 3.32 ± 0.33 a-d 231.55 ± 9.60 a-d 34.62 ± 1.22 g

Cq-35 21.66 ± 0.66 a-d 8.66 ± 0.33 ab 3.51 ± 0.23 a-d 251.85 ± 12.91 a-d 45.93 ± 1.48 e

Cq-40 24.00 ± 0.66 ab 8.00 ± 0.33 abc 4.00 ± 0.33 a 300.0 ± 10.22 a 64.74 ± 1.47 b

Cq-41 14.00 ± 0.63 e-g 6.00 ± 0.30 c 3.37 ± 0.20 a-d 236.98 ± 12.13 a-d 34.69 ± 1.30 g

Cq-45 21.67 ± 0.88 a-d 9.00 ± 0.33 ab 3.41 ± 0.26 a-d 241.94 ± 11.02 a-d 40.13 ± 0.74 f

Cq-47 13.00 ± 0.66 fg 7.33 ± 0.33 abc 2.81 ± 0.22 cd 181.94 ± 13.63 cd NT

Cq-48 23.00 ± 0.66 abc 9.00 ± 0.57 ab 3.57 ± 0.49 abc 257.31 ± 9.52 abc 68.43 ± 1.51 a

Cq-51 25.66 ± 0.76 a 9.66 ± 0.57 a 3.65 ± 0.51 abc 265.56 ± 6.18 abc 51.43 ± 1.37 d

Cq-52 18.00 ± 0.88 c-f 8.66 ± 0.57 ab 3.07 ± 0.43 bcd 207.41 ± 17.76 bcd 44.50 ± 1.16 e

Cq-53 13.33 ± 0.60 efg 7.67 ± 0.51 abc 2.73 ± 0.44 d 176.62 ± 9.52 d NT

Cq-55 18.33 ± 0.66 b-f 8.33 ± 0.34 abc 3.20 ± 0.27 a-d 220.37 ± 12.43 abc 42.69 ± 0.93 ef

CVC 5.80 2.60 0.84 83.94 3.62
Phosphate-solubilization by bacterial strains was observed on Pikovskya agar media amended with tricalcium phosphate after seven days of incubation at 30 ± 1°C; Phosphate solubilization
index (PSI) and phosphate solubilization efficiency (PSE) were determined using diameters of phosphate solubilization zone (PSZ) and bacterial growth (BG); quantitative phosphate
solubilization was estimated through inoculating the strains in tricalcium-amended Pikoskya broth media and phosphate solubilized concentration (PSC) was detected through the
colorimetric method; data presented are the mean of three replications ± standard error and Tukey HSD test was performed at 5% (P ≤ 0.05) probability level; the means in a vertical line for
each attributes sharing common letters were considered statistically similar to each other; NT, not tested; CVC, critical value for comparison.
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10.22% and 290.48 ± 9.21%, respectively. A maximum

quantitative phosphate-solubilized concentration of 68.43 ±

1.51 mg kg-1 was reported by strain Cq-48, followed by strain

Cq-40 having 64.74 ± 1.47 mg kg-1 (Table 1). Strain Cq-13

reported minimum phosphorus solubilized concentration of

33.06 ± 1.19 mg kg-1.
Solubilization of Zn and Mn

Phosphate solubilizing bacterial strains were screened for the

qualitative solubilization of Zn and Mn, and their results are

given in Tables 2 and 3. All the tested phosphate solubilizing

bacterial strains showed solubilization of Zn except strain Cq-31.

Maximum zinc solubilization zone was reported by strains Cq-

40, Cq-47, Cq-51, and Cq-53, having a diameter of 21.33 ± 0.66

mm, 21.33 ± 0.57 mm, 21.33 ± 1.15 mm, and 20.33 ± 0.66 mm,

respectively. The zinc solubilization zone diameter of these

strains was statistically similar to each other and various other

strains depicted in Table 2. Strain Cq-13 reported a minimum

zinc solubilization zone diameter of 9.00 ± 0.57 mm. The growth

diameter (9.33 ± 0.66 mm) of strain Cq-28 was more prominent,

while strain Cq-15 reported a smaller bacterial growth zone

diameter of 6.00 ± 0.33 mm. Strain Cq-51 reported a maximum

zinc solubilization index of 3.68 ± 0.37 and zinc solubilization

efficiency of 268.85 ± 17.76%. Minimum zinc solubilization
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index of 2.42 ± 0.40 and zinc solubilization efficiency of

142.86 ± 11.98% was reported by strain Cq-13.

Strains Cq-28, Cq-34, Cq-41, and Cq-53 could not solubilize

manganese; however, all other tested phosphate solubilizing

bacterial strains were well-capable to solubilize manganese

(Table 3). Strain Cq-32 followed by strain Cq-31 reported

maximum manganese solubilization zones of 33.66 ± 0.33 mm

and 29.66 ± 0.88 mm, respectively. These strains also showed

higher bacterial growth zones of 11.33 ± 0.33 mm and 10.33 ±

0.29 mm, respectively. A maximum manganese solubilization

index of 4.23 ± 0.26 and manganese solubilization efficiency of

323.61 ± 7.64% was reported by strain Cq-45. Strain Cq-13 and

Cq-52 also reported better manganese solubilization index of

4.18 ± 0.21 and 4.16 ± 0.30, respectively, and manganese

solubilization efficiency of 318.45 ± 12.72% and 316.20 ±

4.41%, respectively.
Production of organic acids

The best six MSB strains, e.g., Cq-3, Cq-32, Cq-35, Cq-40,

Cq-48, and Cq-51, can solubilize zinc and manganese were

screened for production of organic acids by using HPLC. Most

of these strains showed the production of malic, gluconic,

tartaric, ascorbic, lactic, and oxalic acids and their detected

concentration by each strain (Table 4). Malic acid was
TABLE 2 Solubilization of zinc by phosphate solubilizing bacterial strains isolated from quinoa rhizosphere.

Strains ZSZ (mm) BGZ (mm) ZSI ZSE (%)

Cq-3 15.00 ± 1.66 bcd 7.66 ± 0.33 a-d 2.95 ± 0.48 bc 195.83 ± 4.16 bc

Cq-10 18.00 ± 1.15 a-d 8.65 ± 0.57 ab 3.07 ± 0.54 abc 207.41 ± 7.40 abc

Cq-13 9.00 ± 0.57 e 6.33± 0.57 cd 2.42 ± 0.40 c 142.86 ± 11.98 c

Cq-15 13.00 ± 1.38 de 6.00 ± 0.33 d 3.18 ± 0.30 ab 218.89 ± 11.60 ab

Cq-28 19.66 ± 1.84 ab 9.33 ± 0.66 a 3.08 ± 0.83 abc 208.33 ± 16.91 abc

Cq-31 ND ND ND ND

Cq-32 17.66 ± 0.88 a-d 9.00 ± 0.88 ab 2.96 ± 0.54 bc 196.30 ± 9.79 bc

Cq-34 18.00 ± 0.57 a-d 7.00 ± 0.57 bcd 3.59 ± 0.41 ab 259.92 ± 17.79 ab

Cq-35 18.00 ± 1.84 a-d 7.66 ± 0.33 a-d 3.35 ± 0.09 ab 235.71 ± 12.91 ab

Cq-40 21.33 ± 0.66 a 8.66 ± 0.33 ab 3.46 ± 0.29 ab 246.76 ± 12.43 ab

Cq-41 14.00 ± 1.15 cde 6.00 ± 0.57 d 3.39 ± 0.28 ab 239.37 ± 24.18 ab

Cq-45 18.00 ± 0.66 a-d 8.33 ± 0.57 abc 3.16 ± 0.48 ab 216.67 ± 11.02 ab

Cq-47 21.33 ± 0.57 a 9.00 ± 0.57 ab 3.38 ± 0.44 ab 236.15 ± 9.52 ab

Cq-48 16.66 ± 0.57 a-d 8.33 ± 0.66 abc 3.00 ± 0.41 abc 200.93 ± 13.63 abc

Cq-51 21.33 ± 1.15 a 8.00 ± 0.30 a-d 3.68 ± 0.37 a 268.85 ± 17.76 a

Cq-52 18.66 ± 0.88 abc 8.00 ± 0.23 a-d 3.34 ± 0.32 ab 234.19 ± 6.18 ab

Cq-53 20.33 ± 0.66 a 8.66 ± 0.41 ab 3.34 ± 0.31 ab 234.72 ± 11.38 ab

Cq-55 17.33 ± 1.73 a-d 8.66 ± 0.33 ab 3.00 ± 0.21 abc 200.00 ± 21.00 abc

CVC 5.25 2.32 0.72 71.65
Phosphate-solubilizing bacterial strains were incubated for zinc solubilization on tris-minimal salt agar media amended with ZnO for seven days at 30 ± 1°C; Zinc solubilization index (ZSI)
and zinc solubilization efficiency (ZSE) were determined using diameters of zinc solubilization zone (ZSZ) and bacterial growth (BG); data presented are the mean of three replications ±
standard error and Tukey HSD test was performed at 5% (P ≤ 0.05) probability level; the means in a vertical line for each attributes sharing common letters were considered statistically
similar to each other; ND, not detected; CVC, critical value for comparison.
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produced by all bacterial strains except strains Cq-3 and Cq-51.

The highest malic acid concentration was produced by strain

Cq-48 (12.11 ± 0.82 µg mL-1), followed by strain Cq-35 (11.50 ±

1.23 µg mL-1), while strain Cq-32 reported the lowest malic acid

concentration (1.96 ± 0.07 µg mL-1). All the tested bacterial

strains produced gluconic acid in PVK broth amended with tri-

calcium phosphate. Strain Cq-3 followed by strain Cq-35

reported maximum gluconic acid concentration of 12.61 ±

1.02 µg mL-1 and 12.04 ± 1.02 µg mL-1. A minimum gluconic

acid concentration of 2.46 ± 0.04 µg mL-1 was produced by strain

Cq-51. Only strain Cq-48 reported production of tartaric acid
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(3.01 ± 0.52 µg mL-1). Ascorbic acid was created by three strains,

Cq-48, Cq-35, and Cq-3 having a concentration of 1.20 ± 0.05 µg

mL-1, 1.33 ± 0.07 µg mL-1, and 15.01 ± 1.12 µg mL-1, respectively.

Strains Cq-32, Cq-40, and Cq-51 were unable to produce ascorbic

acid. Strains Cq-3, Cq-40, and Cq-51 were also unable to produce

lactic acid. Maximum lactic acid was produced by strain Cq-48

(13.21 ± 1.44 µg mL-1), followed by strains Cq-32 (7.38 ± 1.23 µg

mL-1) and Cq-35 (3.99 ± 0.09 µg mL-1). Three strains, e.g., Cq-3,

Cq-40, and Cq-48, reported oxalic acid production out of six

tested strains. Strain Cq-3 reported a maximum oxalic acid

concentration of 8.72 ± 1.32 µg mL-1.
TABLE 4 Production of organic acids by phosphate solubilizing bacterial strains grown in Pikovskya broth amended with tri-calcium phosphate.

Strains Malic acid Gluconic acid Tartaric acid Ascorbic acid Lactic acid Oxalic acid

µg mL-1

Cq-3 ND 12.61 ± 1.02 a ND 1.20 ± 0.05 b ND 8.72 ± 1.32 a

Cq-32 1.96 ± 0.07 c 10.79 ± 0.77 b ND ND 7.38 ± 1.23 b ND

Cq-35 11.50 ± 1.23 a 12.04 ± 1.70 a ND 1.33 ± 0.07 b 3.99 ± 0.09 c ND

Cq-40 5.25 ± 0.12 b 3.47 ± 0.05 d ND ND ND 1.97 ± 0.21 b

Cq-48 12.11 ± 0.82 a 5.00 ± 0.21 c 3.01 ± 0.52 a 15.01 ± 1.12 a 13.21 ± 1.44 a 2.95 ± 0.07 b

Cq-51 ND 2.46 ± 0.04 d ND ND ND ND

CVC 1.05 1.51 0.37 0.79 1.34 0.95
f

The production of organic acids by phosphate-solubilizing bacterial strains was determined by inoculating the strains in Pikovskya broth amended with tri-calcium phosphate. The cultures
were incubated at 30 ± 1°C for ten days. Organic acids were determined through high-performance liquid chromatography; the data presented are the mean of three replications ± standard
error, and the Tukey HSD test was performed at 5% (P ≤ 0.05) probability level; the means in a vertical line for each attributes sharing common letters were considered statistically similar to
each other; ND, not detected; CVC, critical value for comparison.
TABLE 3 Solubilization of manganese by phosphate solubilizing bacterial strains isolated from quinoa rhizosphere.

Strains MSZ (mm) BGZ (mm) MSI MSE (%)

Cq-3 26.66 ± 0.33 b-f 9.00 ± 0.57 bc 3.98 ± 0.38 abc 298.80 ± 20.10 abc

Cq-10 24.00 ± 0.57 efg 8.66 ± 0.30 b-e 3.77 ± 0.28 abc 277.31 ± 6.01 abc

Cq-13 24.33 ± 0.33 efg 7.66 ± 0.33 de 4.18 ± 0.21 ab 318.45 ± 12.72 ab

Cq-15 28.66 ± 0.33 bc 9.66 ± 0.31 abc 3.97 ± 0.26 abc 297.04 ± 7.03 abc

Cq-28 ND ND ND ND

Cq-31 29.66 ± 0.88 b 10.33 ± 0.29 ab 3.87 ± 0.31 abc 287.27 ± 6.38 abc

Cq-32 33.66 ± 0.33 a 11.33 ± 0.33 a 3.97 ± 0.26 abc 297.47 ± 7.54 abc

Cq-34 ND ND ND ND

Cq-35 27.00 ± 0.57 b-e 8.66 ± 0.35 b-e 4.12 ± 0.26 abc 312.04 ± 7.23 abc

Cq-40 24.33 ± 0.33 efg 8.00 ± 0.57 cde 4.06 ± 0.27 abc 246.76 ± 14.88 abc

Cq-41 ND ND ND ND

Cq-45 28.00 ± 0.57 bcd 8.66 ± 0.33 b-e 4.23 ± 0.26 a 323.61 ± 7.64 a

Cq-47 23.66 ± 0.88 fg 8.66 ± 0.34 b-e 3.73± 0.32 bc 273.15 ± 3.33 bc

Cq-48 25.00 ± 1.15 d-g 9.33 ± 0.30 bcd 3.67 ± 0.35 c 267.78 ± 6.51 c

Cq-51 26.00 ± 0.57 d-g 9.33 ± 0.33 bcd 3.79 ± 0.18 abc 279.63 ± 15.15 abc

Cq-52 26.00 ± 0.88 c-f 8.33 ± 0.35 cde 4.16 ± 0.30 ab 316.20 ± 4.41 ab

Cq-53 ND ND ND ND

Cq-55 22.00 ± 0.57 g 7.33 ± 0.33 e 4.00 ± 0.27 abc 300.60 ± 7.73 abc

LSD 3.12 1.77 0.48 47.54
Phosphate-solubilizing bacterial strains were incubated for manganese solubilization on nutrient agar media amended with MnO2 for three days at 30 ± 1°C; Manganese solubilization index
(MSI) and manganese solubilization efficiency (MSE) were determined using diameters of manganese solubilization zone (MSZ) and bacterial growth (BG); data presented are the mean of
three replications ± standard error and Tukey HSD test was performed at 5% (P ≤ 0.05) probability level; the means in a vertical line for each attributes sharing common letters were
considered statistically similar to each other; ND, not detected; CVC, critical value for comparison.
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Production of indole acetic acid

Indole acetic acid production by selected MSB strains was

evaluated in the presence and absence of L-tryptophan. The

tested strains showed indole acetic acid production both in the

presence and absence of L-tryptophan; however, indole acetic

acid production was higher in the presence of L-tryptophan

(Table 5). The most increased production of indole acetic acid in

the presence of L-tryptophan was observed in strains Cq-48

(19.76 ± 1.35 mg mL-1) and Cq-51 (18.72 ± 1.31 mg mL-1). Strain

Cq-3 reported the lowest production of indole acetic acid in the

absence of L-tryptophan (3.83 ± 0.56 mg mL-1) and the presence

of L-tryptophan (7.93 ± 0.48 mg mL-1). In the absence of L-

tryptophan, maximum indole acetic acid production was

observed by strain Cq-48 (8.06 ± 0.34 mg mL-1) followed by

Cq-51 (5.76 ± 0.20 mg mL-1).
Identification of bacterial strains

The selected strains, e.g., Cq-3, Cq-32, Cq-35, Cq-40, Cq-48,

and Cq-51, were identified through 16S rRNA sequences. The

obtained sequences were blasted on NCBI nucleotides blast

service and identified by closely related species. Table 6

elucidates the identified strains’ accession number, the closely

related species, and their similarity index. These strains were

identified as Bacillus altitudinis Cq-3, Pseudomonas flexibilis Cq-

32, Bacillus pumilus Cq-35, Pseudomonas furukawaii Cq-40,

Pontibacter lucknowensis Cq-48, and Ensifer sp. Cq-51. The

obtained accession number of identified strains were

LC667775 (B. altitudinis Cq-3), LC667802 (P. flexibilis Cq-32),

LC667805 (B. pumilus Cq-35), LC667809 (P. furukawaii Cq-40),

LC667816 (P. lucknowensis Cq-48), and LC667819 (Ensifer sp.

Cq-51). Phylogenetic analysis was performed by comparing the

tested strains with closely related type strains of the related

genus. Phylogenic analysis of strains B. altitudinis Cq-3 and B.

pumilus Cq-35 is given in Figure 1, while Figure 2 represents the

phylogenetic analysis of strains P. flexibilis Cq-32 and P.

furukawaii Cq-40. In Figure 3, phylogenetic comparison for
Frontiers in Plant Science 08
strains P. lucknowensis Cq-48 and Ensifer sp. Cq-51 was

performed. The morphological characters of these strains are

given in Table S1. All the strains were rod-shaped except P.

flexibilis Cq-32. Half of the strains were Gram-positive, and half

were Gram-negative. The selected strains showed variable

colonies’ appearance. The colony of strain B. altitudinis Cq-3

was fuzzy white, while P. flexibilis Cq-32 colony appearance was

reddish. B. pumilus Cq-35, P. furukawaii Cq-40, and P.

lucknowensis Cq-48 colonies appeared yellow-orange, orange,

and yellow, respectively. Ensifer sp. Cq-51 colony was of

peach appearance.
Promotion of quinoa growth
under pot trial

The MSB strains were screened for their ability to promote

the development of quinoa under a soil culture pot trial.

Inoculated quinoa plants showed significantly higher plant

height, leaves count, root length, shoot dry weight, root dry

weight, number of spikes, and spike length (Tables 7, 8).

Uninoculated control reported minimum plant height, root

length, leaves count, and shoot fresh and dry weights. Strain P.

lucknowensis Cq-48 reported a significantly maximum increase

of 1.54 fold in plant height compared to the uninoculated control

(Table 7). Strains B. altitudinis Cq-3 and P. flexibilis Cq-32 also

reported better growth in plant height, increasing up to 1.33 and

1.42 fold. These strains were non-significant to each other and

with strains B. pumilus Cq-35, P. furukawaii Cq-40, and Ensifer

sp. Cq-51, all of these strains were significantly different from

uninoculated control. Strain Ensifer sp. Cq-51 reported a

maximum increase of 1.55 fold in root length, which was

statistically similar to strain P. lucknowensis Cq-48, increasing

to 1.39 fold over uninoculated control (Table 7). The maximum

leaves count was observed from strain P. lucknowensis Cq-48

with an increase of 2.25 fold compared to uninoculated control

(Table 7). Strains B. altitudinis Cq-3 and P. flexibilis Cq-32 were

also better at producing leaves count, increasing up to 1.74 and

1.77 fold, respectively, over uninoculated control.
TABLE 5 Production of indole-3-acetic acid by phosphate solubilizing bacterial strains isolated from quinoa rhizosphere.

Strains Without L-tryptophan (µg mL-1) With L-tryptophan (µg mL-1)

Bacillus altitudinis Cq-3 3.83 ± 0.56 c 7.93 ± 0.48 c

Pseudomonas flexibilis Cq-32 4.37 ± 0.28 c 9.49 ± 0.66 c

Bacillus pumilus Cq-35 4.46 ± 0.26 c 9.10 ± 0.74 c

Pseudomonas furukawaii Cq-40 4.47 ± 0.19 c 13.13 ± 1.04 b

Pontibacter lucknowensis Cq-48 8.06 ± 0.34 a 19.76 ± 1.35 a

Ensifer sp. Cq-51 5.76 ± 0.20 b 18.72 ± 1.31 a

CVC 1.04 1.64
The indole-3-acetic acid production in the presence and absence of L-tryptophan was determined by inoculating the strains in Luria-Bertani broth amended with and without L-tryptophan
for three days; the data presented are the mean of three replications ± standard error; the Tukey HSD test was performed at 5% (P ≤ 0.05) probability level; the means in a vertical line for
each attributes sharing common letters were considered statistically similar to each other; CVC, critical value for comparison.
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Strain P. lucknowensis Cq-48 produces maximum shoot dry

weight with a 2.06 fold increase over uninoculated control

(Table 8). This strain was similar to strains Cq-3, B. pumilus

Cq-35, P. furukawaii Cq-40, and Ensifer sp. Cq-51; however, it

was statistically different from uninoculated control. Strains P.

lucknowensis Cq-48 and Ensifer sp. Cq-51 reported the

maximum root dry weight with an increase of 2.18 and 2.35

fold, respectively, over uninoculated control (Table 8). These

strains were non-significant to each other but found to be

significantly different from uninoculated control. Strain P.

lucknowensis Cq-48 demonstrated a maximum number of

spikes with a 2.10-fold increase, compared to the uninoculated

control (Table 8). This strain was similar to strains B. altitudinis

Cq-3, P. flexibilis Cq-32, P. furukawaii Cq-40, and Ensifer sp.

Cq-51; however, it was found statistically different from

uninoculated control. Strain P. lucknowensis Cq-48 reported a

significantly maximum spike length with a 2.31-fold increase,

followed by strain P. flexibilis Cq-32 having a 2.00-fold increase

over uninoculated control (Table 8). These strains were

statistically similar but found statistically different from
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uninoculated control. Strain P. flexibilis Cq-32 was also

statistically identical to strains B. altitudinis Cq-3, P.

furukawaii Cq-40, and Ensifer sp. Cq-51, but these strains

were statistically different from uninoculated control.

Uninoculated control reported minimum root fresh and dry

weight, number of spikes, and spike length.
Promotion of physiological
and growth attributes of
quinoa under field conditions

Under field conditions, seed-applied MSB strains significantly

promoted quinoa’s physiological attributes, including relative

water contents, quantum flux, diffusive resistance, and

transpiration rate (Figure 4). Strains P. lucknowensis Cq-48 and

P. flexibilis Cq-32 showed a maximum relative humidity with an

increase of 1.11 and 1.10 fold over uninoculated control

(Figure 4A). These strains were non-significant to each other

and with strains B. pumilus Cq-35 and B. altitudinis Cq-3;
FIGURE 1

Phylogenetic tree of the strains Cq-3 and Cq-35 and related type strains within family Bacillaceae based on partial 16S rRNA gene sequences.
The neighbor-joining algorithm constructed the tree in MEGA_X.
TABLE 6 Identification of Chenopodium quinoa-associated bacterial strains based on 16S rRNA gene sequence analysis.

Strain code Identified species Accession No. Closest match (accession number) Similarity

Cq-3 Bacillus altitudinis LC667775 Bacillus altitudinis strain 41KF2bT.10 (MN543810) 99.7%

Cq-32 Pseudomonas flexibilis LC667802 Pseudomonas flexibilis strain ATCC 29606 (NR_104838) 99.9%

Cq-35 Bacillus pumilus LC667805 Bacillus pumilus strain Agri-15 (MT102723) 100.0%

Cq-40 Pseudomonas furukawaii LC667809 Pseudomonas furukawaii strain RS3 (KY986923) 100.0%

Cq-48 Pontibacter lucknowensis LC667816 Pontibacter lucknowensis strain DM9 (NR_109478) 99.1%

Cq-51 Ensifer sp. LC667819 Ensifer sp. strain LCK9 (MN596033) 100.0%
fro
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however, they were found to be significantly different from

uninoculated control. The highest increase of 1.15 fold in

quantum flux was recorded due to the application with strain P.

lucknowensis Cq-48 compared to the uninoculated control

(Figure 4B). The P. lucknowensis Cq-48 was statistically similar

to P. furukawaii Cq-40 (1.13 fold higher over uninoculated

control) and P. flexibilis Cq-32 (1.13 fold higher over

uninoculated control). Diffusive resistance was statistically

higher due to strain P. lucknowensis Cq-48 which showed an
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increase of 2.69 fold compared to uninoculated control

(Figure 4C). Strains Ensifer sp. Cq-51 and P. furukawaii Cq-40

also reported a better increase of 2.31 and 2.22 fold over

uninoculated control. A maximum 4.02 fold increase in

transpiration rate compared to uninoculated control was

observed from P. lucknowensis Cq-48, followed by P. furukawaii

Cq-40 and P. flexibilis Cq-32, which reported 2.67 and 2.12 fold

higher transpiration rates over uninoculated control (Figure 4D).

The lowest physiological activities in relative water contents,
FIGURE 3

Phylogenetic tree of the strains Cq-32 and Cq-40 and related type strains within families of Rhizobiaceae and Cytophagaceae based on partial
16S rRNA gene sequences. The neighbor-joining algorithm constructed the tree in MEGA_X.
FIGURE 2

Phylogenetic tree of the strains Cq-32 and Cq-40 and related type strains within family Pseudomonadaceae based on partial 16S rRNA gene
sequences. The neighbor-joining algorithm constructed the tree in MEGA_X.
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quantum flux, diffusive resistance, and transpiration rate were

observed in the case of uninoculated control.

The effect of the seed-applied MSB strains on growth

attributes is demonstrated in Figure 5. The uninoculated

control reported the lowest values for plant height, root length,

shoot dry weight, and root dry weight. Strains P. lucknowensis

Cq-48 and P. furukawaii Cq-40 showed the highest 1.95 and

1.94 fold increase, respectively, over uninoculated control

(Figure 5A). These strains also reported maximum shoot dry

weight with a 2.04 and 1.86 fold increase, respectively, compared

to uninoculated control (Figure 5B). These strains were

statistically similar for plant height and shoot dry weight;

however, they were found significantly different from

respective uninoculated control. The maximum 2.45-fold

increase in root length of quinoa was observed due to

inoculation with P. lucknowensis Cq-48 over uninoculated

control (Figure 5C). Strain P. flexibilis Cq-32 also reported a

better increase of 2.36 fold in root length of quinoa over

uninoculated control. A maximum 2.14-fold increase over

uninoculated control was observed from strain P. lucknowensis

Cq-48 which was statistically similar to strains B. altitudinis Cq-

3, P. flexibilis Cq-32, and B. pumilus Cq-35, however, these

strains were statistically different from uninoculated control
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(Figure 5D). Strain P. lucknowensis Cq-48 reported maximum

spike numbers with a 1.62-fold increase over uninoculated

control (Figure 6A). This increase was statistically similar to

the spike numbers due to strain B. altitudinis Cq-3 which

showed a 1.49-fold increase compared to uninoculated control.

The maximum increase in spike length was obtained due to

inoculation with strains P. lucknowensis Cq-48 and P.

furukawaii Cq-40, having a rise of 2.30 and 2.24-fold over

uninoculated control (Figure 6B). These strains P.

lucknowensis Cq-48 and P. furukawaii Cq-40, were statistically

similar; however, they remain significant compared to

uninoculated control. The spike numbers and spike length

remain lowest in the uninoculated control treatment.
Discussion

Eighteen rhizobacterial strains were characterized under

insoluble minerals compounds, including P, Zn, and Mn. The

tested rhizobacterial strains demonstrated remarkable

solubilization of insoluble phosphate. Strains Cq-51 and Cq-40

reported maximum phosphate-solubilization zone diameter.

However, maximum phosphate-solubilization index and
TABLE 8 Promotion of quinoa’s shoot weight, root weight, and spike growth through inoculation with phosphate solubilizing bacterial strains
under pot trial.

Strains Shoot dry weight (g) Root dry weight (g) Number of spikes Spike length (cm)

Uninoculated Control 11.00 ± 0.57 b 2.26 ± 0.13 c 6.50 ± 0.57 c 11.00 ± 0.84 d

Bacillus altitudinis Cq-3 18.97 ± 6.75 ab 2.77 ± 0.18 bc 11.33 ± 1.20 ab 20.32 ± 1.46 bc

Pseudomonas flexibilis Cq-32 13.00 ± 0.88 b 3.40 ± 0.28 b 12.00 ± 1.15 ab 22.01 ± 0.84 ab

Bacillus pumilus Cq-35 14.33 ± 1.93 ab 2.63 ± 0.46 bc 10.00 ± 0.88 b 17.36 ± 1.46 c

Pseudomonas furukawaii Cq-40 14.67 ± 0.63 ab 2.63 ± 0.37 bc 11.33 ± 1.45 ab 20.32 ± 1.12 bc

Pontibacter lucknowensis Cq-48 22.66 ± 2.40 a 4.93 ± 0.53 a 13.66 ± 1.85 a 25.40 ± 1.46 a

Ensifer sp. Cq-51 17.00 ± 1.15 ab 5.33 ± 0.44 a 11.00 ± 0.57 ab 18.62 ± 2.24 bc

CVC 8.77 1.09 3.50 4.31
The data presented here are the mean of three replications ± standard error; the least significant difference (LSD) test was performed at a 5% (P ≤ 0.05) probability level; the means in a
vertical line for each attributes sharing common letters were considered statistically similar to each other; CVC, critical value for comparison.
TABLE 7 Promotion of plant height, root length, and leaves count of quinoa through inoculation with phosphate solubilizing bacterial strains
under pot trial.

Strains Plant height (cm) Root length (cm) Leaves count

Uninoculated Control 27.94 ± 1.46 c 5.84 ± 0.29 c 24.33 ± 1.76 c

Bacillus altitudinis Cq-3 37.25 ± 3.69 b 6.77 ± 0.84 bc 42.33 ± 2.64 b

Pseudomonas flexibilis Cq-32 39.79 ± 2.24 b 7.19 ± 0.73 bc 43.00 ± 1.20 b

Bacillus pumilus Cq-35 33.02 ± 3.69 bc 5.84 ± 0.47 c 30.66 ± 2.48 c

Pseudomonas furukawaii Cq-40 33.87 ± 2.93 bc 7.28 ± 0.94 bc 32.67 ± 0.88 bc

Pontibacter lucknowensis Cq-48 43.34 ± 1.46 a 8.12 ± 0.38 ab 54.66 ± 2.02 a

Ensifer sp. Cq-51 35.56 ± 3.87 bc 9.06 ± 0.75 a 26.00 ± 3.51 c

CVC 8.57 1.70 10.75
The data presented here are the mean of three replications ± standard error; the least significant difference (LSD) test was performed at a 5% (P ≤ 0.05) probability level; the means in a
vertical line for each attributes sharing common letters were considered statistically similar to each other; CVC, critical value for comparison.
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A B

DC

FIGURE 4

Effect of phosphate-solubilizing bacterial strains on quinoa physiological attributes in field conditions; the physiological characteristics were
recorded in terms of relative humidity (A), quantum flux (B), diffusive resistance (C), and transpiration rate (D); the control had no inoculum
(uninoculated control) and contains only broth; data presented are the mean of three replications along with standard error; the means sharing
common letters were considered statistical similar to each other, and least significant difference (LSD) test was performed at 5% (P ≤ 0.05)
probability level.
A B

DC

FIGURE 5

Effect of phosphate-solubilizing bacterial strains on quinoa growth attributes in field conditions; growth attributes were recorded in terms of
plant height (A), shoot dry weight (B), root length (C), and root dry weight (D); the control had no inoculum (uninoculated control) and contains
only broth; data presented are the mean of three replications along with standard error; the means sharing common letters were considered
statistical similar to each other, and least significant difference (LSD) test was performed at 5% (P ≤ 0.05) probability level.
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efficiency were reported by strains Cq-40 and Cq-32. The

maximum phosphate-solubilized concentration in the Pikovskaya

medium amended with tri-calcium phosphate was observed due to

strain Cq-48. These results are per those of Suleman et al. (2018);

Wei et al. (2018); Baghel et al. (2020); Kour et al. (2020a); Liang

et al. (2020); Pastore et al. (2020); Wang et al. (2021); Zhan et al.

(2021), and Sahu et al. (2022). Maharana and Dhal (2022) recently

isolated thirteen phosphates solubilizing bacterial (PSB) strains and

found Bacillus cereus S0B4, Solibacillus isronensis S0B8, and Bacillus

amyloliquefaciens S0B17 were the best solubilizers of rock-
Frontiers in Plant Science 13
phosphate. B. cereus S0B4 corroded the rock-phosphate surface

by producing protons (Maharana and Dhal, 2022). Li et al. (2022)

reported a similar range of phosphate-solubilization zone diameter

and phosphate-solubilization concentration along with the

production of alkaline phosphatase enzyme. The phosphate-

solubilization by these rhizobacterial strains might also be due to

the production of organic and inorganic acids, siderophores,

exopolysaccharides, hydrogen cyanide, and proton release or

from ammonia assimilation (Rawat et al., 2021). In the current

study, most tested PSB strains showed the production of malic,
A

B

FIGURE 6

Effect of phosphate-solubilizing bacterial strains on quinoa spike count (A) and spike length (B) in field conditions; the control had no inoculum
(uninoculated control) and contained only broth; data presented are the mean of three replications along with standard error; the means
sharing common letters were considered statistical similar to each other, and least significant difference (LSD) test was performed at 5% (P ≤

0.05) probability level.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1004833
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Rafique et al. 10.3389/fpls.2022.1004833
gluconic, ascorbic, lactic, and oxalic acids. Malic acid was produced

by all the bacterial strains except Cq-3 and Cq-51. All the PSB

strains had gluconic acid with maximum production by strain Cq-

48. Tartaric acid was only produced by strain Cq-48. Half of the

tested strains showed the production of ascorbic, lactic, and oxalic

acids. Previously, phosphate-solubilization was reported due to the

production of organic acids, including oxalic, malic, formic, acetic,

tartaric, gluconic, lactic, fumaric, ascorbic, isocitric, citric, phytic,

succinic, acetic, oxalic, propionic, glucuronic, butyric, valeric and

isovaleric acids which dissolve insoluble source of phosphate in the

amended Pikovskaya culture medium (Scervino et al., 2010; do

Carmo et al., 2019; Bononi et al., 2020; Chawngthu et al., 2020;

Rfaki et al., 2020). Rhizospheric bacterial strains adopted these

mechanisms of action directly or indirectly to assimilate higher P

concentrations from the soil through dissolving insoluble P

compounds (Halvorson et al., 1990). Hegyi et al. (2021) reported

the abundance of the alkaline phosphatase gene phoD in genera of

proteobacteria involved in phosphate-solubilization, which might

be valid for the current study.

In the present study, isolated PSB strains showed their

potential in Zn solubilization. Strains Cq-40, Cq-47, Cq-51, and

Cq-53 were better among tested PSB strains and demonstrated a

more prominent solubilization zone diameter. Moreover, strain

Cq-51 reported a maximum zinc solubilization index and zinc

solubilization efficiency. Solubilization of Zn by PSB strains might

accomplish by various mechanisms, including organic acids,

proton extrusion, or chelating agents (Mumtaz et al., 2019;

Zaheer et al., 2019; Kumar et al., 2021; Masood et al., 2022).

The solubilization zone diameter may develop due to tested

bacterial strains through media acidification. Similarly, Mumtaz

et al. (2017) reported a direct relationship between the drop in pH

of the medium and the increase in zinc availability. Our findings

agree with earlier reports, where maximum Zn solubilization was

achieved in the ZnO amended medium (Mumtaz et al., 2017;

Khanghahi et al., 2018; Mumtaz et al., 2019; Zaheer et al., 2019;

Bhatt and Maheshwari, 2020; Naseer et al., 2020; Bhakat et al.,

2021; Karnwal, 2021; Naseem et al., 2022). Mumtaz et al. (2019)

reported the production of lactic and acetic acids as primary Zn

solubilizing acids along with citric, succinic, formic, isovaleric, and

isobutyric acids as minor metabolic products produced by Bacillus

strains in ZnO amended medium. Similarly, Zaheer et al. (2019)

reported the ability of Bacillus and Pseudomonas strains to

solubilize Zn related to the production of acetic, oxalic,

gluconic, citric, lactic, and succinic acids. As suggested by a long

list of potential acids, it may be feasible that any acid could

solubilize Zn. Other acids, including gluconic, 5-ketogluconic,

tartaric, and malic acids, may also be produced during the Zn

solubilization assay, as reported by Fasim et al. (2002); Saravanan

et al. (2007), and Dinesh et al. (2018).

The MSB strains were well-capable to solubilize Mn on

nutrient agar medium amended with insoluble MnO2. Strains

Cq-32 and Cq-31 reported a maximum Mn-solubilization zone.

Maximum Mn-solubil izat ion index and manganese
Frontiers in Plant Science 14
solubilization efficiency was recorded from strain Cq-45.

Previously, various researchers also reported Mn solubilization

by microbial strains (Madgwick, 1991; Baglin et al., 1992; Wei

et al., 2012; Mohanty et al., 2017; Sanket et al., 2017; Ghosh et al.,

2018; Ghosh et al., 2021; Ijaz et al., 2021). Microbial strains

including Achromobacter sp., Aspergillus niger, Bacillus cereus

AMSB3, Bacillus nealsonii AMSB4, Bacillus sp. strains ASH6,

ASH11, ASH19, ASH20, and ASH22, Enterobacter agglomerans,

Enterobacter cloacae , Enterobacter sp. AMSB1 and

Staphylococcus hominis AMSB5 were previously demonstrated

to solubilize insoluble Mn (Madgwick, 1991; Sanket et al., 2017;

Ijaz et al., 2021). Mn solubilization in the current study may be

due to the ability of bacterial strains to reduce Mn(IV) and Mn

(III) into Mn(II). They reduced Mn(IV) enzymatically and

oxidized Mn(II), which served as a terminal electron acceptor

for anaerobic and facultative anaerobic bacteria, and consumed

it to fulfill their nutritional needs (Bromfield and David, 1976).

The selected PSB strains were identified as B. altitudinis

Cq-3, P. flexibilis Cq-32, B. pumilus Cq-35, P. furukawaii Cq-40,

P. lucknowensis Cq-48, and Ensifer sp. Cq-51 through 16S rRNA

gene sequencing. These strains showed indole acetic acid

production both in the presence and absence of L-tryptophan.

However, indole acetic acid production was higher in the

presence of L-tryptophan as it is a highly efficient

physiological precursor of auxins. In the absence of L-

tryptophan, strains P. lucknowensis Cq-48 and Ensifer sp

observed maximum indole acetic acid production. Cq-51.

Increasing IAA production by MSB strains may promote

primary root elongation and the formation of lateral and

adventitious roots (Xie et al., 1996). Previously in vitro studies

showed that bacterial strains could produce a small

concentration of auxins in the absence of L-tryptophan;

however, in its presence, the bacterial strains showed a

remarkable increase in auxin production (Zahir et al., 2010).

Panigrahi et al. (2020) reported variation in the production of

IAA by endophytic E. cloacae MG00145 isolated from Ocimum

sanctum and significantly promoted the growth of various crops.

Soil treatment with exogenous L-tryptophan also positively

affected the synthesis of auxins and plant growth (Khalid et al.,

2004). The IAA production in the absence of L-tryptophan

might improve root growth in terms of root length and dry

weight of quinoa in the present pot and field trials. The root is

the main organ absorbing minerals and water and participates in

material transport (Wang et al., 2006). Therefore, enhanced IAA

production is involved in the promotion of fresh and dry plant

weight and plant height by increasing the root system.

In the current pot and field trials, the inoculation of quinoa

seeds with MSB strains significantly promoted growth attributes,

including plant height, leaves count, root length, shoot and root

dry weight. Quinoa seed coated with strains P. lucknowensisCq-48

followed by Ensifer sp. Cq-51, B. altitudinis Cq-3, and P. flexibilis

Cq-32 showed the highest increase in these attributes. More

fabulous foliage and dry biomass may be linked to increases in
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the number of leaves, plant height, and root length that improve

the minerals uptake and enhanced photosynthetic rates compared

to uninoculated control. In the current study, seed-applied

bacterial strains of the genus Bacillus, Pseudomonas, Pontibacter,

and Ensifer encourage plant growth that might be due to the

production of growth hormones, including IAA that might

promote cell division and enlargement. IAA is also helpful in

tissue expansion that causes an increase in plant height and root

length, and biomass accumulation. It promoted root hair

formation by regulating root elongation and the development of

lateral roots (Naqqash et al., 2016). The increased surface area of

the root in terms of root hair also promoted nutrient uptake

efficiency of the plant and resulted in better plant growth. Several

other growth hormones, including cytokinin, gibberellic acid, and

salicylic acid production by bacterial strains, which were not

studied in the current study, are also involved stimulation of cell

division and tissue expansion that ultimately promote plant

height, root length, and biomass accumulation (Ekinci et al.,

2014; Ruzzi and Aroca, 2015).

This study found significantly higher relative humidity

levels, quantum flux, diffusive resistance, and transpiration rate

in MSB strains in inoculated plants than in uninoculated ones.

The increase in these physiological attributes could be due to the

positive effect of MSB strains tested in the current study. The

strain P. lucknowensis Cq-48 followed by P. flexibilis Cq-32, and

P. furukawaii Cq-40 reported maximum values for relative

humidity, quantum flux, diffusive resistance, and transpiration

rate. These strains showed an increase in quantum flux and

transpiration rate, representing an increase in chlorophyll

contents and photosynthetic rates. Previously, strains of the

genus Pseudomonas, Bacillus, Pontibacter, and Ensifer spp.

increased chlorophyll contents, photosynthesis, and

transpiration rate (Chu et al., 2006; Bulegon et al., 2016;

Chakraborty et al., 2019; Saha et al., 2021). The increase in

chlorophyll contents as a result of enhanced quantum flux,

transpiration rate, and leave numbers, as found in the current

study, promotes photosynthetic activity, which leads to

improved growth and yield of inoculated quinoa plants. The

maximum quantum flux of photosystem-II is a crucial indicator

of the photosynthetic performance of plants (Vishnupradeep

et al., 2022). Bacterial inoculation protects the photosystem-II

reaction center and regulates the photosynthetic electron

transport by reducing the stress condition regarding nutrient

deficiencies and biotic and abiotic stresses (Win et al., 2018).

Bacterial strains also held antioxidant activities, relative

humidity, secondary metabolites accumulation, CO2 fixation,

and improved net photosynthesis, which resulted in the

increased growth rate of plants (Taj and Challabathula, 2021).

In this study, the increase in growth and yield attributes

could be due to the rise in minerals uptake due to inoculation with

minerals-solubilizing bacterial strains that can solubilize P, Zn,

and Mn. The bacterial strains enhanced nutrient availability

would significantly promote plant growth under nutrient-
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depleted conditions (Swarnalakshmi et al., 2020). In the current

study, enhanced minerals uptake encourages the availability of

nitrogen which enhance vegetative plant growth, including length

and biomass of roots, shoots, and number of leaves.We do not test

nitrogen fixation by the bacterial strains, however, tested bacterial

strains of the genus Bacillus, Pseudomonas, Pontibacter, and

Ensifer were previously reported for nitrogen fixation and their

role in the promotion of vegetative growth (Liu et al., 2019;

Sibponkrung et al., 2020; diCenzo et al., 2021; Geries and

Elsadany, 2021). Our tested strains were efficient P solubilizers

that may promote P uptake by plants and play their role in cellular

division and tissue formation (Perez-Torres et al., 2008; Yu et al.,

2016). The tested strains were good organic acid producers which

solubilize most of the fixed/precipitated minerals, including

potassium. Potassium availability is vital during the early fruit

stage of producing seeds, which might be valid for the current

study through bacterial solubilization of potassium. de Sousa et al.

(2021) reported that maize inoculated with Bacillus strains having

the ability to solubilize P and IAA production enhanced root

morphology, dry matter, nutrient accumulation, and higher yield.

Similarly, Adhikari et al. (2021) reported the plant growth

promotion of Arabidopsis thaliana plants through inoculation

with Pseudomonas palleronianaGBPI-508. The presence of multi-

traits characteristics in all the tested MSB strains could provide an

opportunity for formulating biofertilizers which could be helpful

in the bioavailability of P, Zn, and Mn, IAA production,

production of organic acids, and promotion of quinoa plant

growth, physiology, and yield attributes.
Conclusion

The present study concluded that Bacillus altitudinis Cq-3,

Pseudomonas flexibilis Cq-32, Bacillus pumilus Cq-35,

Pseudomonas furukawaii Cq-40, Pontibacter lucknowensis

Cq-48, and Ensifer sp. Cq-51 showed strong power to

solubilize phosphate, zinc, and manganese. These strains

showed the production of organic acids in tri-calcium

amended medium and indole-3-acetic output in the presence

and absence of L-tryptophan. These strains also improved

quinoa growth attributes (plant height, root length, spike

length, leaves, spikes count, shoot and root dry weight) and

physiological attributes (relative humidity, quantum flux,

diffusive resistance, and transpiration rate) in the pot and

field conditions. Pontibacter lucknowensis Cq-48 followed by

Pseudomonas furukawaii Cq-40 and Pseudomonas flexibilis

Cq-32 showed promising results and significantly promoted

quinoa growth and physiology. Such prospective bioinoculants

could address the issue of mineral deficiencies in wild plants,

especially quinoa. The present study suggests researchers

evaluate these selected strains to study their genetic and

molecular mechanisms for minerals solubilization and plant

growth promotion in nutrient-deficient conditions.
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