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Grasslands are structurally and functionally controlled by water availability.

Ongoing global change is threatening the sustainability of grassland

ecosystems through chronic alterations in climate patterns and resource

availability, as well as by the increasing frequency and intensity of

anthropogenic perturbations. Compared with many studies on how

grassland ecosystems respond during drought, there are far fewer studies

focused on grassland dynamics after drought. Compensatory growth, as the

ability of plants to offset the adverse effects of environmental or anthropogenic

perturbations, is a common phenomenon in grassland. However,

compensatory growth induced by drought and its underlying mechanism

across grasslands remains not clear. In this review, we provide examples of

analogous compensatory growth from different grassland types across drought

characteristics (intensity, timing, and duration) and explain the effect of

resource availability on compensatory growth and their underlying

mechanisms. Based on our review of the literature, a hypothetic framework

for integrating plant, root, and microbial responses is also proposed to increase

our understanding of compensatory growth after drought. This research will

advance our understanding of the mechanisms of grassland ecosystem

functioning in response to climate change.

KEYWORDS

compensatory growth, grassland ecosystem, drought, resilience, recovery, mechanism
Introduction

Grasslands, as one of the world’s most widespread vegetation types, cover

approximately 30% of the Earth’s land surface (Parton et al., 2012) and 69% of

agricultural land area (Dixon et al., 2014), respectively. Grasslands not only serve as

an important global reservoir of food production (Schirpke et al., 2019), but also play a
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critical role in the global carbon and water cycle, as well as plant-

soil feedback to climate change (Bowman et al., 2015; Putten

et al., 2016; Pugnaire et al., 2019). Grassland growth and

productivity are largely regulated by temperature and soil

water content, particularly the amount and timing of

precipitation events (Knapp and Smith, 2001; Knapp et al.,

2002; Huxman et al., 2004; Hufkens et al., 2016). In recent

decades, ongoing global changes in temperature and

precipitation have significantly increased the frequency,

severity, and duration of drought events (Dai, 2012; IPCC,

2013; Trenberth et al., 2014; Cook et al., 2015), which also

projected to continue to increase in the near future (Vicente-

Serrano et al., 2020). The alterations in water availability before

or during the growing season are weakening the stability and

functionality of grassland ecosystems around the world,

particularly in arid and semi-arid regions (Macdougall et al.,

2013; Song and Yu, 2015). Because drought events could directly

or indirectly affect plant community structure (Knapp et al.,

2008; Cherwin and Knapp, 2012; Carlyle et al., 2014; Tielborger

et al., 2014), threaten grassland productivity (Knapp and Smith,

2001; Volaire et al., 2014; Frank et al., 2015) and even cause

grassland degradation (Breshears et al., 2005), and then alter

carbon and nitrogen dynamics (Mackie et al., 2019). Naturally,

to deal with the negative impacts of drought on grasslands

functions and services, it is urgent to understand how

grasslands respond to drought.

Many studies on grassland responses during drought have

been well synthesized in both reviews (Grman et al., 2010; Niu

et al., 2014; Hoover et al., 2018) and meta-analyses (Matos

et al., 2019; Deng et al., 2021), which have considerably

improved our understandings of the impacts of drought on

grassland biotic and abiotic processes. For example, the mean

effect of drought on aboveground net primary production

(ANPP) is demonstrated to be negative (Hoover et al., 2014;

Niboyet et al., 2017; Li et al., 2022). Droughts have legacy

effects on bacterial and fungal community composition,

which could, in turn, influence plant growth and ecosystem

through plant-soil feedback (De Vries et al., 2012b;

Kaisermann et al., 2017; Griffin-Nolan et al., 2018). Except

for the ability of grasslands to resist drought (e.g., resistance),

the recovery ability of grasslands after drought (e.g.,

resilience) is another important entry point for clarifying

the responses of grasslands to drought (Vogel et al., 2012;

Mori et al., 2013; Hoover et al., 2014; Oliver et al., 2015; Xu

et al., 2021). However, the recovery ability of grasslands to

different drought characteristics (e.g., timing, intensity, and

duration) and climate contexts were rarely studied (Vilonen

et al., 2022). Besides, our knowledge of grassland drought

response is incomplete without understanding the responses

after drought and to what extent grasslands can recover.

Therefore, understanding the change patterns in the

structure and function of grassland ecosystems during the

period of after drought and exploring their underlying
Frontiers in Plant Science 02
mechanisms, are crucial for forecasting grassland ecosystem

function and dynamics under climate change.

Compensatory growth (CG), defined as the accelerated

growth response of plants to damage (Belsky, 1986), which is

implied the ability of plants to offset the adverse effects of tissue

damage, restore organic functionality, and maintain their

original growth state after perturbations (Mcnaughton, 1983).

CG has received wide acceptance as a survival strategy of

organisms under stressful conditions and a fundamental

mechanism for ecosystem stability (Mangel and Munch, 2005;

Gonzalez and Loreau, 2009). In fact, it sometimes takes different

names, like resilience, recovery, and compensatory dynamic;

they all share the essential meaning that accelerated growth

organism when recovering from a period of unfavorable

conditions (Li et al., 2021). According to the relative strength

of growth rate after disturbance compared to the undisturbed

group, CG can be classified into three types: under-

compensation, exact-compensation, and over-compensation

(Figure 1) (Belsky, 1986; Li et al., 2021). Although the

existence of CG is widely acknowledged in ecological systems

but has received little attention in stress-ecological studies

(Metcalfe and Monaghan, 2001; Gessler et al., 2020). In

general, it is conventionally to constrain the period of CG

assessment through a pre-defined post-drought period or to
FIGURE 1

Framework for describing the growth response of grassland
ecosystem after drought ends. The grey and dashed line
represents growth response in condition without drought, the
solid line indicated possible compensatory patterns under drought.
Over-compensation means the growth rate increase rapidly after
the end of a drought, then exceed the response level of control
treatment to some extent, and finally reach the same response
level of control treatment; exact-compensation represents the
growth rate return to be comparable with control treatment after
drought; under-compensation I indicates that the growth rate
cannot reach the same level of control treatment with slow
growth rate; under-compensation II denotes the collapse of
grassland ecosystem with much slower growth rate (Frank et al.,
2015; Li et al., 2021; Vilonen et al., 2022).
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the status where growth returns to a historic norm (Ovenden

et al., 2021). The capacities of grassland CG are different among

species (Knapp et al., 2015), community components (Carlsson

et al., 2017; Stampfli et al., 2018; Wilcox et al., 2020), life forms

(Volaire, 2003; Nippert and Knapp, 2007), nutrient stress

tolerances (Macgillivray et al., 1995; Bharath et al., 2020),

interactions among soil microbes (De Vries et al., 2012a; Fry

et al., 2018) and disturbance’s properties (Chen et al., 2020;

Saeidnia et al., 2020; Li et al., 2022). Besides, CG could be

evaluated by a variety of quantitative indicators, such as

productivity, biomass, species number, coverage, and so on

(Yuan et al., 2020). Recent research on the prevalence and

detection of CG leaves a large gap in the knowledge of the

mechanisms that affect the temporal and scale of CG (Kahl et al.,

2019; Li et al., 2020; Saeidnia et al., 2020; Hossain and Li, 2021;

Jiao et al., 2021; Li et al., 2021; Ovenden et al., 2021; Vilonen

et al., 2022). Thus, a deeper understanding of the pattern of

grassland CG and its variation is a major challenge for the

emerging extreme climate events and human disturbance.

Here we reviewed current knowledge on the CG of

grasslands to drought stress. We firstly discuss differences in

CG response to drought imposed by manipulated experiments

or natural precipitation variations. Then, CG patterns under

different drought timing, intensity, and duration were compared

and discussed. Meanwhile, as plant-soil feedback plays a key role

in the CG response to drought, resource availability was also

addressed in the text. In the following section, we concluded the

underlying mechanisms of CG in response to drought across

biotic and abiotic reasons. Finally, suggestions for future

research were also given to deepen our understanding of the

responses during the period after drought and benefit for

forecasting grassland ecosystem function and dynamics under

climate change.
Compensatory growth among
different grassland ecosystems

Numerous rainfall manipulation experiments have been

conducted to investigate the growth responses of different

grassland ecosystems after drought (Hoover et al., 2018; Matos

et al., 2019). In the mesic grasslands of North America and

Switzerland, ANPP can fully recover (the same as exact-

compensation) within a single year after a short-term extreme

drought with grass species compensating for the decreased forb

productivity (Hoover et al., 2014; Stampfli et al., 2018; Mackie

et al., 2019; Wilcox et al., 2020). Besides, a study focused on

belowground net primary productivity (BNPP) also suggested

that drought-induced reductions in root production can recover

rapidly in a coming wet year even though the drought legacy

effects may persist for years after drought (Slette et al., 2022). By

contrast, the CG of burned sites was mostly contributed to

annual forb ANPP compensating for reduced grass ANPP, while
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the CG of unburned sites was promoted by subdominant annual

and perennial grass species in a savanna grassland in South

Africa (Wilcox et al., 2020). The opposite roles played by forbs

and grass species mentioned above might be mainly due to the

difference in community composition in these sites. As forbs are

often less resistant to drought than grasses, if the plant

community was dominated by forbs, then the CG of the total

ANPP may decrease (Xu et al., 2021). Additionally, annual forbs

are more resilient than perennial forbs, which are characterized

by limited seedling recruitment and slow regrowth from

surviving belowground organs after drought (Wilcox et al.,

2020; Xu et al., 2021).

Meanwhile, semi-arid grassland seems to require more time

for the ANPP to achieve exact-compensation from drought. Xu

et al. (2021) explored the recovery potential of ANPP by

inducing two years of extreme drought (66% reduction in

ambient growing season precipitation) followed by two years

of recovery (ambient precipitation) in a semi-arid grassland

ecosystem in Inner Mongolia, China. The results show that

ANPP decreased by approximately 33% during the two years of

extreme drought. However, one year after the extreme droughts,

the ANPP of the drought plots returned to 83% of the ambient

plots and fully recovered to ambient ANPP by the second year.

The authors attributed these differences to three points: (a) the

lower precipitation efficiently limits CG in the semi-arid regions;

(b) the reduction of ANPP in the semiarid grassland is much

higher than that in the mesic grassland (Ma et al., 2020), which

increase the recovery time; (c) a large proportion of high

resistance and low resilience of perennial forb species may

delay the recovery time of the semiarid grassland (Tello-Garcıá

et al., 2020).

As for arid grasslands, the CG rate may more slowly due to

greater resource limitations and more severe impacts (Stuart-

Haentjens et al., 2018). A study in Inner Mongolia suggested that

the net primary productivity was less affected by light to

moderate drought than moderate to severe drought (Liu et al.,

2021). At the same time, another study conducted in the

Chihuahuan Desert found that drought consistently and

strongly decreased the cover of a dominant C4 grass

(Bouteloua eriopoda), whereas water addition slightly increased

the cover, even with little variation between years (Báez et al.,

2013). The limited CG of Bouteloua eriopoda responding to

increased water availability may reflect morphological

constraints on this rhizomatous grass (Báez et al., 2013).

In general, grasslands are composed of two dominant

herbaceous functional groups: grass and forb, which show

great differences in their vulnerability to extreme drought

(Taylor et al., 2011; Wilcox et al., 2020). Grass species are

generally better able to tolerate drought, especially C4 grasses,

whereas forb species may avoid drought via deeper rooting

profiles (Nippert and Knapp, 2007). Besides, the growth

responses of annual and perennial species may be different

during and after drought (Volaire, 2003). Therefore, CG in
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grasslands may depend on function diversity in predrought

communities (Stampfli et al., 2018; Wilcox et al., 2020).

However, a study conducted in 13 extreme natural-drought

experiments spreading over two biogeographic regions (five

sites in annual-dominated grasslands in California and eight

sites in perennial-dominated grasslands in the Great Plains)

suggested there was no correlation between pre-drought plant

diversity and post-drought resilience (Bharath et al., 2020). More

importantly, the productivity of grassland ecosystems is

simultaneously co-limited by nutrients and water across a

wide range of precipitation (Bharath et al., 2020). For example,

species-rich semi-natural grasslands exhibited a lower CG

compared with intensively managed agricultural grasslands

(De Keersmaecker et al., 2016).
Compensatory growth response
to drought intensity, timing,
and duration

Drought intensity, timing, and duration are fundamental

characteristics of experimental or natural drought events.

Drought stress can cause a series of reductions in morphological

and physiological functional traits (e.g., plant height, specific leaf

area, length of roots, leaf water potential, and photosynthetic

capacity), which may finally lead to a reduction in productivity

(Cenzano et al., 2013; Wellstein et al., 2017). Response diversity,

describing the variation of responses to environmental change

among species in a particular community, maybe a key

determinant of ecosystem stability and functionality (Elmqvist

et al., 2003; Mori et al., 2013). For instance, perennial caespitose

grasses and rhizomatous grasses showed different growth response

strategies to drought, as the CG of rhizomatous grasses declined

with increasing water stress intensity while caespitose grasses

displayed little CG with strong drought resistance (Zhang et al.,

2018). Besides, defoliation could stimulate the CG of rhizomatous

grasses under wet conditions, but the positive effects of defoliation

can be weakened by drought intensity (Zhang et al., 2018). Even

though, the CG of grassland dominated by perennial species

almost remains constant with increasing drought intensity

(Ruppert et al., 2015). The main reason may be contributed to

the degree of drought intensity being below the upper limit that

could cause ecosystem collapse (Dechant and Moradkhani, 2015).

The responses of grassland ecosystems to drought may vary

with different seasonal drought timing. When droughts occur in

the early season, the reductions in current-year biomass appear

to be large enough due to the limitation length of a peak growth

period for biomass accumulation (Meng et al., 2019). On

contrary, when droughts happen in the late season, the

decreased biomass will be reflected in the following year

because of large negative legacy effects (Jiao et al., 2021). For

example, the timing of drought significantly decreased ANPP
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(18%~26% reduction compared to the control treatments)

during the growing season in a mesic grassland, with later

droughts (early summer drought and late summer drought,

respectively) having a larger effect than earlier drought (late

spring drought), while BNPP was not significantly affected by

any manipulated drought timing (Denton et al., 2016). Similar

findings were also confirmed in a meadow steppe where spring

and summer droughts decreased ANPP but did not affect BNPP

(Meng et al., 2019). Furthermore, grasslands subjected to mid-

summer drought tend to be primed for greater CG in the

following year than grasslands experiencing earlier drought in

the season (De Vries et al., 2012b; Denton et al., 2016).

The duration of drought is important to explain the

variability of CG, with longer droughts resulting in slower

grassland CG, through causing the depletion of seedbank and

stored resources needed for re-establishment and resprouting of

the drought-sensitive species (Ruppert et al., 2015; Estiarte et al.,

2016; Matos et al., 2019). In the North American semi-arid

grassland biome, reductions in ANPP appeared to be greater

when the rainfall patterns of the growing season were dominated

by many small events (that is, chronic drought), while it turned

out to be not when rainfall patterns were characterized by large

rain events (Cherwin and Knapp, 2012). Compared with wood

biomes, grasslands exhibited a stronger CG when exposed to

chronic drought, by contrast, displayed a weaker CG when

exposed to intense drought (Jiao et al., 2021). Furthermore,

the adverse effects of intense drought on ANPP were found to be

more significant than chronic drought, additionally, drought

duration appeared to hardly alter this pattern (Carroll et al.,

2021). Therefore, the compensation of grassland ANPP in

response to future droughts may be reduced when the rainfall

regimes of the growing season being more extreme.
Compensatory growth under
different resource availability

The amount of CG can be also affected by resource availability

through the plant-soil feedback (Van Staalduinen et al., 2009).

Due to changes in the soil water availability during and after

drought, the turnover of C and N in soils is also altered. Increased

duration and intensity of drought are usually associated with

decreasing C and N mineralization and inorganic N fluxes

(Borken and Matzner, 2009; Deng et al., 2021). Even though, a

pulse in net C and N mineralization following the wetting of dry

soil is generally observed (Wu and Brookes, 2005). Previous

grassland studies indicate that drought stresses alleviate N

limitation and have a positive effect on forage quality (Dumont

et al., 2015). Additionally, increasing N deposition resulting from

anthropogenic N emissions can improve grassland CG after a

drought even in arid environments (Kinugasa et al., 2012).

Besides, the wetting pulses have a greater impact on C and N
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mineralization or flux rates in arid and semiarid grasslands than

that in humid and subhumid grassland (Borken and Matzner,

2009). Whereas, it is worth noting that the cumulative C and N

mineralization are most likely less compared with soil under

optimum moisture even with wetting pulses, which implies that

wetting pulse cannot compensate for small mineralization rates

during periods (Borken and Matzner, 2009). In another word, the

grassland CG pulsed by the short-term C and N mineralization

may be not sustainable if the droughts become frequent.

The dynamics of soil C and N are affected not only by plant

organic matter input but also by microbial activities (Deng et al.,

2021). Soil microorganisms participate in all aspects of C and N

dynamics, regulate the formation of soil organic matter and

release extracellular enzymes through C and N turnover (Ren

et al., 2017). Meanwhile, microbial decomposition of soil organic

matter can cause CO2 efflux and gaseous N emissions by

producing C and N-degrading extracellular enzymes (Ren

et al., 2017). Interestingly, both microbial and extracellular

enzyme activities appear to be more sensitive to soil water

content and temperature than to their nutritional resources

(Nielsen and Ball, 2015). Therefore, drought can alter soil

microbial composition and enzyme activities, then affect the

soil C and N balance (Ren et al., 2017), and finally influence both

the belowground and aboveground performances of plants in

response to drought.

However, previous studies have no consistent results on the

relationship between CG and resource availability. Some studies

suggested that plants tend to overcompensate more frequently

under unfavorable growth conditions (Coughenour et al., 1990;

Hawkes and Sullivan, 2001). In contrast, some researcher

insisted that CG only occur under abundant even optimal

conditions (Belsky et al., 1993), known as the compensatory

continuum hypothesis (CCH). Furthermore, even for the same

functional type, CG varies among different resource levels

(Hawkes and Sullivan, 2001). For instance, Leymus chinensis

had less CG under dry conditions compared with wet

conditions, while it is opposite for Stipa krylovii (Van

Staalduinen and Anten, 2005). Besides, the chronic nutrient

addition in the Great Plains reduced grassland drought

resistance and increased drought resilience regardless of

annual-dominated or perennial-dominated grassland (Bharath

et al., 2020). Based on CCH, a limited resource model (LRM) was

once introduced to explain the range of observed effects of

resource levels on and prediction for compensation for

herbivory (Wise and Abrahamson, 2005), which suggested that

CG depends on the type of resource and disturbance intensity

(e.g., drought, heat stress, herbivore) under consideration

(Metcalfe and Monaghan, 2001; Michael and Warren, 2007).

The LRM model introduced the roles of limiting and non-

limiting resources, and analyzed which resource was affected

by the disturbance. If the disturbance mainly affects the first

limiting resource, then higher CG is expected to occur at high

resource availability. The application of the LRMmodel needs to
Frontiers in Plant Science 05
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full factorial experimental design, consistent levels of

disturbance across environments, determining whether a focal

resource is liming plant fitness, and identifying the resource

affected by disturbance (Wise and Abrahamson, 2005). Even

though, the application of LRM to predict CG in response to

drought still remain with many uncertainties and need to be

tested in future study, with the complex backgrounds of climate

region, grassland type, and species diversity (Monaghan, 2008).
Underlying mechanisms of
compensatory growth in response
to drought

The CG response of grassland to drought is a synthesis result

of plant, root, and soil feedback (Figure 2). With respect to

aboveground plant responses, CG under drought conditions

may be triggered by the recovery of existing individuals within

a grassland ecosystem, or by compensatory dynamics where

particular individuals or species increase in abundance to

counterbalance reductions in other individuals or species

(Tilman and Downing, 1994). Compensatory effects, arising

from various responses of different plants or functional groups

to perturbations, are an important mechanism for sustaining

ecosystem stability (Gonzalez and Loreau, 2009; Song and Yu,

2015). Besides, compensatory changes in species population in

response to environmental fluctuations can maintain an

appreciated steady state between the rate of resource supply

and its consumption (Morgan Ernest and Brown, 2001). The

difference in performance between functional traits is a good

indicator of plant growth strategy in response to post-drought.

For example, Leymus chinensis exhibited a greater capacity for

CG than Stipa krylovii, because it has a stronger ability in storing

carbohydrates and reallocating them after leaf losses, and a more

positive effect of defoliation on light penetration through the

canopy (Van Staalduinen and Anten, 2005). The CG of the

different grassland ecosystems responding to drought may occur

through two fundamentally different biotic mechanisms (Wilcox

et al., 2020): (1) drought-tolerant plants increase in abundance

and functionally compensate for declines in drought-intolerant

species, which is called compensatory dynamics (Gonzalez and

Loreau, 2009; Hoover et al., 2014); (2) all individuals within the

community recover fully after drought, which is defined as

physiological compensatory (Connell and Ghedini, 2015).

Physiological compensation often happens with short-term

and (or) moderate drought, while compensatory dynamics are

more likely to occur under long-term and (or) extreme drought

by rearranging species abundances (Smith, 2011).

Nevertheless, plant roots andmicrobial community also play a

key role in mediating the post-drought responses (Figure 2). Root

traits, like specific root length, root dry matter content, and toot
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tissue density, are important for shaping post-drought responses

and vary across a range of grassland species with different growth

strategies (De Vries et al., 2016; Williams and De Vries, 2020). In

addition, root exudates form a pathway for plant-microbial

communication and have the potential to influence plant

tolerance and recovery during and/or after drought (Williams

and De Vries, 2020). The drought-induced changes in the quality

of root exudates might have implications for the recovery of plants

and microbes (De Vries et al., 2019). Besides, the structure of the

microbial community can determine the functional responses of

the grassland ecosystems, through the expression of functional

genes. Furthermore, CG was almost certainly promoted by a

drought-induced increase in soil N availability as a higher

mineral N supply rate appeared in the month after rewetting,

and then increased plant nitrogen content two months after

rewetting (Mackie et al., 2019). Due to an increase in plant-

available N, the plant photosynthetic activities are upregulated

during post-drought, and then drive a short-term increase in

forage quality (Bloor and Bardgett, 2012; Niboyet et al., 2017).

Therefore, this field of research will need to be driven forward by

studying general mechanisms, focusing on mechanisms that link

below- and aboveground processes and responses (Figure 2).
Frontiers in Plant Science 06
Limitations and suggestions for
future research

With growing concerns about grassland vulerability, a

comprehensive understanding of grassland response to drought is

becoming increasingly important. Previous studies have mainly

focused on the plant or ecosystem responses during drought,

however, there is still limited understanding of the period after

drought. Here, we reviewed compensatory growth across grassland

types, drought characteristics, and resource availabilities. Besides,

the underlying mechanisms of CG were also summed up. However,

there is still a lot of work to achieve the ultimate target on how to

accurately quantify CG and predict its direction and strength under

changing ambient environmental conditions. The followings are

some suggestions for further research on CG.

Firstly, the assessment method of CG mentioned above

implicitly assumes that the reference growth level (the pre-

defined post-drought period or the historic norm status) is

where the drought legacy ends. However, the legacy of

drought might be extending far beyond a return to reference

growth level under some conditions (Ingrisch and Bahn, 2018;

Ovenden et al., 2021). Thus, when CG is activated and then how

long it will take are still debatable, which need to be finely

defined in future study. Besides, as plant functional traits play an

important role in determining net carbon assimilation and

allocation, therefore, a better understanding of the post-

drought recovery performance of plant functional traits could

improve our ability to predict grassland ecosystem production in

a rapidly changing climate (Yin and Bauerle, 2017). In order to

improve the evaluation accuracy of CG, filtering out suitable

plant-soil functional traits may be a good pathway (Figure 2).

Secondly, the adverse impacts of a single drought might be

reflected in plant water and nutrient acquisition than in

ecosystem carbon cycling, while both sides could be

emphasized by a second drought or repeated droughts (Slette

et al., 2022). The potential consequences of repeated drought on

CG may range from increased adaptation to increased

sensitivity, which remains unclear (Slette et al., 2022). Some

studies have suggested that the adaptation of soil microbial

communities to a previous drought can increase the drought

tolerance of plants in facing a subsequent drought event (Lau

and Lennon, 2012; Meisner et al., 2013). Besides, drought-

exposure history could increase complementarity between

plant species in response to future droughts (Chen et al.,

2022). Due to more frequent droughts are expected in many

parts of the world in the future, studies on the CG response to

repeated droughts are needed to improve our knowledge of

grassland stability.

Thirdly, even though extensive studies have been focusing

on the effects of drought on grasslands, there is limited

understanding of the period after drought due to a lack of

studies on belowground responses and an undue emphasis on
FIGURE 2

Conceptual framework of the responses of aboveground and
belowground processes to post-drought for compensatory
growth. The three main three components include aboveground
plant, root, and soil microorganism, which are determined by
plant community trait, soil type and climate (ambient
environmental conditions). The effects of drought on the three
components are achieved individually, but we hypothesize that
the responses of the aboveground plant determine the
responses of root after drought, thereby, the microbial
community responses, which react on aboveground plant
growth, community composition, ultimately, ecosystem stability
and function (Williams and De Vries, 2020).
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aboveground ecosystem responses (Vilonen et al., 2022). ANPP

is the most common indicator or function for evaluating the

aboveground ecosystem responses to drought (Hoover et al.,

2014; Knapp et al., 2015), because aboveground biomass is easier

to obtain than belowground biomass. In fact, grasslands allocate

a substantial portion of total net primary production to roots

and then store most of their carbon belowground (Hui and

Jackson, 2006; Silver et al., 2010). Belowground responses, such

as BNPP and soil CO2 flux, are of particular importance in

determining the size of the soil carbon pool (Post et al., 1982;

Slette et al., 2021). Previous studies have demonstrated that the

CG of ANPP and BNPP is different over time, like average

precipitation amounts are sufficient for CG in ANPP after

extreme drought, while CG in BNPP might be more resource-

demanding (Slette et al., 2022). Due to the different patterns of

ANPP and BNPP response to changes in water availability,

belowground processes and their underlying mechanisms

should be addressed in future work modeling ecosystem

responses to climate change (Denton et al., 2016).
Conclusion

Overall, in light of the persistence and intensification of

climate change, the responses of ecosystems to drought need to

be paid more attention. In past decades, a series of analogous

compensatory growth of net primary productivity and

community stability to drought disturbance in different

grassland ecosystems were discussed based on effective

indicators, like recovery and resilience. In this review, we

discussed compensatory growth across different grassland

ecosystems and drought characteristics, explained the effect of

resource availability on compensatory growth, and summed up

the mechanism by which compensatory growth may occur. The

review suggests that the CG is likely to be primarily due to the

different responses of plant functional groups and their

interactions with soil microbes to water availability. We

propose identifying the starting time and duration of

compensatory growth; better describing the symbol of CG

with plant-soil functional traits; conducting more research on

the plant-soil feedback and the decoupling of above- and

belowground processes. These proposed researches would
Frontiers in Plant Science 07
expand our understanding of compensatory growth, and

increase our ability to evaluate the stability and sustainability

of grassland ecosystems in the face of climate change.
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