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Introduction

Because of their motionless state, plants are exposed in their environment, often

simultaneously, to multiple biotic (bacteria, fungi, oomycetes, viruses, insects) and abiotic

(temperature, drought, water and nutrient availability) constraints. To adapt, plants have

developed amazing abilities allowing the perception of their situation and the

establishment of specific responses (Velásquez et al., 2018; Delplace et al., 2022). These

capacities are even more important in the context of climate change for which various

scenarios forecast, for the coming decades, an increase in the duration, intensity and

frequency of extreme weather events, emergence of new pathogens and/or geographical

expansion of their distribution and an increase in epidemics (McDonald & Stukenbrock,

2016; Chaloner et al., 2021; IPCC, 2021). Among climatic parameters, temperature is

expected to fluctuate the most by the end of the century (IPCC, 2021). Worryingly, a

growing number of studies describe that an elevation in ambient temperature has a

negative impact on the majority of the resistance mechanisms deployed by plants

(Desaint et al., 2021). It is therefore crucial to understand the effects of pathogens

combined with elevated temperature on plant responses and to identify the mechanisms

that contribute to robustness of resistance. However, our knowledge on the strategies

developed by plants to face the combined constraints remains fragmented. Except for

system involving the Arabidopsis plant model, the impact of temperature elevation

combined with the induction of plant immunity through flagellin (flg22) treatment have

mostly been investigated at the transcriptomic level (Huot et al., 2017; Velásquez et al.,

2018; Kim et al., 2022; Yuan and Poovaiah, 2022). Indeed, immunemechanisms, recently
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demonstrate to be much more interconnected than the simplified

“zig-zag model” previously proposed more than a decade ago,

restrict pathogen proliferation (Jones and Dangl, 2006; Ngou et al.,

2021; Yuan et al., 2021a). Early stages of perception and signaling

are often decisive to elicit appropriate responses. Most external

stimuli induce an increase in cytosolic calciumconcentration that is

central to initiate later responses (Liu et al., 2020). In eukaryotes,

intracellular calcium variations are considered a universal second

messenger, whichmust be decoded and relayed by calcium sensors

to downstream targets allowing the implementation of finely-

tuned, spatio-temporal responses, including transcriptome

modifications (Ranty et al., 2016; Aldon et al., 2018; Liu et al.,

2020; Luan and Wang, 2021). Numerous studies indicate that

calcium sensors are involved in many processes such as plant

development, biotic and abiotic responses (Zhu et al., 2015; Luan

andWang, 2021). Therefore, this opinion paper aims at providing

evidence supporting the premise that proteins participating to the

generation and decoding of calcium variations, would be central in

shaping plant responses against combined biotic and elevated

temperature constraints.
Calcium signaling in plant immunity

The generation of intracellular calciumvariation in response to

pests or PAMPs has been described for many years and the

contribution of calcium signaling in the establishment of

resistance to pathogens is supported by many studies (Atkinson

et al., 1990; Knight et al., 1991; Blume et al., 2000; Lecourieux et al.,

2006). To date, genetic approaches clearly established that the

channels and pumps involved in calcium signal generation and

dissipation as well as calcium sensors, contribute to the

implementation of efficient responses against pathogens. Until

2019, the nature of calcium channels involved in immune

responses remained largely unknown. Tian et al. (2019) and

Wang et al. (2019) showed, in Arabidopsis and rice respectively,

that Cyclic Nucleotide-Gated Channels (CNGCs), which are

calcium permeable channels, are crucial for calcium increase

upon flg22 or chitin perception. The perception of flg22 by the

FLAGELLIN-SENSITIVE 2 (FLS2)/BRI1-ASSOCIATED

RECEPTOR KINASE (BAK1) complex induce Pathogen

Associated Molecular Patterns (PAMP)-Triggered Immunity

(PTI) by leading to the phosphorylation and activation of the

CNGC2/CNGC4 heterodimer by the BOTRYTIS-INDUCED

KINASE1 (BIK1) (Tian et al., 2019) (Figure 1). CNGC’s activity

is also regulated by calmodulin (CaM), as in the case of CaM7 in

Arabidopsis, which prevents CNGC2/4 activity and calcium influx

(Tian et al., 2019) (Figure 1). More recently, HOPZ-ACTIVATED

RESISTANCE 1 (ZAR1), an intracellular Nucleotide-binding

Leucine -rich Receptor (NLR), was shown to interact with

bacterial effectors inducing Effector-Triggered Immunity (ETI)
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and to form pentameric complexes in vitro with protein kinases

called resistosomes (Bi et al., 2021). This complex acts as a cation-

selective channel engaged in the plasma membrane that induces

calcium influx, reactive oxygen species production, cell death and

finally immunity toplants (Bi et al., 2021) (Figure1).Usually seenas

two independent steps in plant immunity, PTI and ETI have been

recently demonstrated to potentiate one another (Ngou et al., 2021;

Yuanet al., 2021a) and calciumsignaling isknown tobeakeyplayer

in both of them (Yuan et al., 2021b; Köster et al., 2022). In addition

to the identification of the previous channels, strong evidence

implicating CaM; the Calmodulin-like proteins (CMLs) (Zhu

et al., 2015), Calcium-Dependent Protein Kinases (CDPKs) (Shi

et al., 2018; Bredow andMonaghan, 2019) and Calcineurin B-Like

(CBLs) (Ma et al., 2020; Tang et al., 2020) support that calcium

sensors are essential in biotic stress responses (Figure 1). Increasing

data report the contribution of CMLs to defense regulation against

various pathogens such as oomycetes, bacteria or insects as shown

forCML8, which contributes to defense againstmultiple pathogens

varying in lifestyles and infection mode in Arabidopsis (Zhu et al.,

2017; Zhu et al., 2021). In tomato, the silencing of CML55

suppresses infection by Phytophthora capsici (Zhang et al., 2022)

whereas the silencing of CML13 in pepper enhances the plants’

susceptibility to Ralstonia solanacerarum (Shen et al., 2020). A.

Mithöfer’s group also illustrated the contrasting effect of different

CMLs in the plant-herbivore interaction. Loss of function of

CML42 in Arabidopsis enhances resistance to the caterpillar

Spodoptora littoralis, which correlates with the induction of

jasmonic acid-responsive genes and to an accumulation of

glucosinolates (Vadassery et al., 2012). In contrast, mutation of

CML37 increases Arabidopsis susceptibility to this herbivore

(Scholz et al., 2014). Other examples show contributions of

CMLs in response to both biotic or abiotic constraints, but so far

this has not been studied under combined stress conditions. For

example, CML24 is a multifunctional CML involved in biotic and

abiotic responses as well as in developmental processes (Delk et al.,

2005; Tsai et al., 2007;Ma et al., 2008; Zhu et al., 2022) andCML37,

described as a regulator of plant responses to S. littoralis, also

positively contributes to drought responses in Arabidopsis (Scholz

et al., 2015). Interestingly, CML37 and 42 also act antagonistically

whenplantsare exposed towaterdeficit, herbivores ornecrotrophic

fungi (Heyer et al., 2021). Other CMLs may also contribute

differently to the plant response depending on the constraint

such as the Arabidopsis CML9 which is involved in both biotic

and abiotic processes. CML9 loss of function results in a higher

susceptibility to P. syringae (Leba et al., 2012) and to a lower

sensitivity to water deficit (Magnan et al., 2008). Although this

opinion paper mostly presents case studies on CMLs, excellent

reviews highlight the importance of other calcium sensors, such as

CDPKs and CBLs, in the calcium decoding steps related to plant

immunity or responses to abiotic constraints and developmental

processes (Bredow and Monaghan, 2019; Yip Delormel and

Boudsocq, 2019; Ma et al., 2020; Tang et al., 2020).
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Calcium signaling in heat stress

Collectively, calcium signaling and decoding appear to

significantly contribute to plant immunity and abiotic

constraints (Patra et al., 2021). Regarding stress associated with

temperature elevations, Gong et al. (1998) reported that heat-

shock induces transient increases in calcium concentration and

that exogenous calcium supply to tobacco seedlings promoted

plant tolerance to subsequent transitory heat treatments, whereas
Frontiers in Plant Science 03
the use of a calcium chelator had the opposite effect. It was

therefore hypothesized that calcium signaling could

significantly contribute to the thermotolerance of plants.

Interestingly, the chloroplast has emerged during the last ten

years (Navazio et al., 2020) to be important in calcium signaling at

elevated temperatures as transient temperature elevations to 40°C

were demonstrated to increase free calcium in the stroma but not

in the cytosol (Lenzoni and Knight, 2019). Genetic approaches

indicate that this calcium increase depends on the thylakoid
FIGURE 1

Involvement of calcium signaling in response to biotic and elevated temperature constraints. Plant defense responses to pathogens trigger
calcium variations which are relayed by calcium sensors (CaM, CMLs, CDPKs or CBLs) to targets allowing the establishment of specific
responses. The P. syringae’s flagellin is recognized by the Pathogen Recognition Receptors (PRR) complex FLS2/BAK1 and induce PTI leading to
the kinase BIK1 phosphorylation which phosphorylates CNGC calcium channels and allows calcium entry. The NLR ZAR1 recognizes P. syringae
effectors delivered in the cytosol inducing ETI and forms a pentameric structure integrating the plasmalemma (resistosome) (Bi et al., 2021) to
act as a calcium-permeable channel. CNGC2-4 are also temperature-sensitive channels allowing calcium entry upon temperature elevation
(Guihur et al., 2022b). Their activity is negatively regulated by the CaM7 (Tian et al., 2019). In response to elevated temperature, the rice TT2
complex, composed by a G-subunit, is involved in thermotolerance (Kan et al., 2022). TT2 signaling pathway is mediated by the transcription
factor SCT1 that interact with CaM to repress genes required for thermotolerance. Under combined flagellin treatment and elevated
temperature condition, SA production is repressed and PTI inhibited through CBP60g/SARD1 and CaM-binding SR1/CAMTA3 dependent
pathways (Huot et al., 2017; Kim et al., 2022).
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Calcium-sensing receptor (CAS), already proposed to decode the

calcium signal following perception of PAMPs (Nomura et al.,

2012). Moreover, Finka et al. (2012) reported that two calcium

channels, CNGCb from moss and CNGC2, its ortholog in

Arabidopsis, act as thermosensors in plants. Disruption of

CNGCb or CNGC2 produced a hyper-thermosensitive

phenotype. Upon temperature elevation, the CNGC2/CNGC4

complex opens at the plasmalemma allowing the entry of calcium

(Guihur et al., 2022b) (Figure 1). This complex shares features

(localization, temperature increase opening, control of external

calcium entry) with the animal thermosensor channel TRPV1

whose discoverywas recognized by the awardof theNobel Prize in

2021 (Julius, 2013; Kefauver et al., 2020; Guihur et al., 2022a).

Moreover, the recent identification of the Thermotolerance 2

(TT2) locus in rice encoding a G-subunit responsible for

thermotolerance brings into light, albeit indirectly, the

importance of calcium signaling in the plant response to

temperature fluctuation (Kan et al., 2022). Indeed, among the

downstream events linked to TT2, the sensing calcium

transcription factor 1 (SCT1) interacts with calmodulin to

repress target genes required for thermotolerance.
Calcium signaling actors in
combined stress?

Recently, 14 common QTLs were identified among the 42

and 43 QTLs underlying the rice response to biotic or heat

constraints respectively. Meta-expression analysis of the 1265

genes underlying the 14 QTLs showed that 24 genes were

involved in calcium signaling, supporting its importance in

plant response to both constraints (Kumar et al., 2022). However,

common QTLs identified with constraints applied individually do

not necessarily imply that they would also be detected when

applying these constraints in combination. Indeed, transcriptome

analyses, which constitute the majority of studies developed to

understand the processes involved in the plant response to

constraints applied in combination, showed that the plant

response cannot simply result from the addition of mechanisms

involved in responding to the same constraints applied individually

(Suzuki et al., 2014; Pandey et al., 2015; Desaint et al., 2021).When

constraints are applied in combination, few common genes are

identified, their expressionmaybemodulateddifferently (Rasmussen

et al., 2013; Farjad et al., 2018) anddependingon the severity or order

of the applied constraints (Onaga et al., 2017). To date, there are only

a few studies suggesting calcium signaling involvement in plant

responses to combined constraints. Among these, Cao et al. (2017)

showed that application of PAMPs together with salt altered

calcium signal generation with an additive effect compared to the

individual treatments. However, while the authors suggested this

could result from activation of different calcium channels, it cannot

be ruled out that this may also be associated with transcriptome

changes or post-translational modifications of proteins involved in
Frontiers in Plant Science 04
the formation of calcium-permeable channels, resulting in changed

channel activity or other processes such as calcium release from

other cellular compartments.

Recent studies present more convincing data that remains

difficult to generalize, as they were obtained for a specific system

implicating the Arabidopsis response to the combination of flg22

treatment and temperature elevation. Huot et al. (2017) showed a

temperature elevation from 21°C to 28°C and 33°C increases the

plants’ susceptibly and compromises PTI. Through transcriptome

analysis, they proposed that the increase in plant susceptibility is

associated with suppression of salicylic acid (SA) production. This

inhibition appears to be independent of temperature-sensitive

signaling pathways involving phytochrome B, the transcription

regulators EARLY FLOWERING 3 and PHYTOCHROME

INTERACTING FACTOR 4, which were previously proposed to

participate in the integration of the effect of temperature on the

plant and the coordination between growth and immunity

(Gangappa and Kumar, 2018). In this case, it has been proposed

the modulation of SA-mediated immunity relies on the CaM-

binding transcription factor (TF) SR1/CAMTA3 dependent

pathways, indirectly suggesting the contribution of calcium

signaling (Huot et al., 2017) (Figure 1). These results, although

very interesting, are surprising, since SR1/CAMTA3 is known to

suppress plant immunity and promote plant development in non-

stressful environments (Yuan et al., 2018). Its involvement in plant

response to combined constraints therefore suggests different

modes of action or regulation of this TF, such as putative

modifications in its phosphorylation status. These results also

support the central role of calcium in the combined responses to

P. syringae and elevated temperature through suppression of SA

production at 28°C. Indeed, Kim et al. (2022) demonstrated the

involvement of the Calmodulin Binding Protein 60g (CBP60g) and

Systemic Acquired Resistance Deficient 1 (SARD1) TF, already

known to participate in PAMP-induced SA accumulation and in

PTI response to P. syringae (Wang et al., 2011) (Figure 1).
Conclusions

To date, most research on plant stress physiology has been

conducted by applying biotic or abiotic stresses separately, in

simplified systems, under controlled conditions. By contrast, the

impact of combined constraints is alarmingly poorly

understood. Few studies have explored the contribution of

calcium in plant responses to such condition but some results

obtained by infecting plants at elevated temperature strongly

support its central role in signaling following perception of

multiple biotic and abiotic constraints. The scope of possible

functions of calciummay arise from several molecular processes

or actors such as CNGCs as calcium channels and

thermosensors or calcium sensors. However, the associated

mechanisms controlling its concentration fluctuation,

subcellular accumulation and signaling remain to be
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deciphered. Therefore, understanding how calcium acts at the

crossroad of biotic and abiotic constraints is relevant. Further

information could be obtained by using a priori approaches (i.e

genetics, comparative transcriptomics) and functional analyses

of calcium toolbox players involved in combined stresses.

Alternatively, genome-wide association mapping (GWA)

analyses could uncover candidates, through the identification

of the genetic basis underlying the natural diversity of the plants’

response to combined biotic and abiotic constraints. Indeed,

such a strategy has already demonstrated its potential to identify

genes underlying quantitative resistance to different pathogens

(French et al., 2016; Bartoli and Roux, 2017) and in the response

of plants to pathogens and temperature elevation (Aoun et al.,

2017; Aoun et al., 2020; Bruessow et al., 2021). Such knowledge

could provide solutions for plant breeding in order to preserve

the agronomic and economic performance of crop species

endangered by global change.
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Leba, L. J., Cheval, C., Ortiz-Martıń, I., Ranty, B., Beuzón, C. R., Galaud, J. P.,
et al. (2012). CML9, an arabidopsis calmodulin-like protein, contributes to plant
innate immunity through a flagellin-dependent signaling pathway. Plant J. 71, 976–
989. doi: 10.1111/J.1365-313X.2012.05045.X

Lecourieux, D., Ranjeva, R., and Pugin, A. (2006). Calcium in plant defence-
signalling pathways. New Phytol. 171, 249–269. doi: 10.1111/J.1469-
8137.2006.01777.X

Lenzoni, G., and Knight, M. R. (2019). Increases in absolute temperature
stimulate free calcium concentration elevations in the chloroplast. Plant Cell
Physiol. 60, 538–548. doi: 10.1093/pcp/pcpy227

Liu, J., Lenzoni, G., and Knight, M. R. (2020). Design principle for decoding
calcium signals to generate gene expression via transcription. Plant Physiol. 182,
1743–1761. doi: 10.1104//pp.19.01003

Luan, S., and Wang, C. (2021). Calcium signaling mechanisms across kingdoms.
Annu. Rev. Cell Dev. Biol. 37, 311–340. doi: 10.1146/annurev-cellbio-120219-035210

Magnan, F., Ranty, B., Charpenteau, M., Sotta, B., Galaud, J. P., and Aldon, D.
(2008). Mutations in AtCML9, a calmodulin-like protein from arabidopsis
Frontiers in Plant Science 06
thaliana, alter plant responses to abiotic stress and abscisic acid. Plant J. 56, 575–
589. doi: 10.1111/J.1365-313X.2008.03622.X

Ma, X., Li, Q. H., Yu, Y. N., Qiao, Y. M., Haq, S. U., and Gong, Z. H. (2020). The
CBL–CIPK pathway in plant response to stress signals. Int. J. Mol. Sci. 21, 5668.
doi: 10.3390/IJMS21165668

Ma, W., Smigel, A., Tsai, Y. C., Braam, J., and Berkowitz, G (2008). Innate
immunity signaling: cytosolic Ca2+ elevation is linked to downstream nitric oxide
generation through the action of calmodulin or a calmodulin-like protein A. Plant
Physiol. 148, 818–828. doi: 10.1104/PP.108.125104

McDonald, B. A., and Stukenbrock, E. V. (2016). Rapid emergence of
pathogens in agro-ecosystems: global threats to agricultural sustainability
and foss security. Philos. Trans. R. Soc B. Biol. Sci. 371, 20160026.
doi: 10.1098/rstb.2016.0026

Navazio, L., Formentin, E., Cendron, L., and Szabo, I. (2020). Chloroplast
calcium signaling in the spotlight. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.00186

Ngou, B. P. M., Ahn, H. K., Ding, P., and Jones, J. D. G. (2021). Mutual
potentiation of plant immunity by cell-surface and intracellular receptors. Nature
592, 110–115. doi: 10.1038/s41586-021-03315-7

Nomura, H., Komori, T., Uemura, S., Kanda, Y., Shimotani, K., Nakai, K., et al.
(2012). Chloroplast-mediated activation of plant immune signaling in arabidopsis.
Nat. Commun. 3, 926. doi: 10.1038/natcomms1926

Onaga, G., Wydra, K., Koopmann, B., Chebotarov, D., Séré, Y., and Von
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