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Evaluating the adhesive
potential of the newly isolated
bacterial strains in research
exploitation of plant microbial
interaction
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and In-Jung Lee1*

1Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea,
2Mountain Research for Field Crops Khudwani, Sher-e Kashmir University of Agricultural Sciences
and Technology of Kashmir, Srinagar, Jamu and Kashmir, India
Bacterial adhesion potential constitutes the transition of bacteria from the

planktonic to the static phase by promoting biofilm formation, which plays a

significant role in plant-microbial interaction in the agriculture industry. In

present study, the adhesion potential of five soil-borne bacterial strains

belonging to different genera was studied. All bacterial strains were capable

of forming colonies and biofilms of different levels of firmness on polystyrene.

Significant variation was observed in hydrophobicity and motility assays.

Among the five bacterial strains (SH-6, SH-8, SH-9, SH-10, and SH-19), SH-

19 had a strong hydrophobic force, while SH-10 showed the most hydrophilic

property. SH-6 showed great variability in motility; SH-8 had a swimming

diffusion diameter of 70 mm, which was three times higher than that of SH-19.

In the motility assay, SH-9 and SH-10 showed diffusion diameters of

approximately 22 mm and 55 mm, respectively. Furthermore, among the five

strains, four are predominately electron donors and one is electron acceptors.

Overall, positive correlation was observed among Lewis acid base properties,

hydrophobicity, and biofilm forming ability. However, no correlation of motility

with bacterial adhesion could be found in present experimental work. Scanning

electron microscopy images confirmed the adhesion potential and biofilm

ability within extra polymeric substances. Research on the role of adhesion in

biofilm formation of bacteria isolated from plants is potentially conducive for

developing strategies such as plant–microbial interaction to mitigate the

abiotic stress.

KEYWORDS

biofilm, motility, SEM, hydrophobicity, BBF
Abbreviations: SEM, Scanning electron microscope; EPS, Exopolysacchrides; BBF, Bacterial biofilm; OD,

Optical density; QS, Quorum sensing; CFU, Colony forming unit.
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Introduction

Biofilm is the product of microbial developmental

procedure. It is a syntrophic relationship of the microorganism

with any biotic or abiotic surface (Watnick and Kolter, 2000;

Flemming and Wingender, 2010). The microbes become

adherent to an extracellular polymeric substance. During

interaction with the surface, microbes produce long chain

exopolysaccharides and form a 3D coordinated functional

community (O’toole et al., 2000; Lewandowski and Beyenal,

2019). The biofilm lifecycle of the microbes consists of a series of

steps and events. The first step is attachment. The microbes are

in the planktonic cell mode of biofilm formation with phenotype

alteration by quorum sensing (QS) signaling pathway, and 90%

of the cell biomass is produced in this phase (Rittmann and

Mccarty, 1980; Tolker-Nielsen, 2015). Microbes attach to a

surface using weak van der Waals forces. The QS signaling

pathway is responsible for the formation of colonies and sub-

colonies depending upon the temperature, p, and nutrient

availability status. The colonization may extend from

unicellular to multicellular cells, where microbes share traits

related to nutrition, shelter etc. (Van Loosdrecht et al., 2002;

Allison, 2003; Flemming et al., 2011). The bacterial life cycle can

be categorized into four phases: log, lag, stationary, and decline

phase. The lag phase is explained as the state where there is no

proliferation of living bacteria as shown in the Figure 1. In the

log phase, the bacteria start to grow rapidly, whereas, in the

stationary phase, the death rate and production of bacteria are at

a constant rate (Finkel, 2006; Saikia et al., 2022). Decline is the

last phase where there are more dead bacterial cells than living

(Andrade et al., 2006).The adhesion potential of bacteria can be

observed from the log phase to the stationary phase (Swinnen

et al., 2004; Jaishankar and Srivastava, 2017; Chevallereau

et al., 2022).
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After forming colonies, bacteria produce long chain

polysaccharides that enclose the bacterial biofilm (BBF) as the

cells mature. The life cycle of bacteria is completed in the

biofilm, which then becomes ready for dispersion (Flemming

et al., 2007; Renner and Weibel, 2011). The BBF disperses with

the help of the enzymes dispersin B and deoxyribonuclease. The

biofilms are unique owing to the differential expression of genes

within these biofilms (Stoodley et al., 1999; Donlan, 2001;

Teughels et al., 2006).

Biofilm forming microbes play a noteworthy role in

biofertilization, mineralization, development, and maintenance

of plant and soil fertility. Biofilms provide a biologically active

metabolite exchange platform for plants and soil (Turhan et al.,

2019; Kour et al., 2020; Jiang et al., 2021). They may form

symbiotic, parasitic, or mutualistic relationships with the

ecosystem. Microbes form colonies and biofilm on the leaves,

roots, stem, rhizosphere, endosphere, rhizoplane, and

phyllosphere of plants (Seneviratne et al., 2010; Seneviratne

et al., 2011; Nayak et al., 2020). BBF affects growth attributes

directly or indirectly via induced systemic resistance (ISR).

Plants secret exudates that form the best surface for microbial

attachment owing to high nutrient availability (Velmourougane

et al., 2017; Kumar and Singh, 2020; Rheinheimer Dos Santos

et al., 2020). Plant cell surface is the favorable site of attachment

for bacterial establishment in tropical ecosystems (Bhat K and

Bhat Panemangalore, 2022).

BBF is important in abiotic stress tolerance for providing an

attachment site for bacteria and enhancing their potential to

evolve during plant–microbial interaction (Zhang et al., 2020;

Shaffique et al., 2022b). Microbes form dynamic interactions

with plants and improve plant productivity, and physiological

and molecular processes through a cascade of events such as

production of osmolytes, organic acids, volatile compounds,

siderophores, exopolysaccharides, and phytohormones and
FIGURE 1

Biofilm life cycle of bacteria.
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promotion of gene expression. Various recent studies have

supported plant–microbial interaction in enhancing growth,

development, and stress tolerance (Bhagat et al., 2021; Ciofu

et al., 2022; Sachdev and Ansari, 2022). Scanning electron

microscopy (SEM) is used to determine biofilm investigation.

It provides information on the size, structure, location within the

biofilm, and bacterial contact on extra polymeric substances

(EPS) (Priester et al., 2007; El Abed et al., 2012).

Agriculture laboratories are commonly known for

developing expedient technological properties in the

production of beneficial microbes and their interaction with

plants, but these microbes could also be involved in plant

pathogenesis. It is well known that plant–microbial

interactions occur through biofilms (Bednarek and Osbourn,

2009; Berg, 2009). However, only fewer studies have been

accompanied on the adhesion potential of bacteria and their

association with plants. For this reason, five protagonist bacterial

isolates, namely, SH-6, SH-8, SH-9, SH-10, and SH-19, from

plant-related sources were considered in the present

experimental study.

The current study aim’s is to estimate the 1) adhesion

potential of five bacterial isolates from plant-related sources, 2)

characterize their cell properties including motility and surface

hydrophobicity, 3) determine the correlation between adhesion

potential and cell surface hydrophobicity, and 4) create SEM

images to visualize the biofilm. The present study aims to enrich

the speculative background of microbial biofilm formation and

provide evidence on the adhesion potential for further research

progress in plant–microbial interaction.
Materials and methods

Bacterial isolation

Seventy-three microbes originating from the rhizospheric

soil of Artemisia princeps Pamp. were collected and isolated for

further screening assays. The rhizospheric soil was collected

from Pohang beach in South Korea, at an elevation of 9.9 m. The

sample was preserved in a polyethylene bag in an icebox for

transportation to the crop physiology lab, College of Applied

Biosciences, Agriculture department, Kyungpook National

University, South Korea. One gram of soil removed from the

roots of the plants was mixed with 1 M saline solution, and the

sample was retained in a shaker at 25°C, for 6 h. The sample was

considered as a stock solution. From this stock solution, a serial

dilution 10-1-10-9 was made for further analysis. Lysogeny broths

were prepared, and aliquots of the serial dilutions were added.

The plates were sealed with Parafilm and incubated for 24-72 h

at 25°C ± 3°C. Immediately after the emergence of colonies, they

were re-plated on LB plates until to obtain pure colonies. These

colonies were identified by their size, shape, color, chain length,

and growth pattern. The samples were then sent to Solgent
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Company for identification. The procedure followed is described

as in published studies (Chung et al., 2005; Rashid et al., 2012).
Molecular identification and
phylogenetic analysis

Inocula preparation
The bacterial strains were individually cultured at 37°C for

18 h in 5 mL of LB. The cells were then harvested by

centrifugation at 5000 rpm for 5 min at 4°C. The supernatant

was removed, and the cells were washed thrice with saline

phosphate buffer solution (pH 7.2) and resuspended in saline

phosphate buffer solution to maintain a constant pH. The final

inoculum of 103 CFU/mL was prepared as described previously

(Ramirez-Chavarin et al., 2013; Li et al., 2020).

Biofilm assay
For each inoculum of 150 μL, 20 μL from freshly prepared

sample and 130 μL from pre-prepared inoculum were combined

in a 96-well polystyrene microplate. The samples were incubated

at 25-30°C for 5 days. Freshly prepared autoclaved media devoid

of bacteria were used as the negative control. After 5 days, the

microplate was rinsed three times with 0.1% saline phosphate

buffer solution and air dried for 30 min. Then, 100 μL crystal

violet stain was added and washed three times with phosphate

buffer solution. At the end of the procedure, 0.2 mL of 95%

ethanol was added to the plates, and the absorbance was

measured at 570 nm. The procedure was followed as described

previously (Coffey and Anderson, 2014; Shukla and Rao, 2017).

Hydrophobicity assay
Equal amounts of solvents (chloroform, ethyl acetate, and

xylene) were mixed with the bacterial suspension to formulate a

two-phase system. The solutions were vortexed for 4 minutes

and placed at room temperature for 30 min to allow the

hydrocarbon phase to increase. The optical density (OD) was

calculated at 600 nm before and after the adhesion. The

hydrophobicity was calculated using the following equation:

Hydrophobicity  % = ½( A0 − A1)=A0� � 100

where A0 is considered as the initial optical density, and A1

is the final optical density of the aqueous phase, as described

previously (Rahman et al., 2008; Chao et al., 2014).

Motility assay
The motility assay (swimming and swarming) was

performed on soft agar plates. The plates for the swimming

assay were prepared by mixing 2.5 g/L glucose, 5 g/L sodium

chloride, 10 g/L tryptone, and 0.3% agar, while those for the

swarming assay contained, 0.5 g/L glucose, 25 g/L Luria-Bertani

and 0.5% agar. Two microliter aliquots of each isolates were
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mottled onto the soft-agar plates surface and then incubated at

25-30°C for 15 min to ensure better absorption. The diameter

(mm) of each strain was measured in order to estimate the

motility (Morales-Soto et al., 2015; Sun et al., 2018).
SEM microscopy
Bacterial isolates were allowed to grow in the LB plates for

48 h after which pure isolates together with the media were cut

(W × D × H, 5 × 2 × 5 mm) and placed into Eppendorf tubes.

Then, 0.1 M solution of phosphate buffer (pH 7.3) was added to

the tubes and washed three times. The samples were precleared

with 2.5% glutaraldehyde solution for 24 h at 4°C. The fixation

sample was placed into 0.1 M sodium phosphate buffer solution

(pH 7.3) and washed again with 0.1 M sodium phosphate buffer

solution. Then, 1% osmium tetroxide in 0.1 M cacodylate buffer

was added to the sample for 90 min and washed with sodium

phosphate buffer for 40 min. After washing, the samples were

dehydrated with ethanol. Excess water was removed using a

critical point device, carbon tapes were attached, and the samples

were observed under a scanning electron microscope (Hitachi-s-

3500N), as previously described (Chen et al., 2022; Kuzmina

et al., 2022).
Statistical analysis
All the experiments were repeated five times. The GraphPad

Prism software (version 5.8) was used to perform statistical

analysis. The mean values P ≤ 0.05 were considered significant

using Duncan’s multiple range test (DMRT) in SAS (version 9.1)

to find out the statistical analysis.
Results

Biofilm assay

Xylene is considered as polar. All isolates showing strong

affinity toward xylene were labeled as hydrophobic. SH-10 had

the lowest affinity toward xylene, at less than 20%, which shows

the strongest electron acceptor ability. Isolates showing

moderate affinity toward chloroform were electron

donors (Figure 2).
Cell-surface characteristic assay

All bacterial isolates possessed adhesion potential for the 96-

well plate with different levels of firmness. However, SH-19

showed excellent biofilm formation compared to that by the

other four bacterial isolates. Thus, SH-6, SH-8, and SH-9 are

moderate biofilm-producing bacterial isolates, while SH-10 had

the lowest biofilm-forming ability (Figure 3).
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Observation of bacterial biofilm by SEM

The SEM shown in Figure 4 confirms the presence of biofilm

whereas the ↗○ represents the location and position

of exopolysacchrides
Discussion

BBF formation plays an significant role in plant–microbial

interaction in sustainable agriculture industry (Ramey et al.,

2004; Bogino et al., 2013). This study involved 5 protagonist soil-

borne bacterial isolates for biofilm assay. The optimal

temperature of each bacterial isolate varied with an average of

25°C and which was considered as the optimal temperature.

The short and long-term biofilms were evaluated in a time-

dependent manner by regulating the incubation time by 24-72 h.

The results exhibited that all bacterial isolates were capable to

attach on the polystyrene surface with some variation which

exposed the isolates belongs to different species. SH-19 exhibited

the best adhesion ability regardless of time and temperature,

while a moderate amount of biofilm formation was displayed by

SH-10, SH-8, SH-6, and SH-9. All strains formed considerable

amounts of biofilm at 25-30°C after 24 h. However, for 72 h

incubation, a higher temperature was most appropriate for

bacterial cell adhesion. The entire different behaviors shown

by SH-9 in comparison with SH-19 confirmed that all isolates

from a single source do not necessari ly have the

same characteristics.

SH-19 is an extremophile that can exist at extreme

temperatures and produce and maintain biofilms at 50°C.

However, the surface of the 96-well polystyrene plate that was

used for the present in vitro experimental study is significantly

different from that of the plant epidermis, and thus, the activities

of related signaling pathways could be limited. Biofilm formation

was temperature-dependent as shown in Figure 3. At 24 h, four

of the five bacterial isolates displayed a higher attachment at

above 30°C than 40°C; after 72 h, only SH-19 showed significant

biofilm formation. A further increase in temperature to 50°C

resulted in the formation of considerable amount of biofilm by

SH-19. This is a well-known phenomenon and occurs probably

owing to the diversity of optimal temperatures of the isolates

(Rozanov et al., 2021).

Massive cell density in culture media possibly results in

providing an assistance for communication of bacteria, thus,

improving the bacterial attachment. Additionally, less biofilm

formation by SH-9, SH-6, SH-8, and SH-10 at 50°C after 24 h is

probably owing to biofilm dispersal at the end of the incubation

periods. The outcomes of study also indicated that temperature

and time influenced biofilm formation.

In one complete biofilm development cycle, dispersion is the

final step, in which cells detach from the established biofilm at
frontiersin.org
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high temperatures (Rumbaugh and Sauer, 2020). After 72 h, the

restricted biofilm may be owing to limited nutrition perfusion.

The period during which bacteria show impaired adhesion may

be owing to the dispersion phase. At 25-30°C, mostly the isolates

grow fast over time and form mature biofilms. At 35°C, after

24 h, there is a decreased amount of biofilm by 72 h. This

partially proved that higher temperature was preferable for most

bacteria. Attention must be given to the existence of particularity

in biofilm formation.

Cell adhesion entails contact with the interacting surface of

the bacterial cell envelope. Motile properties are important at the
Frontiers in Plant Science 05
docking phase when two objects meet (Ottemann and Miller,

1997). Swimming and swarming motility was investigated in the

present study. Swimming is related to the motile potential of

individual bacterium, whereas swarming is related to colony

formation (Kearns, 2010; Servant et al., 2015; Be’er and Ariel,

2019). SH-6 and SH-8 showed considerable motility and

developed large diffusion circles with diameters more than

70 mm, three times larger than those of SH-19 and SH-10.

SH-9 exhibited moderate swimming capacity with a

diameter of 22 cm. A lower disparity level was found among

the isolates in the swarming assay. The five bacterial isolates
B

C

D

A

B

FIGURE 3

Biofilm information by the five selected isolates on 96-well polystyrene microplates under 22–50°C for 24 h. The letter on each bar is the
significant different between treatments at P ≤ 0.05. The error bar represents the standard error among the replicates.
FIGURE 2

Information of the five selected isolates and their affinity for different solvents. The letter on each bar is the significant different between
treatments at P ≤ 0.05. The error bar represents the standard error among the replicates.
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showed reserved swarming ability compared to their swimming

potential. These results suggest that fluidity of the medium may

influence the diffusion of bacterial isolates.

Flowing states might favor plant–microbe interaction and

subsequent development of biofilm. Bacterial motility is flagella

dependent. Swimming and swarming potential of microbes play

important role in their adhesion and biofilm formation (Daniels

et al., 2004; Venieraki et al., 2016).

Because different strains of different species possess a diverse

range of flagellar numbers, great variations are noted in motility.

SH-10 showed a diffusion circle of 55 mm with remarkable

motility but were not strong in biofilm formation. Furthermore,

no correlation was observed between biofilm formation and

motility of the isolates as shown in Table 1.

The function of flagella cannot be ignored. Studies using

video microscopy have shown that flagella help bacteria reach
Frontiers in Plant Science 06
the proximate surface, but in the present study, a partial positive

correlation was observed.

The surface hydrophobicity is determined by xylene, a polar

solvent. High affinity to xylene was noticed in SH-19 and SH-8,

represent ing hydrophobic i ty , whi le SH-10 showed

hydrophilicity, under 20%, toward xylene.

SH-6 and SH-10 showed competitor of hydrophobicity.

Various recent studies have suggested that hydrophobic

characteristics enhance biofilm formation potential. This is in

line with the results of the present study in which we show a

positive correlation and that hydrophobicity enhances

biofilm formation.

Lewis acid base properties were also found by using two

other solvents, chloroform and ethyl acetate. SH-10 showed

strong affinity toward chloroform and ethyl acetate implying

electron acceptor capacity. SH-6 showed almost equal affinity
FIGURE 4

Scanning electron microscopy images of five bacterial isolates (scale bar, 2.00 µm).
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toward ethyl acetate and chloroform, which is predominately an

electron donor and weak electron acceptor. The other bacterial

isolates showed better affinity to chloroform than ethyl acetate

representing their greater ability to donate electrons.

The bacterial isolates with electron donor capacity attached

easily to the surface of the 96-well polystyrene plate. A positive

correlation was noted between hydrophobicity and biofilm

formation. Thus, Lewis acid base interaction shows an

energetic role in biofilm formation.

SEM utilizes the high-power energy of electron beams to

visualize the properties of bacterial cells such as their size, shape,

homogeneity, and topological information. Additionally, it

provides useful information about biofilm life cycle, from

attachment to dispersion (Baldotto and Olivares, 2008;

Nongkhlaw and Joshi, 2014). SEM also displayed the

observation of bacterial adhesion properties to a surface and

their ability to form biofilms. Bacterial adhesion to biofilm

formation is the condition in which bacteria attach and adhere

firmly to a surface and completes one life cycle (El Abed et al.,

2012; Relucenti et al., 2021).

It is important to estimate the adhesion potential of the

bacterial isolates because adhesion potential of bacteria provides

the transition from planktonic phase to static phase (Singh et al.,

2011; Xu and Siedlecki, 2022). The transition of microbes from

one phase to another phase is responsible for the development of
Frontiers in Plant Science 07
biofilm. Adhesion is the first step of biofilms which is liable for the

docking and locking phase of the biofilm (Chu et al., 2022; Prabu

et al., 2022). Adhesion potential has been quantified using a

number of automatic tools such as by measuring the production

of bacteria in Congo red assay or under a conventional scanning

microscope (Taj et al., 2012). SEM is considered as the gold

standard to identify biofilm under different resolutions. Bacterial

strains are also visualized by SEM. This is an advanced

microbiology technique that can measure bacterial cell

attachment and provide clear images of bacterial flagellum

(Moreira et al., 2012). High-magnification SEM of SH-6 showed

small spherical structures and numerous tubular projections on

the surface of the growing vegetative cells. The bacterial

architecture of SH-8 showed the presence of spherical structure

trapped in the exopolymeric substances (Figures 4, 5), while that

of SH-9 and SH-10 showed a mat-like structure. SH-19 were

spherical bacteria. All the bacteria showed the presence of

exopolysaccharides in which the bacteria were trapped. Bacteria

interact with plant cells in diverse ways (Shaffique et al., 2022c).

The main feature of this interaction is to make colonies, in which

the microbes adhere to plant cells as individual cells or in the form

of clusters (Morris and Monier, 2003; Tshikantwa et al., 2018).

The adherent bacterial populations, defined as biofilms, display

structural alignments of several magnitudes. Each plant part has

distinguishing levels of saturation such as nutrient availability and
TABLE 1 Bacterial strain, motility and NCBI gene accession link.

Strain Origin Motilitymm Gene accession number and NCBI Data base

SH-6 Plant 70 mm https://www.ncbi.nlm.nih.gov/nuccore/OM757882.1

SH-8 Plant 68.9 mm https://www.ncbi.nlm.nih.gov/nuccore/OM535901

SH-9 Plant 23.2 mm https://www.ncbi.nlm.nih.gov/nuccore/On753949

SH-10 Plant 22.8 mm https://www.ncbi.nlm.nih.gov/nuccore/OP175947

SH-19 Plant 55 mm https://www.ncbi.nlm.nih.gov/nuccore/On935600
FIGURE 5

Biofilm producing isolates mitigate stress tolerance through plant microbial interaction.
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cellular chemistry, which affects the formation of biofilm. It is

important to evaluate the adhesion potential to measure plant–

microbial interaction, which is important in the mitigation of

abiotic stress. The adhesive biofilm ability of the bacteria provides

the platform to colonies on plant cells with aid of self-producing

matrix (EPS) to provide the protective environment against

various abiotic stress such as drought, salinity and heat stress

etc. (Sharma et al., 2021; Shaffique et al., 2022a).

Beneficial microbes facilitates the mutualistic interaction which

is Important in providing the plant microbial interaction. The plant

microbial interaction augments the production of the metabolites

which improve the plant productivity (Ben Zineb et al., 2022; Mafa‐

Attoye et al., 2022). Several studies suggested that biofilm producing

bacteria’s are helpful in not only mitigation of abiotic stress but also

prevent phytopathogen (Chandwani and Amaresan, 2022; Singh

and Chauhan, 2022). They produce the exopolysacchrides which

gives the adhesion potential and facilitates the plant microbial

interaction (Kant, 2022; Kapadia et al., 2022). They play

imperative role in neutralizing the abiotic stress and improving

crop yield and quality (Admassie et al., 2022; Siddique et al., 2022)

as shown in Figure 5.
Conclusion and future prospective

We concluded that the five soil-borne bacterial isolates were

capable of colonization on the 96-well polystyrene plate surface.

Cell surface hydrophobicity was positively correlated with

biofilm formation, whereas swimming and swarming were

negatively correlated with biofilm formation. However, further

research on larger scale is needed to clarify this. The biofilm

architecture of bacterial isolates was observed by SEM. The

results revealed that bacteria were trapped in the exopolymeric

substances. The biofilm-forming bacterial isolates strongly

influence plant–microbial interaction to mitigate the abiotic

stress. Ongoing studies on newly bacterial isolates will provide

the new experimental frame work to mitigate the stress and helps

in providing the sustainable agronomy.
Frontiers in Plant Science 08
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