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Maize leaf disease significantly reduces the quality and overall crop yield.

Therefore, it is crucial to monitor and diagnose illnesses during the growth

season to take necessary actions. However, accurate identification is challenging

to achieve as the existing automated methods are computationally complex or

perform well on images with a simple background. Whereas, the realistic field

conditions include a lot of background noise that makes this task difficult. In this

study, we presented an end-to-end learning CNN architecture, Efficient

Attention Network (EANet) based on the EfficientNetv2 model to identify

multi-class maize crop diseases. To further enhance the capacity of the

feature representation, we introduced a spatial-channel attention mechanism

to focus on affected locations and help the detection network accurately

recognize multiple diseases. We trained the EANet model using focal loss to

overcome class-imbalanced data issues and transfer learning to enhance

network generalization. We evaluated the presented approach on the

publically available datasets having samples captured under various challenging

environmental conditions such as varying background, non-uniform light, and

chrominance variances. Our approach showed an overall accuracy of 99.89% for

the categorization of various maize crop diseases. The experimental and visual

findings reveal that our model shows improved performance compared to

conventional CNNs, and the attention mechanism properly accentuates the

disease-relevant information by ignoring the background noise.

KEYWORDS

maize crop disease, deep-learning, attention mechanism, convolutional neural
network, image classification
1 Introduction

Maize is one of the most essential cereal crops, having the largest production

worldwide that can be farmed in a variety of climates. It is highly valued for its

widespread usage as a staple diet for humans and high-quality feed for animals.

Furthermore, maize is the principal raw material for a wide range of industrial goods.
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Regardless of its high grain yield potential, the sensitivity of

maize crops to various diseases is a significant barrier to

increasing yields and results in a 6-10% annual loss in

production (Zhang et al., 2021). As a result, timely detection

and monitoring of maize diseases are critical during the growing

season to control their spread. The accurate identification of the

diseases is strongly dependent on the availability of domain

specialists and plant pathologists, as well as requires good

observation skills and knowledge of specific disease signs.

Moreover, the manual identification process consumes huge

resources and time since it requires continual plant

monitoring, which is costly when working with large farms.

Thus, rapid and precise methods of recognizing maize diseases

are needed to monitor the crop and take prompt action to cure

the infections.

Currently, computer vision (CV) technology and machine

learning (ML)-based methods are progressively applied to the

field of plant disease identification due to their expert-level

performance in challenging situations (Vishnoi et al., 2021).

As a result, a digital image-based automatic disease diagnosis

strategy in the maize crop is a feasible and viable alternative to

the manual inspection process. Traditional image processing

techniques include gray level co-occurrence matrix (GLCM)

(Kaur et al., 2018), scale-invariant feature transform (SIFT)

(Chouhan et al., 2021), local binary patterns (LBP) (Pantazi

et al., 2019), and histogram of oriented gradient (HOG) (Wani

et al., 2021), etc., are widely adopted for purpose of identifying

plant diseases. These methods extract different attributes (e.g.,

shape, texture, and color) and statistical traits to characterize the

attributes of diseased spots in affected leaf images (Thakur et al.,

2022). The extracted hand-crafted features are classified using

conventional ML algorithms primarily the Naive Bayes (NB)

Classifier (Panigrahi et al., 2020; Mohapatra et al., 2021), support

vector machine (SVM) (Chung et al., 2016), K-Nearest Neighbor

(KNN) algorithm (Hossain et al., 2019), and artificial neural

network (ANN) (Patil et al., 2017) for categorizing leaf diseases.

In a study on the detection of maize diseases, the authors

compared different ML methods including NB, KNN, SVM,

Decision Tree (DT), and Random Forest (RF) (Panigrahi et al.,

2020). Aravind et al. (2018) extracted textural characteristics of

maize leaf disease using the GLCM and subsequently classified

maize illnesses using multi-class SVM. However, the overall

performance of traditional ML methods is primarily constrained

by feature extraction and representation approaches.

Recently, deep learning (DL)-based methods have achieved

tremendous improvement in identifying plant diseases (Lee et al.,

2017; Hasan et al., 2020; Lee et al., 2020a; Albattah et al., 2022). DL

techniques can automatically discover the representations

necessary to perform classification. Convolutional neural

network (CNN), a special type of DL architecture, has shown

remarkable performance in several areas including agriculture

(Lee et al., 2015; Albattah et al., 2022), medical imaging (Nawaz

et al., 2021; Masood et al., 2021), fake news detection (Saleh et al.,
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2021), etc. CNNs are capable of extracting discriminative features

from input samples and effectively perform visual recognition

tasks (Lee et al., 2015). The CNN structure can automatically learn

key properties from the training data without any human

supervision. The CNNs are extensively applied for the

categorization of various plant leaf diseases (Sethy et al., 2020;

Ngugi et al., 2021; Albattah et al., 2022). In a large number of

studies, researchers fine-tuned pre-built CNN models such as

AlexNet (Rangarajan et al., 2018), GoogleNet (Mohanty et al.,

2016), ResNet (Subramanian et al., 2022), InceptionNet (Haque

et al., 2022), Efficientnet (Liu et al., 2020) and DenseNet (Waheed

et al., 2020; Baldota et al., 2021) employing transfer learning for

leaf disease identification. Some of the studies have suggested

novel CNN architecture for plant disease identification (Picon

et al., 2019; Agarwal et al., 2020; Zhang et al., 2021; Xiang et al.,

2021). Although, the studied CNN approaches in these works

have shown effective performance and appear to learn disease-

specific feature representations, however, their performance is

affected by background noise (Hasan et al., 2020; Subramanian

et al., 2022). In (Atabay, 2017), the authors trained a CNN model

for the identification of tomato plant diseases and analyzed that

the model has neuron activations predominantly in the image

background, rather than the diseased region. This suggests that a

CNN model is more likely to learn irrelevant features other than

the visual representation of plant disease. Furthermore, it has been

demonstrated that background suppression using image

segmentation techniques does not result in better generalization

outcomes for disease identification in a real environment

(Mohanty et al., 2016). Simultaneously, to deal with the

influence of numerous visual disturbances such as non-uniform

lightning conditions, distortion, and blur, it is required to improve

CNN performance in order to tackle fine-grained plant disease

identification tasks (Lee et al., 2020b). At present, object

identification-based algorithms are now being developed and

used for the localization and categorization of plant diseases.

Region-based CNN can better localize diseased areas in the

presence of complicated background settings, however, it

involves labor-intensive annotations of disease locations (Zhou

et al., 2019; Albattah et al., 2022; He et al., 2022).

Recent studies show that the attention method can be

supplemented with CNN to obtain discriminative features of the

region of interest (Guo et al., 2022). The attention mechanism

enables a CNN network to use the global information of features,

focusing on the most important characteristics while suppressing

less informative data, hence increasing the efficacy of a network’s

feature representation. These methods are effectively applied in the

field of CV and achieved good results (Guo et al., 2022). Particularly

for crop leaf disease detection, identifying and focusing on disease-

affected areas is critical for attaining high classification accuracy

(Zeng and Li, 2020; Yang et al., 2020; Zhu et al., 2021). Limited

studies have investigated attention techniques for the precise

categorization of maize leaf disease (Chen et al., 2021; Zeng et al.,

2022a; Qian et al., 2022).
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Despite tremendous improvements, there is still a need for

improvement in diagnosing and classifying maize leaf disease in

actual field situations. For instance, even though certain models

provide exceptionally high accuracy on maize datasets created in

a lab setting, they frequently produce unsatisfactory

identification results in the real world (Ahila Priyadharshini

et al., 2019; Baldota et al., 2021; Subramanian et al., 2022). This is

due to insufficient disease feature extraction, which results in a

lack of critical disease information. The key challenges in

accurately classifying the maize disease are the high degree of

visual similarity between categories, the extensive background

noise in the field environment, and the inconsistent placement of

various crop diseases (He et al., 2022; Qian et al., 2022).

These observations motivated us to investigate novel

methods for identifying maize diseases that can automatically

learn the robust representations of interest in the input image

that corresponds to unhealthy portions and subsequently

identify the disease. In this work, we proposed an efficient and

effective method by incorporating an attention mechanism in

the EfficientNetv2 CNN (Tan and Le, 2021) architecture namely

EANet for fine-grained maize crop disease identification. The

proposed EANet model effectively computes high-level

representations and categorizes them in their respective class

using an end-to-end training method. Furthermore, the

attention mechanism enhances the learning ability of the CNN

by providing fine details of the salient characteristics such as

disease portions (Zhu et al., 2021). The following are the

major contributions:
Fron
*We proposed EANet, a lightweight CNN model that

extracts robust and discriminative features of interest

and thus achieves high accuracy for fine-grained

categorization of different maize crop diseases while

having less computational complexity.

*We incorporated the spatial and channel attention method

into the CNN architecture which enhances its capacity

of learning the inter-channel connections and space-

wise position attributes to improve the identification of

maize leaf diseases in real environment settings.

*To prevent the model overfitting and deal with class

imbalance data, we employed transfer learning and

multi-class focal loss which boosts the maize disease

classification accuracy.

*To show the efficacy of the proposed EANet model, we

conducted extensive comparative experiments to

analyze the performance using a maize disease image

database collected from three different online available

sources. The proposed technique effectively classifies the

maize leaf diseases in the presence of complex

environmental situations, such as blurring, noise,

nonuniform lightning conditions, and variation in the

color, size, and location of disease spots.
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The remaining paper is arranged as follows. Section 2

presents the summary of prior research presented to categorize

maize leaf diseases from digital images. Section 3 presents

material and methods mentioning the details of the dataset

used for experimentation and an explanation of the proposed

maize leaf disease classification model with its architectural

details. Section 4 describes implementation details. It also

discusses details of the different experiments performed and

their outcomes. Finally, section 5 concludes our research and

presents some future directions.
2 Related work

Researchers have presented various approaches to

categorize, identify, and extract the characteristics of plant

diseases. DL, as well as image processing and classical ML

techniques, have been widely adopted in the agriculture

domain to accomplish this. In this section, we have presented

an overview of some of the existing works that have been

developed to classify corn leaf diseases from digital images.

The existing literature is broadly divided into two major

categories i.e., traditional ML and DL-based approaches. The

ML-based methods use algorithms to extract hand-crafted

features and a classifier to perform categorization. In (Aravind

et al., 2018), the authors computed textural features using a

histogram and a GLCM and trained multi-class SVM to perform

the categorization of three maize diseases such as Common Rust

(CR), leaf blight, and cercospora leaf spot. Zhang et al. (2015)

developed a method that employed a genetic algorithm to

automatically determine the kernel function and penalty factor

in SVM. This approach reported an overall classification

accuracy of 90.25%. Ikorasaki et al. (Ikorasaki and Akbar,

2018) suggested the bayesian theorem to construct an expert

diagnostic system for the identification of maize crop disease

based on the symptoms, with a precision rate of 90%. Zhang

et al. (2015) suggested a method that first segments the diseased

region and then computes a feature vector based on the shape,

color, and texture aspects of the segmented region. Then, the

KNN classification technique was used to categorize these

features into five different maize diseases and attained an

overall identification accuracy of 90.30%. Xu et al. (2015)

suggested an adaptive weighting multi-classifier fusion

approach for identifying maize leaf disease. This approach was

used to test seven prevalent types of maize leaf disease. The

average rate of recognition was 94.71%. In (Zhang and Yang,

2014), the authors employed the SVM technique to categorize

images of maize disease acquired from the internet, with an

overall recognition accuracy of 83.2%. Qi et al. (2016) presented

an image processing-based method for the categorization of

maize leaf disease images. Initially, the retinex algorithm was

employed to improve the image. Then, an automated threshold

approach in R-G gray space was used to extract disease spots,
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color, texture, and invariant moments. The principal component

analysis approach was employed to obtain dominant features

and the SVM was used to identify three common maize diseases

such as CR, Southern Leaf Blight (SLB), and curvularia lunata.

The overall recognition accuracy obtained was 90.74%.

However, the classification accuracy of these ML-based

methods for various maize leaf diseases is low due to less

discriminative power of extracted hand-crafted features.

Several DL-based methods have been widely adopted for the

classification of maize leaf disease due to their improved feature

extraction and representation capabilities. Haque et al. (2022)

developed an Inceptionv3-based architecture for the

classification of healthy maize leaves from diseased ones.

Initially, several augmentation strategies such as flipping,

rotating, skew, and distortion was applied to enhance the

diversity of input data. Then, an Inceptionv3 model with a

global average pooling layer was used to compute the keypoint

vector and perform classification. In the work by Subramanian

et al. (2022), DL models such as ResNet50, InceptionV3,

VGG16, and Xception were evaluated to recognize maize leaf

diseases. They conducted transfer learning and bayesian

hyperparameter optimization to enhance the performance. The

Xception network showed the highest recognition accuracy

among others, however, it involves a larger number of

parameters and is computationally complex. In (Ahila

Priyadharshini et al., 2019), the authors suggested a modified

LeNet CNN architecture with a smaller kernel size for disease

categorization in maize leaves. This method achieved an

accuracy of 97.89% with transfer learning. Similarly, in

another study (Baldota et al., 2021) DenseNet121 model was

employed. The model attained an accuracy of 98.45% on maize

disease samples from the PlantVillage database and 91.49%

under real-environment conditions such as varying lighting

and jitter. In (Liu et al., 2020), the authors used the

EfficientNet-b0 CNN model to classify several maize leaf

diseases and adopted transfer learning to accelerate the

training. This method showed improved recognition accuracy;

however, requires extensive performance evaluation on a

challenging database having noisy samples or real-

environment complexities. Zhan et al. (Zhang et al., 2018)

introduced an improved GoogLeNet and Vgg CNN for the

classification of nine different maize diseases. The authors

explored different pooling layer combinations, activation

functions, and dropout operations to decrease the number of

model parameters. This method obtained an average accuracy of

98.9%; however, the method is evaluated on a database having

limited diversity. Lv et al. (2020) proposed a CNN architecture

namely DMS-Robust Alexnet with dilated and multiscale

convolution for the classification of maize crop disease.

Initially, the input images were enhanced using preprocessing,

and then, data augmentation was employed to increase the size

of the input database. The average recognition accuracy for this

method was 98.62%. In (Zhang et al., 2021), the authors
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introduced a multi-activation function (MAF) module based

on a combination of various activation methods (Sigmoid,

ReLU, Mish, Tanh, and LeakyReLU) in the CNN model to

enhance the performance of maize leaf disease identification.

Initially, numerous image pre-processing algorithms, such as

DCGAN, were utilized to extend and enrich the data of diseased

samples. Then, various baseline CNN models such as AlexNet,

VGG19, ResNet50, DenseNet161 and were evaluated by

integrating the MAF module. This approach showed the

highest prediction accuracy of 97.41% using ResNet50;

however, the performance is limited over the noisy samples. In

(Amin et al., 2022), the authors developed a model using the

EfficientNetB0, and DenseNet121 network to compute deep

keypoints for the categorization of maize leaf disease. They

fused the extracted features to obtain a more descriptive

representation before performing classification. This method is

evaluated using corn leaf disease samples from the PlanVillage

database and thus has limited generalization for real

environment conditions. Zeng et al. (2022) presented a CNN

model namely SKPSNet-50 for the recognition of different maize

leaf diseases at an early stage. A selected kernel unit with a swish

activation function was integrated into the ResNet50 model to

improve the feature extraction. This approach showed an overall

accuracy of 92.9% for categorizing six different maize diseases. Li

et al. (2022) presented an improved one-stage detection model

i.e., YOLOv5 using multi-scale feature fusion for the detection of

corn leaf infections. A spatial pyramid pooling and coordinate

attention mechanism were introduced in the backbone network

to improve the feature extraction and classification performance.

This approach shows an improved generalization performance,

however, the accuracy decreases for small disease target

localization. In (Pan et al., 2022), the authors evaluated

different CNN models such as VGG16, VGG19, AlexNet, and

GoogleNet using different loss functions Softmax, ArcFace, and

CosFace for the identification of Northern Corn Leaf Blight

(NLB) disease. This method showed the highest accuracy of

99.94% using GoogleNet with Softmax loss function. Singh et al.

(2022) employed transfer learning to train the AlexNet CNN for

the identification of maize leaf disease. The method is evaluated

using the PlantVillage database and attained an accuracy of

99.16% on 100 epochs. However, the use of maize leaf disease

images with a simple background in CNN models limit the

practical usefulness of such models.

The attention mechanism is an effective supplementary

method for improving traditional feature extraction. In (Zeng

et al., 2022a), the authors proposed a lightweight dense-scale

network (LDSNet) that combined dense dilated convolutional

blocks and a coordinated attention fusion mechanism for the

identification of maize diseases. The dilated convolutional layers

improved the model receptive field and provided computation of

disease features at different scales. The overall identification

accuracy for maize leaf diseases and healthy leaves was 95.4%.

Yin et al. (2022) introduced an improved GoogleNet architecture
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for the grading of maize SLB spots. A dilated inception block was

added to improve the extraction of multi-scale features. The

channel attention mechanism was then integrated to emphasize

the relevance of inter-channel correlations for input features.

This approach attained an accuracy of 97.12% on a self-created

database. Chen et al. (2021) presented a framework namely

Mobile-DANet to categorize maize crop diseases. The

architecture comprises a DenseNet-based CNN having

depthwise separable convolution and spatial-channel attention

blocks. This approach showed an average accuracy of 98.50% on

plantVillage and 95.86% on database samples having noisy

background conditions. Qian et al. (2022) suggested an

approach based on a vision transformer for the identification

of maize leaf disease. Initially, a CNN network was used to

extract the feature vector and encode it into a token matrix.

Then, a multi-head self-attention was introduced in the

transformer encoder to compute the correlation between

tokens. This method shows improved classification accuracy;

however, the performance is limited by the token representation

dimension resulting in the loss of semantic information between

neighboring patches. He et al. (2022) presented the MFasterR-

CNN model for the detection and categorization of maize crop

diseases. A VGG16-based backbone network was used for the

extraction of features in the Faster-RCNN network. This method

showed improved recognition accuracy, however, it employs a

selective search algorithm for the detection of infected regions

which is slow. Moreover, it requires annotated data which is an

expensive process.

The comparison of the existing techniques for the

categorization of maize leaf disease is presented in Table 1.

According to the reviewed literature, a number of works have

been attempted to perform maize disease identification and

classification using CNN models. It can be observed that

maize disease classification accuracy has significantly

improved. However, these methods show robust performance

for maize disease classification utilizing samples with a simple

background or surroundings. The performance of existing

techniques is vulnerable to environmental effects and degrades

on images with complicated backgrounds having numerous

visual disturbances such as non-uniform lightning conditions,

distortion, and blur (Table 1). These factors limit the practical

applicability of existing models for the classification of multiple

maize leaf diseases. As a result, there is still room for

improvement in approaches in terms of generalization,

computational, and processing time complexities.
3 Materials and methods

In this section, we explained the dataset and the method

adopted for the maize leaf disease identification. We have

discussed the proposed EANet architecture and its details for

fine-grained various maize disease classification task.
Frontiers in Plant Science 05
3.1 Dataset

In this work, we have used the maize leaf disease images

from three different online available data sources to assess

the classification effectiveness of our technique. To show the

generalization of the proposed method, we have used the

databases having the samples captured in both a controlled and

real environment. The Maize Disease dataset (Corn or maize leaf

disease dataset, 2022) comprised images from the PlantVillage and

PlantDoc databases. It consists of a total of 4188 samples having

three maize leaf diseases: 1306 images of CR, 574 images of grey leaf

spot (GLS), 1146 images of northern corn leaf blight (NLB), and

1162 images of healthymaize leaf. This database (Corn ormaize leaf

disease dataset, 2022) contains images of leaves taken in various

orientations and under controlled background settings with

approximately even illumination levels. The other database used

in our study is presented in (Qian et al., 2022). The database

contains 1273 samples of healthy leaves, 1023 of CR, and 2243

images of SLB disease. The samples were recorded in the natural

environment using mobile phones under normal and uncontrolled

lighting settings. The number of samples with GLS disease was

lower than the other categories. A total of 524 images of GLS disease

captured in real-environment were taken from the source (Ahmad

et al., 2021). Overall, the dataset we utilized to categorize maize

plant leaves is complex in nature as it contains samples with

different diseases captured in real environment settings.

Moreover, it contains samples having disease regions of various

sizes, colors, and shapes, as well as image distortions such as noise,

lighting, and blurring. Figure 1 shows a few samples from the

database, while Figure 2 provides a class-wise partition of the

dataset. To improve the diversity of the images and prevent over-

fitting problems during training, data augmentation methods such

as random angle rotation, flipping, horizontal or vertical translation,

scale alteration, and color jittering were applied. With this

approach, there were at least 2500 samples in each group. The

images were resized to a dimension of 240 × 240 pixels. Figure 3

displays some instances of augmented images.
3.2 Proposed EANet model

To accurately identify different maize leaf diseases, we

introduced EANet, a lightweight CNN model built by using

the Efficinetnetv2 CNN (Tan and Le, 2021) model with an

attention mechanism. The proposed EANet model extracts

effective representations by using an attention mechanism that

allows to focus on disease regions and enhances the ability for

fine-grained classification of maize diseases. The crucial

information of maize disease is the leaf area where the

infectious spots are located. The color and texture properties

of these local regions serve as the feature information from a

visual perspective. Usually, the high-level features extracted by

CNN may contain redundant background information that
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interferes with the representation of infectious spots. To alleviate

this, we used the Efficinetnetv2 CNN that extracts more robust

features of the image and downsamples into a lower dimension

without losing its characteristics. These features are used by the

attention module that improves local related features and
Frontiers in Plant Science 06
restricts irrelevant features at spatial and channel levels (Woo

et al., 2018; Zhu et al., 2021).

The network architecture of the proposed EANet approach

is illustrated in Figure 4. It comprises of an Efficientnetv2 CNN,

a spatial-channel attention module, an adaptive average pooling
TABLE 1 Comparison of existing techniques.

Reference Year Method Dataset Limitations Performance
(Accuracy)

Zhang et al.
(2015)

2015 Genetic algorithm-based SVM No details given This method involves extensive pre-processing and
manual feature extraction and thus, has low
generalizability to unseen cases.

90.25%

Xu et al.
(2015)

2015 Multiple features such as color co-
occurrence matrix, color moment, and LBP
with adaptive weighting multi-classifier
fusion

Private self-created This approach is quite complicated and has increased
recognition time due to the fusion process.

94.71%

Qi et al. (2016) 2016 Textural features with principal
component analysis and SVM

No details given This approach lacks generalization. 90.74%

Aravind et al.
(2018)

2018 Textural features using GLCM and
Histogram, multi-class SVM

PlantVillage This approach requires the manual selection and the
extraction of features and thus has a low
generalization to variations in blurring, noise, non-
uniform lightning conditions.

83.7%

Zhang et al.
(2018)

2018 Improved GoogLeNet and VGG CNN PlantVillage and
google website

This method lacks robustness and utilized a small
dataset having 500 total samples.

98.9%

Ahila
Priyadharshini
et al. (2019)

2019 Modified LeNet CNN PlantVillage This approach involves extensive preprocessing and
lacks analysis of model robustness.

97.89%

Liu et al.
(2020)

2020 EfficientNet-B0 Crop
disease global AI-
challenge

This work lacks detailed experimental results and
analysis.

98.52%

Lv et al. (2020) 2020 AlexNet with dilated and multiscale
convolution

PlantVillage, crop
disease global AI-
challenge 2018 and
google website

This model involves a large number of parameters
and is computationally complex.

98.62%

Baldota et al.
(2021)

2021 DenseNet121 PlantVillage This approach lack robustness on noisy data 91.49%

Haque et al.
(2022)

2022 Inception-v3 PlantVillage Lacks analysis of model robustness on real
environment samples.

95.99%

Subramanian
et al. (2022)

2022 VGG16, ResNet50, InceptionV3, and
Xception with Bayesian for
hyperparameter optimization

PlantVillage The work lacks model robustness analysis using real-
world instances.

99%

He et al.
(2022)

2022 Two-stage object detection model MFaster-
RCNN with VGG16-based feature
extraction

Private self-created This approach is computationally complex and
involves manual annotation of samples for training.

97.23%

Amin et al.
(2022)

2022 Deep feature fusion using EfficientNetB0,
and DenseNet121

PlantVillage The results are reported using a dataset captured in a
controlled environment.

98.56%

Zeng et al.
(2022)

2022 Modified ResNet50-based model i.e.,
SKPSNet-50

Private self-created The dataset contained only 1452 total samples and the
approach suffers from the issue of over-fitting.

92.9%

Li et al. (2022) 2022 One-stage object detection YOLOv5 with
multi-scale feature fusion network for
feature extraction

Kaggle-Corn leaf
infection dataset

This approach requires annotated samples for model
training.

71.01%
(Sensitivity)

Pan et al.
(2022)

2022 Multiple feature extractors such as VGG16,
VGG19, AlexNet, and GoogleNet using
different loss functions Softmax, ArcFace,
and CosFace

Private self-created This study is limited to binary classification. 99.94%

Singh et al.
(2022)

2022 AlexNet CNN Private self-created This approach involves a large number of parameters,
longer training time i.e., 100 epochs and is
computationally complex.

99.16%
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(AvgP) layer, and finally a classification layer. Initially, the image

is sized to 240 × 240 before passing it as input to the network

model. Then, an efficientnetv2-based CNN network extracts

high-level feature information of the image. The attention

module enhances the capacity of the model to extract disease

characteristics, which increases identification accuracy. The

spatial attention module uses the multiplied features from the

convolutional layer and the channel attention module to

compute the location of the relevant keypoints in the image.

Finally, the adaptive average pooling layer learns the

dependencies between several channels adaptively and alters

the feature map to 1 × 1 × 1280. The fully connected (FC) layer

categorizes the computed keypoints using softmax classification.
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3.2.1 EfficientNetv2 CNN model
The EfficientNetV2 is an enhanced variant of the

EfficientNet CNNs (Tan and Le, 2019), designed to optimally

use available resources while maintaining high accuracy (Tan

and Le, 2021). The EfficientNet CNN architecture is designed by

using a compound scaling approach that enables a baseline CNN

to expand equally in three dimensions such as depth, width, and

input size. Furthermore, EfficientNet models are substantially

less in size when compared to other CNN models and

significantly outperform on the ImageNet database (Huang

et al., 2017).

We chose the Efficientnetv2 CNN for maize leaf disease

identification because of its lightweight architecture, faster
FIGURE 2

Number of class-wise samples in the maize leaf disease dataset used. To improve the diversity of the images and prevent over-fitting problems
during training, data augmentation methods such as random angle rotation, flipping, horizontal or vertical translation, scale alteration, and color
jittering were applied. With this approach, there were at least 2500 samples in each group. The images were resized to a dimension of 240 ×
240 pixels. Figure 3 displays some instances of augmented images.
FIGURE 1

Sample images showing different types of maize leaf diseases.
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training, and inference speed. Table 2 shows the architecture of

Efficientnetv2 CNN. The network mainly comprises of MBConv

and Fused-MBConv blocks, which uses squeeze and excitation

(SE) optimization to construct channel-wise attention and

enhance the network’s feature expressiveness. Figure 5 shows

the architecture of MBConv, Fused-MBConv, and the SE block.

In Efficientnetv2, the incorporation of Fused-MBConv blocks at

an earlier level leads to greater parameter efficiency and faster

training as compared to Efficientnetv1 (Tan and Le, 2021). The

MBConv block begins with a 1×1 convolutional layer and a

depthwise convolution with a 3×3 kernel size. In the Fused-

MBConv block, the depthwise 3×3 convolution and expansion

1×1 convolution layers in MBConv are replaced with

conventional 3×3 convolution layers. A 1×1 pointwise

convolution is applied after the SE block in both MBConv,
Frontiers in Plant Science 08
and fused-MBConv blocks to adjust the channel dimensions.

Finally, a drop connection is performed, followed by a skip

connection of the input.

3.2.2 The attention mechanism
During feature extraction, the CNN gathers a large amount

of irrelevant background information and noise from the input

image. This irrelevant information considerably influences the

accurate identification of diseases. Using the attention

mechanism the emphasis of the network is directed onto

important feature information while suppressing noise and

background, which significantly increases identification

accuracy. The attention mechanism is a selective system that

gives various feature information varied weights; for instance, it

gives disease-specific information greater weight while giving
FIGURE 4

Architecture of proposed EANet model for the classification of maize leaf disease.
B C D EA

FIGURE 3

Augmented images (A) original sample, (B) angle rotation, (C) flipping, (D) color change, and (E) scaling.
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background and noise less weight. Many studies have been

conducted on attention processes, which are broadly classified

as channel attention (CA) and spatial attention (SA)

mechanisms (Guo et al., 2022). The SA mechanism performs

well in probing the target’s position in the feature map, while the

CA mechanism effectively searches for a specific target across

several feature maps. Additionally, considering the combination

of CA and SA modules in parallel or sequential, the sequential

approach performs better in real-world application settings (Zhu

et al., 2021; Guo et al., 2022).

In this study, we added the spatial-channel attention (SCA)

module (Woo et al., 2018) to the Efficientnetv2 model so that the

network can emphasize the specific information. As a result, the

network learns to focus on disease-related important

characteristics while ignoring irrelevant information acquired

concurrently. Both the Efficientnetv2 CNN and SCA module

produce an effective hybrid model, the CNN extracts high-level
Frontiers in Plant Science 09
global information while SCA emphasizes specific features.

During network training, the SCA module learns the relevance

of interchannel correlations and spatial positions for the input

features. Both the spatial and channel modules redistribute the

weight of the characteristics in an adaptive manner after learning

the essential information in both the channel and the spatial

dimensions. Figure 6 shows the structure of the SCA block.

Assume G ⋲ YC×W×H is an intermediate keypoint map with

dimensions C×W×H from the Efficientnetv2 CNN model is

passed to the SCAmodule. The CA block generates a 1D channel

feature map FC ∈ Y1×1×C, whereas the SA block produces a 2D

spatial feature map Fs ∈ Y1×W×H. The entire function of the SCA

module is given by:

G = CA  Gð Þ + SA  Gð Þ = Fc  Gð Þ ∗G  + G ∗ Fs Gð Þ (1)

where * denotes the dot product of elements. To compute the

input keypoints G, both CA and SA modules use maximum
TABLE 2 Architecture of Efficientnetv2 baseline network.

Blocks (i) Layer (fi) Resolution (Hi×Wi) Channel (Ci) Number of layers

1 Convolution layer [3 × 3] 112 × 112 40 1

2 Fused_ MBConv1 112 × 112 16 2

3 Fused _ MBConv4 56 × 56 32 3

4 Fused_ MBConv4 28 × 28 48 3

5 MBConv4 14 × 14 96 4

6 MBConv6 14 × 14 112 6

7 MBConv6 7 × 7 192 9

8 Convolution layer [1 × 1], Pooling, and FC 7 × 7 1280 1
B

C

A

FIGURE 5

Structure of MBConv, Fused MBConv, and the SE block.
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pooling (MaxP) and average pooling (AvgP) layers. In the CA

block, the result of these two pooling operations are added

together to produce the final keypoint map. The CA is computed

as:

Fc Gð Þ  = s  Mlp  MaxP  Gð Þ ð Þ + Mlp  AvgP  Gð Þð Þð Þ (2)

= s X1 X0 Gc
maxð Þð Þ + X1 X0 Gc

avg

� �� �� �
(3)

where s shows the sigmoid activation method, the X1 and X0

are learning weights, theGc
max and Gc

avg are average-pooled and

max-pooled features, and MLP is a multilayer perceptron. The

SA block generates the spatial attention map by concatenating

the final feature acquired from channel attention. These are the

values of Gs
avg and Gs

max along the channel, dimension to

emphasize the regions carrying important information. These

values are combined, and a convolutional layer is used to execute

the convolution operation. SA is determined by:

As Gð Þ = s f 7�7 AvgP Gð Þ;   MaxP Gð Þ½ �ð Þ� �
(4)

As Gð Þ = s f 7�7 Gs
avg;G

s
max

� �� �� �
(5)
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Where f denotes the convolutional operation with a kernel of

the size 7×7.
3.3 Loss function

A loss function is utilized to measure how well the model

predicts the data during training. The recognition of maize

diseases is a multi-class categorization problem. Typically,

multi-class classification problems employ the categorical

cross-entropy (CCE) loss function. The main drawback of

CCE loss is that it presumes equal learning across all

categories (Sambasivam and Opiyo, 2021). In class-imbalanced

training, this negatively impacts the training and classification

performance. In order to focus on learning the minority classes,

a focal loss is introduced, which modifies the conventional CCE

loss function by down-weighting the majority class (Lin et al.,

2017; Tran et al., 2019). We used the multi-class focal loss

function during the training phase to compensate for class

imbalanced data and improve the model classification

accuracy. The categorical focus loss in a setting with multi-

class maize disease classification is defined as:
B

C

A

FIGURE 6

Structure of Attention module comprising channel and spatial attention.
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Loss k, yð Þ = −oc
k=1hk 1 − ykð Þg   log(yk) (6)

where y and k are the expected probability distribution and

the total number of classes, respectively. The hyper-parameter h
and g are the weighting factor and modulating parameter set as

1, respectively.
4 Experiment and results

This section includes a description of the database utilized to

assess the performance of the proposed EANet model. It also

describes the implementation and different experiments

performed for the evaluation. A thorough investigation of the

obtained results after executing various experiments

is presented.
4.1 Implementation details

The described approach was developed using Python with

Tensorflow, and Keras DL framework. The training and testing

of the models were executed in the Google Colaboratory (Colab)

setting. In the introduced method, transfer learning was

employed to train the models on the dataset for maize leaf

disease classification. Transfer learning is employed to improve

the efficiency of feature learning and the generalization of the

proposed method. The weight parameters of the EffectiveNetV2

model trained on ImageNet (Huang et al., 2017) were used to

initialize the training. The model was fine-tuned by using the

maize disease dataset to learn the disease features from the input

samples during training. As a result, the weight values in the

layers were updated. Fine-tuning a network with transfer

learning is usually much faster and easier than training a

network with randomly initialized weights of the network

from scratch. Table 3 presents the details of network training

parameters. The learning rate was set as 0.001. It was set to

automatically decline by 0.1 after every 4 epochs for a total of 25

epochs, with no improvement in validation loss. After 10 epochs

of no progress, the early stopping strategy was utilized to halt the

model training in order to prevent overfitting. We partitioned

the input dataset into 7:3 train and test sets. To train the model

and assess over-fitting, we further divided the training set 9:1

into training and validation sets. The test set was used to assess

the effectiveness of the model.
4.2 Evaluation parameters

In this study, we employed precision(P), recall(R), accuracy

(Acc), the F1-score (FS) and G-mean (GM) metrics to evaluate

the model effectiveness in identifying maize leaf diseases. The

following are the formulae for these measuring indicators:
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P =
Tp

Tp + Fp
(7)

R =
Tp

Tp + Fn
(8)

Acc =
Tp + Tn

Tp + Tn + Fp + Fn
(9)

FS =
P ∗R
P + R

� 2 (10)

GM =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R ∗

Tn

Tn + Fp

s
(11)

where the true-positive, TP, represents the number of images

that were classified as correctly diseased class i.e. GLS, CR, NLB,

SLB, and healthy. Whereas false-positive, FP, represents the

images classified incorrectly as diseased and in reality they are

healthy. Moreover, false-negative, Fn, represents the samples that

are classified as healthy and belong to the diseased class. True-

negative, Tn, are those images that are classified as diseased, and

in reality, they belong to the diseased class.
4.3 Evaluation of proposed model

In this sub-section, we presented the classification results of

the EANet model for maize leaf disease obtained using images

from the test set. To evaluate the classification performance, we

computed the Acc, P, R, FS, and GM values for each class

separately. The quantitative assessment results of the EANet

model on the test set are given in Table 4. From Table 4, it can be

seen that the EANet model shows remarkable performance in

identifying multiple maize leaf diseases. The results show that

the majority of samples in each category were accurately

identified. The higher values of P, R, FS, and GM indicate the

better class-wise prediction ability of the model on the employed

database. More specifically, the recognition ability of our

approach in terms of average P, R, FS, and GM values

achieved is 98.90%, 98.87%, 98.89%, and 98.89%. These results

show the overall effectiveness of the EANet model in the

classification of healthy and multiple types of disease-affected
TABLE 3 Model training parameters.

Parameter Value

Epoch 25

Learning-rate 0.001

Batch-size 16

Optimization function Stochastic gradient descent
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maize leaves captured under var ious cha l l eng ing

environmental conditions.

Figure 7 presents the confusion matrix (CM) summarizing

the categorization accuracy of the EANet model. The percentage

of trained model predictions that matched the class levels of test

data accurately is represented by the diagonal matrix values,

whereas the off-diagonal elements correspond to inaccurate

predictions. The values shown in Figure 7 depict that we have

attained the highest true-positive rate for the CR class with a

score of 100%. While we have attained the lowest true-positive

rate for the healthy class with a score of 97.80%. The other

classes such as NLB, GLS, and SLB have achieved a true-positive

rate of 99%, 98.7%, and 98.9%, respectively. Overall, we can say

that our approach is proficient in recognizing the CR class, while

it has shown a few misclassifications in predicting the images of

the healthy and other classes. The reason for the inaccuracy may

be mainly caused due to the similarity of the visual symptoms of

healthy samples with NLB, GLS, and SLB categories. Moreover,

the interference of background also leads to the incorrect

identification of these samples. Hence, it can be said that for

all the classes, we have attained notable results with the EANet

model in a real-world environment setting.

We have also reported the accuracies of five maize leaf

disease classes in a boxplot in Figure 8. The boxplot indicates

the distribution of classification accuracy over different classes.

According to Figure 8, our method attained the average accuracy

values of 97.8%, 98.7%, 100%, 99%, and 98.9% for maize leaf

disease classes i.e. healthy, GLS, CR, NLB, and SLB respectively.

More specifically, we obtained an average classification accuracy

of 98.94% with a low error rate on all classes that exhibit the

efficacy of the proposed approach. The presented results show

that our approach is robust against variations in disease

appearance and can accurately identify the disease in presence

of a complex background environment. The reason for the

improved maize leaf disease classification performance is the

correctness of the employed keypoint computation technique

paired with the spatial-channel attention that represents each

maize leaf disease class in a discriminative manner using inter-

channel connection and space-wise point characteristics.

The infected region of the image provides critical

information for disease identification when diagnosing maize

leaf diseases using an automatic identification approach,

however, the background region of the image frequently
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interferes. We examined the proposed model using Grad-

CAM to assess which areas of the input images were useful for

the network categorization results and the findings are presented

in Figure 9. From Figure 9, it can be seen that the EANet model

has learned to focus on relevant visual aspects and the results are

based on reasonable attributes. Based on this observation, we

may infer that while recognizing maize leaf disease the

Efficientnetv2 model computes discriminative features, and the

SCA module assists in determining the position of important

information and enhancing information expression in key

regions, hence improving specific disease recognition. The heat

map analysis experiment demonstrated the capability to identify

maize leaf diseases from a visual perspective.
4.4 Comparative analysis with different
DL networks

Deep features are effective for image recognition tasks. We

performed an experiment to compare the feature learning ability

of various DL models using the maize leaf disease database. For

this reason, we considered eight other commonly used CNN

models such as Alexnet (Krizhevsky et al., 2012), GoogleNet

(Szegedy et al., 2015), VGGNet (Simonyan and Zisserman,

2014), ResNet50 (He et al., 2016), InceptionV3 (Szegedy et al.,

2016), and DenseNet-201 (Huang et al., 2017). EfficientNetv1

(Atila et al., 2021) and EfficientNetv2 (Tan and Le, 2021). These

networks were trained using the transfer-learning approach, and

the weights pre-trained on ImageNet (Deng et al., 2009) were

used to initialize the network parameters. The classification layer

was altered with a new softmax layer having the number of

output classes in our database. We analyzed the acquired

classification results of these models on train and test sets of

the maize leaf disease database. We also assessed their

computational complexity in terms of network parameters and

the sample processing time to compare their performance with

proposed approach.

Table 5 shows the comparative results obtained by the

proposed and other DL approaches. To compare DL models,

we first analyzed model complexity in terms of trainable network

parameters and sample processing time required. The Table 5

shows that the proposed EANet model has fewer training

parameters and requires less processing time to categorize the
TABLE 4 The class-wise quantitative assessment outcomes of the EANet model.

Category P (%) R (%) FS (%) GM (%)

Healthy 98.41 97.83 98.13 98.18

Grey Leaf Spot 98.76 98.69 98.72 98.65

Common Rust 100 100 100 100

Northern leaf Blight 98.67 99.03 98.85 98.93

Southern leaf blight 98.51 98.93 98.77 98.71
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FIGURE 7

Confusion matrix of classification results for maize leaf disease using the test set.
FIGURE 8

Box-plot of the accuracy for the proposed method on the test set.
Frontiers in Plant Science frontiersin.org13

https://doi.org/10.3389/fpls.2022.1003152
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Albahli and Masood 10.3389/fpls.2022.1003152
various maize leaf diseases than the peer techniques. The VGG-

16 model contains the most network parameters i.e., 143M,

while the DenseNet model is the most expensive in terms of

processing time. In comparison, the proposed EANet model has

8.23 million parameters, which is fewer than all other models

and requires a less processing time of 1,051 seconds,

demonstrating the efficacy of the proposed approach. The

addition of the attention module to EfficientNetV2 slightly

increased the number of parameters while considerably

improving classification results. Table 5 illustrates that the

suggested method offers a lightweight approach for maize leaf

disease categorization as compared to other DL models.

Figure 10 depicts a comparison of classification accuracies

using a bar graph to better summarize the findings. It clearly

shows that, when compared to AlexNet, VGGNet,

InceptionV3, ResNet50, MobileNetv2, EfficientNetv1, and

EfficientNetv2, the proposed model outperformed in

identifying maize leaf diseases. More specifically, the

suggested EANet model had an overall test accuracy of

98.94% for the maize disease classification, which was

11.82%, 8.6%, 6.12%, 11.36%, 4.77%, 14.56%, and 5.42%,
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4.57% higher than AlexNet, VGGNet, InceptionV3,

ResNet50, DenseNet-201, MobileNetv2, EfficientNetv1, and

EfficientNetv2 model, respectively. By comparing the

proposed model with its peer model such as EfficientNetv2,

we observed that adding a spatial-channel attention

mechanism to the EfficientNetv2 model significantly

improves its ability to recognize maize disease. Without the

attention mechanism, the EfficientNetv2 model accuracy for

maize disease identification in the testing dataset was 94.37%,

whereas the proposed EANet model attained an average

performance increase of 4.57%.

In summary, after a thorough evaluation of existing DL

models on the maize disease database, we observed that the

proposed EANet model can precisely recognize multiple maize

leaf diseases in field conditions. For the majority of assessment

metrics, the EANet model outperforms other DL models utilized

in the comparison study. The reason for the better performance

of the proposed method is its improved network design, which

extracts discriminative keypoints by focusing on disease spots

rather than background noise information, thereby improving

the classification accuracy.
B

A

FIGURE 9

Sample attention heatmaps of the proposed approach for the categorization of maize diseases, (A) without attention mechanism and (B) with
attention mechanism.
TABLE 5 Comparative results of the proposed technique with other DL models.

Models Training accuracy (%) Testaccuracy (%) Total trainable Parameter (M) Processing Time (s)

AlexNet 90.46 87.12 62.3 1109

VGG-19 92.52 90.34 143 1007

Inception V3 93.67 92.82 23.8 3216

ResNet50 89.78 87.58 23.72 2536

DenseNet-201 98.31 94.17 20 3446

MobileNetv2 92.49 84.38 4.32 1013

EfficientNet 97.17 93.52 9.1 1236

EfficientNetv2 97.91 94.37 8.1 1083

Proposed model (EANet) 99.89 98.94 8.23 1051
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4.5 Comparative analysis with other
state-of-the-art models

To further assess the proposed EANet model performance, a

comparison with current state-of-the-art maize disease

identification methods is performed. The comparative findings

are shown in Table 6.

As demonstrated in Table 6, when EANet is compared to

other methods described in the literature, it has a significant

improvement in performance. More specifically, the proposed

framework attained an average accuracy value of 99.98% which

is higher than other comparative methods. The studies (Liu et al.,

2020; Zhang et al., 2021; Amin et al., 2022) used various deep

CNN architectures and the PlantVillage maize disease dataset as

transfer learning. Few of them employed the attention method in

CNNs to enhance classification accuracy (Chen et al., 2021; Zeng

et al., 2022a; Qian et al., 2022; Yin et al., 2022). However, the

accurate identification of maize disease is difficult under realistic

field settings. The studies may (Ahmad et al., 2021; Chouhan

et al., 2021; Xiang et al., 2021; Corn or maize leaf disease dataset,

2022; Yin et al., 2022) suffer from the model over-fitting issue as

a result of their complex network structures. Moreover, the

comparative approaches show robust performance on samples

having a simple background or limited disease categories. In

comparison to these methods, the proposed EANet model

employs an Efficientnetv2 network paired with a spatial-

channel attention mechanism which not only assists in

computing important image features but also decreases model

training complexity while also providing a computational
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benefit. The proposed approach is evaluated on a database

containing samples having heterogeneous field environments

such as background noise and inconsistent lighting strengths.

Thus, has the capacity to recognize healthy and different maize

leaf diseases such as GLS, NLB, CR, and SLB under complex

background settings.
5 Conclusion

In this work, we presented an automated approach for

classifying maize diseases using DL. We proposed EANet, an

Efficientnetv2 CNN model coupled with an attention mechanism

to identify maize disease, which has a relatively small model size and

good accuracy. The introduced architecture with spatial-channel

attention enhances the capability of feature learning of the model

from raw images captured in real-environment settings such as the

complex background and varying lightning. An impressive

performance is attained on test images by conducting a series of

different experiments. The proposed method attains an overall

training and testing accuracy of 99.89% and 98.94%, respectively

for recognizing the five major maize leaf disease classes. The results

show that the proposed method can effectively categorize maize leaf

disease in the presence of complex background settings and various

distortions, such as varying brightness, contrast, color, position,

angle, and structure. In all evaluation metrics, the presented model

outperforms the other CNN models utilized in the comparison

experiments. Furthermore, the findings of the visual analysis

experiments also indicate that the suggested technique developed
FIGURE 10

Performance comparison of the proposed technique with other CNN models.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1003152
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Albahli and Masood 10.3389/fpls.2022.1003152
in this work can not only properly identify infected regions but also

sufficiently transmit information about such areas while

recognizing the specific disease. In the future, we intend to use

the model on portable devices for the purpose of real-time

monitoring and identifying maize diseases. Furthermore, we also

plan to make it more useful for real-world applications to classify

other maize leaf diseases as well.
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