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Quercus variabilis (Fagaceae) is an ecologically and economically important 

deciduous broadleaved tree species native to and widespread in East Asia. It is 

a valuable woody species and an indicator of local forest health, and occupies 

a dominant position in forest ecosystems in East Asia. However, genomic 

resources from Q. variabilis are still lacking. Here, we present a high-quality 

Q. variabilis genome generated by PacBio HiFi and Hi-C sequencing. The 

assembled genome size is 787 Mb, with a contig N50 of 26.04 Mb and scaffold 

N50 of 64.86 Mb, comprising 12 pseudo-chromosomes. The repetitive 

sequences constitute 67.6% of the genome, of which the majority are long 

terminal repeats, accounting for 46.62% of the genome. We used ab initio, 

RNA sequence-based and homology-based predictions to identify protein-

coding genes. A total of 32,466 protein-coding genes were identified, of which 

95.11% could be functionally annotated. Evolutionary analysis showed that Q. 

variabilis was more closely related to Q. suber than to Q. lobata or Q. robur. 

We  found no evidence for species-specific whole genome duplications in 

Quercus after the species had diverged. This study provides the first genome 

assembly and the first gene annotation data for Q. variabilis. These resources 

will inform the design of further breeding strategies, and will be valuable in the 

study of genome editing and comparative genomics in oak species.
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Introduction

Quercus L. (oak) is an ecologically and economically 
important genus of deciduous and evergreen forest ecosystems 
throughout the Northern Hemisphere. The genus comprises 
approximately 450 species (Cavender-Bares, 2016, 2019; Plomion 
et al., 2016), and Quercus species not only play pivotal roles in 
ecosystem functioning (e.g., biodiversity maintenance, water and 
soil conservation and carbon sequestration), but also provide raw 
materials for timber, starch, tannin, cork and medicinal resources. 
Due to the economic value of these trees, their presence in many 
common habitats, and their dominant positions in many 
ecosystems and landscapes across the Northern Hemisphere (Chai 
et al., 2016), Quercus species have been the focus of many genetic, 
ecological and evolutionary studies (Eaton et al., 2015; Gugger 
et al., 2021; Fu et al., 2022). However, classification of oak trees is 
challenging, because of the large inter-and intraspecific 
morphological variation, and because of the conflicting 
phylogenies derived from analysis of plastid and low-copy nuclear 
markers (Manos et al., 1999; Simeone et al., 2013, 2016; Hubert 
et  al., 2014; Vitelli et  al., 2017; Zhang et  al., 2020). With the 
accumulation of molecular and morphological evidence, eight 
Quercus sections, corresponding to clades, have been accepted: the 
Old World sections Cyclobalanopsis, Cerris and Ilex, and the New 
World sections Quercus, Lobatae, Virentes, Protobalanus and 
Ponticae (Gil-Pelegrín et al., 2017; Hipp et al., 2020).

The Chinese cork oak, Quercus variabilis (Q. variabilis) 
belongs to the East Asian Cerris lineage in subgenus Cerris (Hipp 
et al., 2020). It is an important tree species in warm-temperate 
deciduous broadleaved woodland, and it is native to and 
widespread in East Asia, including China, the Korean Peninsula, 
Japan, Laos and Thailand (Fujiwara and Harada, 2015). 
Q. variabilis is characterized by its thick corky bark, which is 
peeled to make the corks used as bottle stoppers in the wine 
industry (Pereira, 2011), and Q. variabilis is also a valuable timber 
species. Furthermore, Q. variabilis, together two other East Asian 
oak species (Q. acutissima and Q. chenii), is proposed as an 
indicator species for local forest health, due to its importance in 
the local ecology (Zilliox and Gosselin, 2014; Chen et al., 2020b; 
Asbeck et al., 2021).

Previous studies investigating Q. variabilis have mainly 
focused on its morphological characteristics (Du et al., 2021; 
Sun et  al., 2021), its responses and adaptations to climate 
change (Gao et  al., 2020; Xia et  al., 2022), or its adaptive 
evolution and introgression, as assessed using whole genome 
resequencing (Fu et al., 2022). However, to date, no nuclear 
genomic resources are available for Q. variabilis. Here, 
we present the first chromosome-scale high-quality genome 
assembly of Q. variabilis, generated using a combination of 
Pacific Biosciences high-fidelity (PacBio HiFi) and Hi-C 
technologies. We  performed structural gene annotation, 
identified repetitive sequences, and also conducted a 
comparative genomics study with the genomes of a further 13 
plants. This study will provide important resources for the 

further investigation of genetic diversity in Q. variabilis and 
will improve the resolution of the oak phylogeny.

Materials and methods

Plant materials

Quercus variabilis samples were collected from an ancient tree 
(more than 400 years old) growing in Culai Mountain National 
Forest Park, Shandong Province, China.

Genomic DNA extraction and 
sequencing

Fresh leaves were collected and immediately frozen in liquid 
nitrogen for transport back to the lab. The genomic DNA was then 
isolated using a Plant DNeasy Mini kit (Qiagen China, Shanghai, 
China) according to the manufacturer’s instructions. The quality 
and quantity of the DNA were determined using agarose gel 
electrophoresis and with a NanoDrop 2000 spectrophotometer 
(Thermo Fisher Scientific, Waltham, MA, United States). A library 
of short-insert-size genomic DNA fragments of length 300–400 bp 
was constructed according to the manufacturer’s instructions, and 
was sequenced on a DNBSEQ platform (Beijing Genomics 
Institute, Shenzhen, China) for 150 bp pair end sequencing. For 
long-read sequencing, a 20 kb high-fidelity (HiFi) library was 
constructed following the manufacturer’s protocol1 on the PacBio 
Sequel II platform (Pacific Biosciences of California, Inc.). To 
increase continuity of the genome, a Hi-C library was constructed 
and sequenced on the DNBSEQ platform (BGI, Shenzhen, China).

RNA extraction and sequencing

For RNA sequencing, fresh leaves, young twigs, fruits and 
seeds were sampled and immediately frozen in liquid nitrogen. 
RNA was extracted using TRIzol reagent (Invitrogen), the 
genomic DNA was eliminated using DNase and the samples were 
then mixed for RNA sequencing. We  used agarose gel 
electrophoresis, a NanoDrop 2000 spectrophotometer (Thermo 
Fisher Scientific) and an Agilent Bioanalyzer 2,100 (Agilent 
Technologies, Santa Clara, CA, United  States) to evaluate the 
quality of the RNA. High-quality RNA was then used to build a 
cDNA library following the manufacturer’s instructions. 
Paired-end sequencing was performed on the DNBSEQ platform 
(BG I, Shenzhen, China), generating 150-bp paired-end reads.

1 http://www.pacb.com/
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Estimation of genome size and ploidy

SOAPnuke V1.6.5 (Chen et al., 2018b) was employed to filter 
out PCR duplications, low-quality reads (≥ 10% of nucleotides 
with a quality score ≤ 20 or the proportion of N is greater than 
1%) and adapter sequences, with the following parameters: -n 
0.01-l 20-q 0.1-i -Q 2-G -M 2-A 0.5 –d. Next, the software Jellyfish 
v2.1.4 (Marçais and Kingsford, 2011) was used to count k-mers of 
length 17–31. GenomeScope 2.0 (Ranallo-Benavidez et al., 2020) 
was then applied for the estimation of genome size and other 
features such as heterozygosity and repetition rate. Smudgeplot 
(Ranallo-Benavidez et  al., 2020) was used for the estimation 
of ploidy.

Genome assembly and evaluation

The PacBio SMRT-Analysis2 was used as quality control to 
eliminate adaptors and low-quality short reads, producing a total 
of 51.7 G bases (~ 72 × coverage) of PacBio HiFi data. The initial 
assemblies were then performed in HiFi-asm v0.15.2 (Cheng et al., 
2021). To acquire high-quality, chromosome-level assemblies, 
Hi-C reads were compared to the contigs assembled above using 
Juicer (Durand et  al., 2016b). Unique mapped reads with 
map-quality scores > 40 were subsequently used for Hi-C 
association chromosome assembly using the 3D-DNA pipeline 
(Dudchenko et al., 2017). Scaffolds were then manually checked 
and refined with Juicebox (Durand et al., 2016a) and visualized in 
Hicplotter (Akdemir and Chin, 2015). A BUSCO analysis was 
conducted to determine gene/genome completeness using 
BUSCO v4 (Simão et al., 2015) together with the embryophyta_
odb10 database with 1,614 plant single-copy orthologues. BWA 
(Li, 2013) was used to map short reads of DNBSEQ data against 
the assembly. SAMtools (Danecek et al., 2021) was then employed 
to create a pile-up file summary of the aligned reads, and the 
results were imported to BCFtools (Danecek et al., 2021) for SNP 
and INDEL calling. The heterozygosity was then calculated as the 
proportion of the heterozygous sites to the total sites.

Genome annotation

Several different methods were employed to annotate the 
repetitive sequences. First, Tandem Repeats Finder v4.09 (Price 
et al., 2005) was used for the identification of tandem repeats. 
Then, RepeatProteinMask v4.07 and RepeatMasker v4.07 (Chen, 
2004) were used with their default parameters against RepBase 
v21.12 (Bao et al., 2015) to identify known repeats in a homology-
based approach. Thirdly, RepeatMasker (Bedell et  al., 2000) 
identified repeat elements with a de novo library, built in 

2 https://www.pacb.com

RepeatModeler (Abrusán et al., 2009) and LTR_FINDER v1.06 
(Zhao and Hao, 2007).

To annotate the protein-coding genes, we  combined 
RNA-based, homology-based and de novo methods. For the 
RNA-based method, we generated 63.27 million raw reads (9.49 
Gb) with DNBSEQ sequencing (Supplementary Table S1). After 
quality control and filtering by fastp (Chen et al., 2018a), 9.48 Gb 
clean data were retained and aligned to scaffolds using hisat2 
v2.2.1 (Kim et al., 2019). Reference genome-guided transcriptome 
assemblies were then constructed with StringTie v2.2.0 (Pertea 
et al., 2015). For homology-based predictions, the Q. variabilis 
genome was aligned against the Arabidopsis thaliana, Q. lobata, 
Q. robur and Q. suber genomes using TBLASTN v2.2.26 (Mount, 
2007) with an E-value cutoff of 1e–5. Finally, GeneWise v2.4.1 
(Birney et al., 2004) was employed for structural inspection of 
these alignments. For ab initio gene prediction, MAKER v3.01.03 
(Holt and Yandell, 2011) was used to compute annotation edit 
distance (AED) for each protein-coding gene, based on transcript 
assembly from the transcriptome data, as well as from homologous 
annotations of the four genomes. Augustus v3.4.0 (Stanke et al., 
2008; Keller et al., 2011) and SNAP (Johnson et al., 2008) were 
then employed for ab initio gene prediction using model training, 
based on coding sequences of 1,200 genes with structural integrity 
selected based on AED. Finally, the predictions obtained using 
these methods were combined using EVM v1.1.1 (Haas et al., 
2008). The predicted genes were functionally annotated using 
seven public biological databases: NR, TrEMBL (Boeckmann 
et al., 2003), SwissProt (Boeckmann et al., 2003), KEGG (Kanehisa 
and Goto, 2000), InterPro (Zdobnov and Apweiler, 2001), KOG 
(Koonin et al., 2004), and GO (Consortium, 2004). Blast v2.2.26 
was used for homolog searches with an E-value cutoff of 1e-5, and 
InterproScan v5.55 (Jones et  al., 2014) was used for protein 
function prediction based on the conserved protein domains.

Homology-based non-coding RNA (ncRNA) was identified 
using Infernal v1.14 (Nawrocki and Eddy, 2013) by mapping plant 
small nuclear RNA (snRNA) and microRNA (miRNA) genes from 
the Rfam database (Kalvari et al., 2018). Transfer RNAs (tRNAs) 
were detected with tRNAscan-SE v1.3.1 (Lowe and Chan, 2016). 
BLASTN was used for the identification of ribosomal RNAs 
(rRNAs) by alignment with known plant rRNA sequences (Vitales 
et al., 2017).

Genomic evolution and whole genome 
duplication (WGD) analysis

OrthoFinder v2.5.41 (Emms and Kelly, 2019) was used to 
identify homologous gene families among the assembled genomes 
of Q. variabilis and 13 further representative flowering plant 
species (Amborella trichopoda, Arabidopsis thaliana, Castanea 
crenata, Castanena mollissima, Eucalyptus grandis, Juglans regia, 
Oryza sativa, Prunus persica, Q. lobata, Q. robur, Q. suber, Vitis 
vinifera and Xanthoceras sorbifolia). GO enrichment analysis was 
conducted using ClusterProfiler with an adjusted p value cutoff of 
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0.05 (Wu et  al., 2021). We  performed collinearity analysis of 
homologous gene pairs between Q. lobata, Q. robur, and 
Q. variabilis using MCScanX (Wang et al., 2012).

For phylogenetic analysis and estimation of species divergence 
time, MUSCLE (Edgar, 2004) was applied to align the amino acid 
sequences of single-copy orthologous genes. The concatenated 
amino acid sequences were further used for construction of the 
phylogenetic tree in IQ-TREE2 (Minh et al., 2020). MCMCTREE 
of PAML (Yang, 2007) was used to estimate phylogenetic dating 
using a BRMC method (Sanderson, 2003) with the soft fossil 
calibrations obtained from the TimeTree website3: split of 
A. trichopoda from O. sativa, 173–199 million years ago (MYA); 
split of X. sorbifolia from A. thaliana, 96–104 MYA; split of 
A. thaliana from J. regia, 107–135 MYA; split of V. vinifera from 
A. thaliana, 89–113 MYA. Gene families were filtered out if more 
than 200 genes were present in one species but only 2 or fewer in 
the other species. The remaining gene families were used to infer 
the expansions and contractions of protein family in CAFÉ v3.0 
(Han et al., 2013).

Searches for putative paralogous genes were conducted for 
Q. variabilis and P. persica against each other using BLASTP 
(E-value ≤ 1e–5). Syntenic blocks were then identified using 
MCScanX (Wang et al., 2012) with parameters of –a –e 1e–5–s 
5. Synonymous substitutions per synonymous site (Ks) values 
were calculated with codeml in the PAML package (Yang, 
2007). For interspecific orthologues, the protein sequences of 
the homologous genes in Q. variabilis, Q. robur, and Q. lobata 
were aligned in BLASTP (E-value ≤1e-5), and the results were 
sorted according to their bit-scores and E-values to obtain 
reciprocal optimal gene pairs. Then codeml was used to 
calculate the Ks values of reciprocal optimal gene pairs. 
Finally, the Ks distributions of intraspecific paralogs and 
interspecific orthologues were evaluated to infer whole 
genome duplication (WGD) events and divergence time in the 
species genome.

Results

Chromosome-level genome assembly

We sequenced the Q. variabilis genome using a 
combination of PacBio and Hi-C technologies, and obtained a 
high-quality diploid reference genome (Smudgeplot, 
Supplementary Figure S1). A 20 kb DNA library was 
constructed and sequenced on a PacBio Sequel II platform, 
generating 51.70 Gb HiFi reads, approximately 72 × the 
estimated genome size (713.93 Mb; Supplementary Figure S2; 
Supplementary Table S1). Then, initial genome sequences 
spanning 796.30 Mb (327 contigs, N50 of 26.04 Mb; 
Supplementary Table S2) were constructed, slightly larger than 

3 http://www.timetree.org/

the total genome size as estimated at 713.93 Mb using the 
21-mer peak and distribution from DNBSEQ data 
(Supplementary Figure S2; Supplementary Table S1). 
This is perhaps due to chimerism caused by the 
relatively high heterozygosity (estimated to be  2.15%; 
Supplementary Figure S2). The contig N50 of Q. variabilis is 
significantly higher than that of other published congeneric 
species, e.g., Q. acutissima (1.44 Mb; Fu et  al., 2022), 
Q. mongolica (2.64 Mb; Ai et  al., 2020), Q. robur (0.07 Mb; 
Plomion et al., 2018), Q. lobata (1.9 Mb; Sork et al., 2022) and 
Q. suber (0.08 Mb; Ramos et al., 2018; Table 1). We next used 
3D-DNA derived from the Hi-C data (Supplementary Table S1) 
to generate 12 pseudo-chromosomes (787.15 Mb, 
Supplementary Table S2), with lengths ranging from 39.05 to 
97.21 Mb (Figure 1A; Supplementary Table S3). Interestingly, 
the number of pseudo-chromosomes of the assembled haploid 
is the same as that of other Quercus genomes (Q. acutissima, 
Q. mongolica, Q. robur, Q. lobata, and Q. suber). The 
chromosomal genome of Q. variabilis was characterized by 
245 scaffolds, with a scaffold N50 of 64.86 Mb which is similar 
to that of Q. mongolica (66.7 Mb), slightly smaller than that of 
Q. lobata (75 Mb), but ~ 22-fold, ~ 50-fold and ~ 130-fold 
larger than those of Q. acutissima, Q. robur, and Q. suber, 
respectively (Table 1). We calculated the heterozygosity based 
on the 10,014,769 heterozygous sites (including SNPs and 
INDELs), and found that the heterozygosity of this genome 
was 1.26%, which was slightly lower than estimated (2.15%) 
due to underestimation (considering only SNPs and INDELs). 
We  further evaluated the completeness of the genome 
assembly using the BUSCO.v4 plant datasets, and 
identified 1,587 (98.3%) of the 1,614 plant single-copy 
orthologues, with 1,526 (94.5%) presented as single-copy 
(Supplementary Table S4), a value superior to that of Q. lobata 
(95%), Q. robur (91%), Q. suber (95%), Q. acutissima (91%) 
and Q. mongolica (92.71%), indicating that our genome 
assembly is of high quality and nearly complete.

Genome annotation and gene prediction

The total length of the repetitive sequences in the Q. variabilis 
genome was 538.34 Mb, covering 67.6% of the assembled genome 
(Supplementary Table S5). This proportion was higher than that 
observed in the Q. mongolica genome (435.34 Mb, ~53.75% of the 
genome) identified using the same process (Ai et al., 2020), and 
also higher than those in Q. lobata (54%; Sork et  al., 2022), 
Q. suber (51%; Ramos et al., 2018), and E. grandis (55%; Myburg 
et al., 2014), which have been calculated using other processes. 
TEs accounted for 61.09% of the Q. variabilis genome 
(Supplementary Table S6). Long terminal repeat retrotransposons 
(LTR-RT), which often contribute to variations in genome 
size (Feschotte et al., 2002; Du et al., 2010), were identified as 
being the most abundant repeats (46.63%), followed by long 
interspersed nuclear elements (LINE; 8.14%) and DNA elements 
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(17.88%; Figure  1B; Supplementary Figures S3–S13; 
Supplementary Table S6).

Gene models for the Q. variabilis genome were obtained using 
a comprehensive approach including ab initio, RNA 

sequence-based and homology-based predictions 
(Supplementary Table S7). In total, we predicted 32,466 protein-
coding genes with an average gene length of 5,272.04 bp, an 
average coding-sequence length of 1,139.49 bp, an average exon 

TABLE 1 The statistics for genome assembly of six Quercus species.

Q. variabilis Q. acutissima Q. mongolica Q. robur Q. lobata Q. suber

Sequencing platform DNBSEQ, Pacbio 

Sequel II, Hi-C

PacBio, 10X Genomics Illumina,PacBio, Hi-C Illumina, Roche 454 Illumina, PacBio, Hi-C Illumina

Assembly

Assembly level Chromosome Chromosome Chromosome Chromosome Chromosome Scaffold

Total contig length 

(Mb)

796 756 810 790 * 934

Number of contigs 327 770 645 22,615 * 36,760

N50 of contigs (Mb) 26 1.44 2.64 0.07 1.9 0.08

Total scaffold length 

(Mb)

796 758 810 814 847 953

Number of scaffolds 245 388 330 1,409 2,014 23,344

N50 of scaffolds (Mb) 64.9 2.9 66.7 1.3 75 0.5

Number of 

chromosomes

12 12 12 12 12 *

Total chromosome 

length (Mb)

787 750 775 717 811 *

% Sequence anchored 

on chromosome

99 99 96 96 96 0

Complete BUSCOs (%) 98 91 93 91 95 95

*Data not shown in the original articles; numbers in bold represent the best in each category. 
Information on the genome assemblies of Q. acutissima, Q. mongolica, Q. robur, Q. lobata, and Q. suber was taken from previous reports (Plomion et al., 2018; Ramos et al., 2018; Ai et al., 
2020; Fu et al., 2022; Sork et al., 2022).

A B

FIGURE 1

Overview of Quercus variabilis genome assembly and annotation. (A) Genome-wide chromatin interaction analysis of the Q. variabilis genome 
based on Hi-C data. (B) The distribution of gene and repeat sequences (DNA, LINE, LTR_Copia, LTR_Gypsy, and LTR_other) across Chr12. The 
height of the bars represents the distribution density of these categories and the window size was set to 50 kb.
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length of 226.50 bp and an average exon number per gene of 5.03 
(Supplementary Table S7). Functional annotation using the NR, 
Swissprot, KEGG, KOG, TrEMBL, Interpro and GO databases 
allowed 30,878 (95.11%) of the total 32,466 genes to be assigned 
putative functions (Supplementary Table S8). Of these, 52.32% 
(16,985) of the total genes could be  functionally annotated 
through NR, InterPro, KEGG, SwissProt and KOG simultaneously 
(Figure  2A). We  also predicted 12,220 rRNA, 942 tRNA, 157 
miRNA, and 1,148 snRNA genes in the Q. variabilis genome 
(Supplementary Table S9).

Orthologous gene families

Orthologous gene families were identified using the proteomes 
of Q. variabilis predicted in our project and those of 13 other 
flowering plant species, including the three congeneric species 
(Q. lobata, Q. robur and Q. suber; Supplementary Table S10). In total, 
the 29,808 Q. variabilis genes (91.81% of the total) clustered into 
14,930 gene families, of which 6,245 gene families (including 11,113 
Q. variabilis genes) were shared among all the 14 plant species. 
We  also found that 964/4,854, 747/3,644, 1,821/12,372, 37/95, 
891/6,186, 206/1,814, 2,486/12,784, 438/1,633, 340/891, 129/370, 
4,311/11,160, 326/2,693, 814/3,015, 286/938 gene families/genes 
appeared to be unique to A. trichopoda, A. thaliana, C. crenata, 
C. mollissima, E. grandis, J. regia, O. sativa, P. persica, Q. lobata, 
Q. robur, Q. suber, Q. variabilis, V. vinifera, and X. sorbifolia, 
respectively. The gene families unique to Q. variabilis were mainly 
enriched in “glycine catabolic process,” “serine family amino acid 
catabolic process,” “organic acid catabolic process,” “oxaloacetate 
metabolic process,” “tricarboxylic acid cycle” and “nuclear 
chromosome segregation” (Figure 3; Supplementary File S1).

Genome evolution

Phylogenetic analysis was conducted based on the 483 single-
copy gene families derived from Q. variabilis and 13 further 
flowering plant species (Supplementary Table S10). We found that 
within this subclade, Q. variabilis is more closely related to 
Q. suber than to Q. lobata or Q. robur (Figure 2B). The divergence 
between Q. variabilis and Q. suber occurred at approximately 13.7 
(7.1–21.3) MYA, while Q. lobata and Q. robur, which belong to a 
different subclade, diverged from the Q. variabilis-Q. suber 
subclade ~27.6 (16.4–40.0) MYA (Figure 2B).

To investigate potential WGD events in the evolutionary 
history of Q. variabilis, we  studied the distribution of the Ks 
between homologous gene pairs derived from Q. variabilis, 
Q. lobata, Q. robur, Q. suber, and P. persica. One peak was found 
based on the paralogous gene pairs in Q. variabilis and P. persica 
(~ 1.5 Ks units), indicating a shared ancient WGD event (γ) for 
these two species (Murat et al., 2015; Figure 2C). The divergence 
between Q. variabilis and three congeneric species (Q. lobata, 
Q. robur and Q. suber; 0.02–0.05 Ks units) occurred later than the 

WGD event (Figure 2C). Further investigation of the genomic 
collinearity between Q. variabilis and Q. lobata, Q. robur showed 
a clear one-to-one syntenic relationship, and the overall gene 
synteny was largely conserved (Figure 4), suggesting that no large 
amounts of chromosome fusion or species-specific WGD events 
occurred after species divergence (Ai et al., 2020).

Gene family expansion and contraction

We analyzed gene family expansion and contraction based on 
the gene families in the 14 studied flowering plant genomes 
(Supplementary Table S10) using OrthoFinder. The number of 
expanded/contracted gene families in Q. variabilis compared with 
its common ancestor were 739/2,409, while in Q. suber, which is 
genomically the most similar to Q. variabilis, these numbers were 
2,177/787 (Figure 2B). A significant number of expanded genes in 
Q. variabilis were enriched in “monoterpene metabolic process,” 
“terpene biosynthetic process,” “intrachromosomal DNA 
recombination,” “hydrocarbon biosynthetic process” and 
“oxaloacetate metabolic process” (Supplementary Figure S14; 
Supplementary File S2), while contracted gene families were 
enriched in “glutathione metabolic process,” “isoflavonoid 
biosynthetic process,” “toxin catabolic process,” “programmed cell 
death induced by symbiont” and “regulation of response to red or 
far red light” (Supplementary Figure S15; Supplementary File S3).

Discussion

Quercus variabilis, the Chinese cork oak, is an ecologically 
and economically valuable deciduous broadleaved tree species 
native to and widespread in East Asia (Fujiwara and Harada, 
2015). Here, we present a chromosome-scale high-quality de 
novo genome assembly for Q. variabilis using a combination of 
PacBio Sequel II and Hi-C sequencing data. This Q. variabilis 
genome is 796.30 Mb, of which approximately 98.85% 
(787.15 Mb, Supplementary Table S2) can be anchored to 12 
chromosomes. The quality of the Q. variabilis genome assembly 
was higher than that of several other published Quercus 
genomes, including those of Q. acutissima (Fu et  al., 2022), 
Q. mongolica (Ai et al., 2020), Q. robur (Plomion et al., 2018), 
Q. lobata (Sork et al., 2022) and Q. suber (Ramos et al., 2018), 
although the Q. lobata genome had a slightly longer scaffold 
N50 than did that of Q. variabilis. It is worth noting that 98.3% 
of the plant single-copy orthologs was detected in the assembly 
genome, which is a higher percentage than detected in Q. lobata 
(95%), Q. robur (91%), Q. suber (95%), Q. acutissima (91%) or 
Q. mongolica (92.71%; Table  1). Altogether, the assembly of 
Q. variabilis is relatively accurate and complete. This is the first 
reference genome for Q. variabilis and will lay the foundation 
for understanding the evolution of this species and will provide 
important resources for the further investigation of genetic 
diversity in Q. variabilis and related species.
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CNP0003390, and is publicly accessible at https://
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FIGURE 2

Genome functional annotation and evolution of Q. variabilis. (A) Venn diagram showing shared and unique gene functional annotations among 
InterPro, KEGG, SwissProt, KOG and NR databases. (B) Phylogenetic tree, divergence time and gene family expansion and contraction among 14 
plant species. (C) Ks distribution of Q. variabilis-Q. lobata, Q. variabilis-Q. robur, Q. variabilis-Q. suber, Q. variabilis-Q. variabilis and P. persica-P. 
persica based on orthologous and paralogous gene pairs.
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FIGURE 3

Gene ontology (GO) functional enrichment analysis of the unique genes of Q. variabilis.

FIGURE 4

Synteny blocks identified between Q. variabilis and Q. lobata, and Q. variabilis and Q. robur.
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