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Crop yield prediction is of great importance for decision making, yet it remains

an ongoing scientific challenge. Interactions among different genetic,

environmental, and management factors and uncertainty in input values are

making crop yield prediction complex. Building upon a previous work in which

we coupled cropmodeling withmachine learning (ML) models to predict maize

yields for three US Corn Belt states, here, we expand the concept to the entire

US Corn Belt (12 states). More specifically, we built five new ML models and

their ensemble models, considering the scenarios with and without crop

modeling variables. Additional input values in our models are soil, weather,

management, and historical yield data. A unique aspect of our work is the

spatial analysis to investigate causes for low or high model prediction errors.

Our results indicated that the prediction accuracy increases by coupling crop

modeling with machine learning. The ensemble model overperformed the

individual ML models, having a relative root mean square error (RRMSE) of

about 9% for the test years (2018, 2019, and 2020), which is comparable to

previous studies. In addition, analysis of the sources of error revealed that

counties and crop reporting districts with low cropland ratios have high RRMSE.

Furthermore, we found that soil input data and extreme weather events were

responsible for high errors in some regions. The proposed models can be

deployed for large-scale prediction at the county level and, contingent upon

data availability, can be utilized for field level prediction.
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1 Introduction

Accurate crop yield prediction is necessary for agriculture

production planning and the decision-making process (You et al.,

2017). The crop yield depends on various factors such as genetics,

environment, management, and their interactions, making it

challenging to predict (Xu et al., 2019). Recent advancements in

technology, data collection, and computational efficiency have

facilitated the design and analysis of data-driven prediction

models such as ML models (Jiang et al., 2021; Shahhosseini et al.,

2021a). The accuracy, reliability, and interpretability of thesemodels

are critically important to evaluate before application in agriculture

decision-making practice (Rudin, 2019).

There has been increasing interest in crop yield prediction and

mainly two types of models have been designed and adopted (van

Klompenburg et al., 2020). One type is based on crop simulation

models, while the other type adopts a data-driven concept such as

ML or Neural Networks (NN) (van Klompenburg et al., 2020). The

two types of models have their own advantages and shortcomings.

The crop simulation models use crop science-based formulations to

capture crop physiological processes response to environmental

factors, hence more explainable but difficult and costly to formulate

and operate (Shahhosseini et al., 2019b). The ML models, on the

other hand, once built, are easy and cheap to deploy, but the exact

formulation is obscure, and the transparency can often

be comprised.

MLmodels are designed and trained based on historical data to

identify an input-output transformation function that is then

utilized to predict the desired output from a set of independent

variables (Singh et al., 2020). A rich body of literature concluded

that ML models are very promising in predicting crop yield fields

(Everingham et al., 2016; Cunha et al., 2018; Kouadio et al., 2018;

Filippi et al., 2019; Shahhosseini et al., 2020; Shahhosseini et al.,

2021a; Bali and Singla, 2021). In addition, to yield prediction

applications, ML models had proved their efficacy in predicting

nitrogen loss (Chlingaryan et al., 2018; Shahhosseini et al., 2019b)

and dealing with complex biological data (Greener et al., 2021).

Among the ML models, the comparative performance varies

depending on the data set and response variable of interest. For

example, Jeong et al. (2016) found that random forest (RF)

outperformed the linear regression model in predicting grain

yield for various crops (i.e., wheat, maize, and potato); similarly,

Priya et al. (2018) found RF model effective for the rice crop

prediction model. While Gandhi et al. (2016) used the Support

Vector Machine (SVM) to build the prediction model for rice and

Goldstein et al. (2018) reported that Gradient Boosted Regression

Trees outperform other tree-based models in crop yield prediction.

Furthermore, studies explored the ensemble of various ML models.

Balakrishnan and Govindarajan Muthukumarasamy (2016)

proposed two ensemble models, focusing on SVM and Naïve

Bayes. Shahhosseini et al. (2020) proposed an optimized weighted

ensemble model and applied it for corn yield prediction. Both
Frontiers in Plant Science 02
studies concluded that ensemble models result in significant

improvement in prediction.

Recently, crop yield prediction models based on neural

networks have performed well in terms of prediction accuracy

(Wang et al., 2018; Khaki and Wang, 2019; Nevavuori et al.,

2019; Elavarasan and Durairaj Vincent, 2020; Shahhosseini et al.,

2021b; Oikonomidis et al., 2022). Residual neural network, a

combination of convolutional neural network and recursive

neural network (CNN-RNN), was designed to predict corn

and soybean yields across the US Corn Belt (Khaki et al.,

2020). Shahhosseini et al. (2021b) designed an ensemble

convolutional neural network-deep neural network (CNN-

DNN) architecture to predict corn yield for 12 US Corn Belt

states, which had among the lowest prediction error ever

reported in the literature (RRMSE of 8.5%). A few recent

studies combined probabilistic analysis with neural networks.

For instance, Ma et al. (2021) developed a Bayesian neural

network (BNN) to predict corn yield for the US Corn

Belt. Remote sensing data are included as input variables

with uncertainties considered. An average coefficient of

determination (R2) of 0.77 was reported for the testing year

from 2010 to 2019 for the U.S. Corn Belt. Abbaszadeh et al.

(2022) proposed a statistical framework to perform probabilistic

prediction of crop yield coupling the Bayesian model with deep

learning models. It should be noted that despite the improved

prediction accuracy, the underlying black-box characteristics of

the neural network-based crop yield prediction models make it

challenging to interpret the model and subsequent decision-

making (Rudin, 2019).

Crop simulation models are pre-trained tools using field

experimental data (Ahmed et al., 2016; Gaydon et al., 2017) and

have been widely used by the scientific community over the past

decades. In contrast to ML and NN models, crop simulation

models use crop physiology, hydrology, and soil C and N cycling

science-based relationships to make crop yield predictions

(Asseng et al., 2014; Basso and Liu, 2019; Shahhosseini et al.,

2019b), which improves the transparency and explainability.

Inputs such as field management, cultivar, and daily weather are

used to drive the science-based physiological relationship. For

example, Togliatti et al. (2017) used the Agricultural Production

Systems sIMulator (APSIM) model and forecasted weather data

to predict maize and soybean yields in certain counties of Iowa

(prediction error of 0.975 Mg/ha for corn and 0.608 Mg/ha for

soybean), while Archontoulis et al. (2020) used the same

software and historical weather records to predict corn yields

for Iowa (RRMSE ~ 14%).

It has been observed in recent studies that combining ML

models with crop simulation models can improve crop yield

prediction accuracy and transparency. Shahhosseini et al.

(2021a)found that the inclusion of outputs from crop

simulation in an ML model decreased the root mean squared

error (RMSE) by 8% to 20% in three US Corn Belt states (Iowa,
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https://doi.org/10.3389/fpls.2022.1000224
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sajid et al. 10.3389/fpls.2022.1000224
Illinois, and Indiana). In another study, outputs from WOFOST

crop growth model were combined with ML models to predict

crop yield on a sub-national level for the Netherlands, Germany,

and France (Paudel et al., 2021). Both studies have demonstrated

significant improvement in prediction results by including

outputs from a crop simulation model into ML models.

However, to the best of our knowledge, no existing research

work has applied this concept to other regions and at a fine

spatial resolution (county level). Few researchers used neural

network models to predict crop yields across the whole US Corn

Belt while lacking the interpretability of the model (Khaki et al.,

2020; Shahhosseini et al., 2021b).

Building upon previous research by Shahhosseini et al.

(2021a) , in which they coupled ML models with crop

simulation software (APSIM) to predict corn yield, here, we

expand the focus of the previous research from 3 states to 12 US

Corn Belt states (Illinois, Indiana, Iowa, Kansas, Michigan,

Minnesota, Missouri, Nebraska, North Dakota, Ohio, South

Dakota, and Wisconsin). This expansion helps to build a

large-scale yield prediction model for the US Corn Belt, and

the model architecture can be used to predict yields for other

row crops at different scales (i.e., state, county) only by

modifying the input data set. In the proposed model, APSIM

outputs were combined with ML models, while the objective of

the ensemble model was modified accordingly to make it suitable

for mass prediction. Furthermore, for the first time, we

investigate ML prediction behavior, geographic areas with low

or high prediction accuracy, and the underlying factors causing

it. Our specific objectives are to (a) develop a new prediction

model for the entire US Corn Belt; (b) evaluate temporal
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prediction error at different scales: state, crop reporting district

(CRD), and county (c) identify reasons for high or low

prediction errors across the landscape.
2 Materials and methods

In this study, we used publicly available soil, weather,

management data (section 2.1), and simulation outputs from

the APSIMmodel as additional inputs to the MLmodels (section

2.2). The research goal is to develop ML models for accurate

yield prediction of the entire US Corn Belt region (sections 2.3

and 2.4). The proposed models were trained on historical data,

and predictions were made for the “future” test years. In the

training phase, hyperparameters of the models were optimized

when building the prediction models (Figure 1). The prediction

results were further analyzed spatially and temporally, and the

source of model error was investigated.
2.1 Weather, soil, and management data
inputs to the ML models

2.1.1 Weather data
Daily weather data (radiation, precipitation, minimum and

maximum temperature, and growing degree days) was obtained

from Iowa Environmental Mesonet (IEM) (Iowa Environmental

Mesonet) for the entire U.S. Corn Belt (1984 to 2020) and

aggregated to weekly time periods for use in ML modeling

(n=293 features). The weather dataset is a reanalysis product
FIGURE 1

Conceptual framework of the proposed method. The first step is data collection and integration. The preprocessed data were used for both
crop simulation models and ML models. The final prediction model was an optimized weighted ensemble model, where M1, M2, M3, M4, and
M5 were the five prediction models, and W1, W2, W3, W4, and W5 were the weights assigned to each model.
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from the IEM, a more detailed description is offered in section

2.2 and in Archontoulis (2020).

2.1.2 Soil data
The soil data were retrieved from SSURGO (USDA NRCS -

Natural Resources Conservation Service | NRCS Soils, 2019). We

used ten soil properties at ten different soil profile depths. The

soil properties are soil organic matter, sand content, clay

content, soil pH, soil bulk density, wilting point, field capacity,

saturation point, and saturated hydraulic conductivity.

2.1.3 Crop management data
Crop management data, such as planting progress data, were

retrieved from NASS (NASS - Quick Stats | Ag Data Commons,

2020). This dataset contains weekly planting information at the

state level for the US Corn Belt. Since there are, on average, 52

weeks in a year, this dataset has 52 features. These 52 features

explain the state-wise weekly cumulative percentage of corn

being planted.

2.1.4 Crop yields data
The historical yield data for 12 states of the US Corn Belt

were retrieved from NASS (NASS - Quick Stats | Ag Data

Commons, 2020). This dataset contains annual yield data at

the county level for the US Corn Belt along with the county code

to specify each location.
2.2 APSIM model-simulated data inputs
to the ML models

The APSIM (Holzworth et al., 2014) is an advanced

simulator of cropping systems with many crop models along

with soil water, carbon, and nitrogen models. The modules

interact on a daily time step with each other. In this project,

we used the APSIM maize version 7.9 for the US Corn Belt

(Archontoulis et al., 2020) which is used for Iowa State extension

programing, the Forecast, and Assessment of Cropping Systems

project (Archontoulis and Licht, 2021). This version includes a

simulation of shallow water tables and inhibition of root growth

due to excess water stress (Ebrahimi-Mollabashi et al., 2019) and

waterlogging functions (Pasley et al., 2020).

To run APSIM across the 12 states, we used the parallel

system for integrating impact models and sectors (pSIMS)

software (Elliott et al., 2014). The simulations used in this

study were created on a 5-arcminute grid across 12 states

(Iowa, Illinois, Indiana, Kansas, Michigan, Minnesota,

Missouri, Nebraska, North Dakota, Ohio, South Dakota, and

Wisconsin), considering only cropland areas when creating soil

profiles. To operate the model, we used the same source of

weather, soil, and management data described in section 2.1. Soil

data from SSURGO (Soil Survey Staff et al., 2020), weather data

from Iowa Environmental Mesonet (mesonet.agron.iastate.edu).
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and management input databases (plant density and planting

date by year and by state) from (NASS - Quick Stats | Ag Data

Commons, 2020). In the APSIM model, cultivar traits data were

derived through regional-scale model calibration. N fertilizer

data was derived from a combined analysis of USDA-NASS

(NASS - Quick Stats | Ag Data Commons, 2020) and Cao et al.

(2018), including N rates for corn by county and by year. Over

the historical period, 1984–2020, APSIM captured 67% of the

variability in the NASS crop yields having an RMSE of 1.3 Mg/ha

and RRMSE of 16% (Figure 2). This version of the model was

used to provide outputs to train the ML algorithm (Table 1).

Shahhosseini et al. (2021a) found that APSIM simulated soil

water variables to be one of the important features for ML yield

prediction. Given the extended focus of this study, from 3 to 12

states compared to Shahhosseini et al. (2021a), we used more

features of the APSIM to re-evaluate the previous finding.
2.3 Data preprocessing

Prior to developing ML prediction models, we conducted the

following data processing. First, data from all sources were

aggregated while treating any missing values. Thereafter, new

features were constructed to improve the model’s performance.

After feature construction, a set of important features was

identified and used to develop the final prediction models.

2.3.1 Data aggregation and imputing missing
values

Data obtained from all sources were aggregated, ensuring the

proper order according to year, state, and county. The data from

different sources were aggregated based on the unique GEOID

(county-scale) and year associated with each row of data. Since

the soil data did not vary over the year, the soil data were merged

based on the unique GEOID. In this task, the historical yield data

obtained from NASS (NASS - Quick Stats | Ag Data Commons,

2020) was considered as a reference point while merging data

from various sources.

Afterward, the missing values were treated. The missing

values were mostly appearing in the planting progress data for

North Dakota State, as the values were available from the year

2000. Whereas for this paper, the data were collected from the

year 1984 to 2020. The planting progress data contains the

planting information on a weekly level. The planting progress of

week “n” from 1984 to 1999 was imputed manually by the

average of the planting progress data of North Dakota from the

year 2000 to 2020 for a week “n.” Utilizing a similar approach,

planting progress for the weeks of interest was imputed. The

granularity level of APSIM and UDSA county-level data had

some discrepancies, which caused some missing values in

APSIM data. These missing values are imputed by the median

value at the county level. Imputing with median values aids in

the reduction of outliers (Shahhosseini et al., 2021a).
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2.3.2 Feature construction
2.3.2.1 Weather information

The weather data contained weekly weather information,

and from these weekly data, new features for quarterly data were

generated. For precipitation, solar radiation, and growing degree

days, a summation of daily data was considered to create the

quarterly data. While for minimum and maximum temperature,

the average of quarterly data was utilized to generate the

quarterly minimum and maximum temperature.

2.3.2.1 Yield trend

An improvement in corn yield was observed over the years,

resulting from advancements in genetics and management

practices. To include this yield trend in our ML model, a new

feature yield trend was constructed at the county level.

yi =  b0 + b1xi (1)

Where, yi = Yield trend of year x at location i

xi = Year of location i

2.3.3 Feature selection
The combined data set with information on weather, soil,

management practices, and features from APSIM resulted in a

large number of input variables (n= 550). Using all these features

in the prediction model will make the prediction model inclined

to overfitting. Thus, feature selection is essential to ensure that

the designed ML model is generic. In this paper, we reduced the
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input features from 550 to 100 by using a two-stage feature

selection approach. The first stage is based on expert knowledge,

and the second stage is based on the permutation feature

selection approach.

2.3.3.1 Expert knowledge-based feature selection

For weather features, we considered data from weeks 16 to

43 by removing weather features at the end of the harvesting

season until a few weeks before planting the next crop. Similar

considerations were made for planting progress data by selecting

cumulative planting progress from weeks 12 to 29, as data

beyond this window does not include valuable information.

All 37 APSIM features were kept intact in this step, and they

were selected based on the APSIM features found important by

Shahhosseini et al. (2021a). Using the expert opinion from 550

features, it was reduced to 298 features.

2.3.3.2 Permutation feature selection

In the second stage of feature selection, permutation-based

feature selection with the random forest was used. This approach

can overcome bias in default random forest variable importance,

and importance is calculated based on the impurity (Strobl et al.,

2007; Altmann et al., 2010). Furthermore, the feature

importance algorithm of the random forest provides consistent

feature ranking for high dimensional feature space with

multicollinearity (Maciej et al., 2013). In permutation feature

importance, the importance of an input variable is computed by
FIGURE 2

APSIM model performance in simulating historical yields in the US Corn Belt. The red line represents the relation between the predicted and
observed yield for each state and has a R2 value of around 0.67.
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a change in the model’s error with and without the feature. In the

validation set, the values of the feature are shuffled, and if this

results in an increase in model error, the feature is considered

important (Breiman, 2001; Molnar, 2020). This process is

repeated until all features are ranked based on their importance.

For permutation-based feature selection, a ML model must

be fit. In this research, a random forest model with 300 trees and

other default parameters was fitted to the permutation feature

selector. The numbers of trees used in the random forest were

tuned through the grid-search method with ten-fold cross-
Frontiers in Plant Science 06
validation. Finally, the top 100 features were selected and were

further considered as input to the prediction model.
2.4 Prediction models

Selecting diversified and individually credible base learners

are crucial for high-performing ensemble models (Brown, 2017).

Hence, different MLmodels were developed, and their individual

and combined performances were compared to identify the best-
TABLE 1 APSIM model simulated variables considered as input features in the ML models.

Acronym Description

AnnualYield Crop yield (kg/ha)

AnnualBiomass Above ground crop biomass at maturity (kg/ha)

AnnualRootD Maximum root depth (mm)

DOY_Flowering Flowering time (doy)

DOY_Maturity Maturity time (doy)

AnnualLaiMax Maximum leaf area index (m2/m2)

AnnualET Actual evapotranspiration (mm)

MaizeTranspiration Crop transpiration (mm)

AnnualNupt Crop n uptake (kg n/ha)

AnnualGrainlNupt Grain N uptake (kg N/ha)

AvgDroughtStress Average drought stress on leaf development (0–1)

AvgExcessWStress Average excess moisture stress on photosynthesis (0–1)

AvgNStress Average N stress on grain growth (0–1)

AnnualAvgWT Depth to water table during the entire year (mm)

AnnualRunoff Runoff (mm)

AnnualDrainage Drainage from tiles and below 1.5 m (mm)

AnnualGrossMiner Soil gross N mineralization (kg N/ha)

AnnualNlossTotal Total N loss (denitrification and leaching) (kg N/ha)

DOY_Sowing Sowing time (day of year)

DOY_Harvest Harvesting time (day of year)

SW1m_Apr Soil water ratio at 0-1m depth for April

SW1m_May Soil water ratio at 0-1m depth for May

SW1m_Jun Soil water ratio at 0-1m depth for June

SW1m_Jul Soil water ratio at 0-1m depth for July

SW1m_Aug Soil water ratio at 0-1m depth for August

SW1m_Sep Soil water ratio at 0-1m depth for September

SW1m_Oct Soil water ratio at 0-1m depth for October

SW15cm_Apr Soil water ratio at 0-15cm depth for April

SW15cm_May Soil water ratio at 0-15cm depth for May

SW15cm_Jun Soil water ratio at 0-15cm depth for June

SW15cm_Jul Soil water ratio at 0-15cm depth for July

SW15cm_Aug Soil water ratio at 0-15cm depth for August

SW15cm_Sep Soil water ratio at 0-15cm depth for September

SW15cm_Oct Soil water ratio at 0-15cm depth for October

WTatPlanting Water table depth at planting

SW45_excess Growing season average excess soil water stress

SW45_deficit Growing season average drought water stress
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performing model. The base models applied in this study are

linear regression, LASSO regression, random forest, XGBoost,

and LightGBM, which had proved their prediction efficacy in

earlier studies (Shahhosseini et al., 2020; Shahhosseini et al.,

2021a). Furthermore, to have a well-performing model, tuning

the hyper-parameters of these base models is vital. Grid search is

widely used to tune hyperparameters of ML models. However,

hyper-parameter tuning through grid search is a cumbersome

task because it evaluates the model performance for each

combination of the hyper-parameters. The Bayesian search

method can overcome this challenge. In the Bayesian search

approach, an underlying distribution of model parameters is

assumed, and this belief (prior) is updated along with new

observations. Bayesian optimization aims to balance

exploration (gathering more information on hyper-

parameters) and exploitation (decision based on available

information) while collecting the maximum amount of

information (Snoek et al., 2012). Therefore, to tune the hyper-

parameters Bayesian search with 40 iterations with a 10-fold

cross-validation procedure was adopted for model formulation.

2.4.1 Linear regression
Linear regression tries to identify the linear relationship

between the variables and response variables. It assumes that

residuals have a normal distribution with constant variance and

that predictors do not have any correlation (James et al., 2013).

In this paper, we used a multiple linear regression model.
2.4.2 LASSO regression
LASSO is an L1-regularization model. It has a built-in

feature selection design, where it assigns zero to the coefficient

of features with less importance (Tibshiranit, 1996; James et al.,

2013). The loss function, which is mean squared error (MSE),

has an additional penalty term that ensures only the important

f ea ture s a re se l e c ted for the mode l fo rmula t ion

(Tibshiranit, 1996).
2.4.3 Random forest
In a random forest, multiple data sets are created based on

the bootstrap resampling method, which is sampling with

replacement (Breiman, 2001). Each sample set and a subset of

features are used to build trees, and this process is repeated

(Brown, 2017). The final prediction is made from the majority

vote by aggregating those trees. As each tree is uncorrelated,

random forest balances both bias and variance components in

the loss function (Cutler et al., 2007).
2.4.4 XGBoost and LightGBM
The concept of gradient boosting tree-based model is

incorporated in both XGBoost and LightGBM. Weak tree-

based models are sequentially built-in gradient boosting using
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the knowledge of the prior weak model. In contrast to the

random forest in gradient boosting, the final prediction is the

accumulation of sequentially built models. XGBoost was

proposed by Chen and Guestrin (2016), and LightGBM is an

updated version proposed with better computational power by

Microsoft (Ke et al., 2017).

2.4.5 Average weighted ensemble
In the ensemble model, several base learners are merged

together, and the final prediction is a combination of predictions

from all models. The final prediction made by the ensemble

model has better accuracy than the base learners (Grossman

et al., 2010). In an average weighted ensemble, equal weights are

given to each prediction model. The final prediction is made

based on this weighted average value. However, to have a better

average weighted ensemble model, it is necessary to use

diversified models as based models (Brown, 2017).

2.4.6 Optimized weighted ensemble
Compared to the weighted average ensemble model, the

optimized weighted ensemble model selects weights considering

the base model performance in the training set, providing a

higher weight to better-performing learners and improving the

model accuracy. Shahhosseini et al. (2019a) reported that an

optimized weighted model improves the model performance

compared to the average weighted ensemble model. The

optimum weight was determined by minimizing the mean

squared error (MSE) of training data. For large-scale data,

using the minimization of MSE as an objective-function result

in assigning the majority weight to a single model. Since MSE is

the square of observations, for large-scale data, MSE from each

model has a higher value, making the objective value less

sensitive to the weight given to each model. To address the

concern, the objective function is modified to select weights by

minimizing the RMSE of the training set instead of MSE. This

modification retains the objective function in the same order

of observation.

Decision variable

wj is the weight associated with each base model j (1, 2,

…. K)

Parameters

yi is the ith observation of the response variable

ŷ ij is the prediction of ith observation by jth model

Objective :

   min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
yi −o

k

j=1
wjŷ ij

 !2
vuut (2)

s : t :

   o
k

j=1
wj = 1

(3)
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1 yi −ok

j=1wjŷ ij

� �2r
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1 yi − ŷ ij

� �2r
≤ 0 

∀ j = 1, 2::::::k (4)

wj ≥ 0,   ∀ j = 1, 2::::::k (5)

The optimum weights are determined by solving the

minimization model (eqs 2-4). The objective function aims at

selecting the weights such that the RMSE of the entire ensemble

model is minimized with the constraint that all weights must

sum up to 1(eq 3). In addition, the weights of the final model are

selected in a way that the ensemble model has lower or equal

RMSE of any base learner (eq 4), ensuring that the optimized

ensemble model improves the model performance.

For all base models and ensemble model outputs from

APSIM, weather, soil data, and management practices from

1984 to a year before (‘n-1’) the prediction year (‘n’) was given

as an input. For example, if predicting 2020, data from 1984 to

2019 was used to train the model.
2.5 Evaluation metrics

All the ML models trained for the period 1984 to 2017 and

their prediction capacity (R2) and error (RMSE, MBE) were

evaluated in the years 2018, 2019, and 2020 for all the US Corn

Belt (Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota,

Missouri, Nebraska, North Dakota, Ohio, South Dakota, and

Wisconsin). In 2020, the derecho that occurred in Iowa reduced

crop yield (Derecho | IOWA HSEMD). The 27 counties severely

impacted by derecho were disregarded for the 2020 yield

database. To evaluate model performance, we used 4 statistical

evaluation metrics (eqs 6-9) and residual plots between observed

and simulated data.

Root Mean Squared Error (RMSE), which is the square root

of the mean squared error (MSE), that measures the average

squared difference between the predicted and the observed

values (the lower the value the better):

RMSE =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1 yi − ŷ ið Þ2
n

s
(6)

Relative Root Mean Squared Error (RRMSE), which is

normalized RMSE, values ranging from 0-100% (the lower the

better). In this paper, the value is normalized by dividing RMSE

by the mean of observed values:

RRMSE =  
RMSE
on

i=1
yi

n

(7)

Mean Bias Error (MBE), which identifies the bias of the

prediction model, the average deviation of predicted values from

the observed values (the lower the value the better):
Frontiers in Plant Science 08
MBE =  o
n
i=1 ŷ i − yið Þ

n
(8)

R2 score, which is known as the coefficient of determination.

It provides information on the model’s ability to capture the

variability in data. The value of R2 ranges from 0 to 1, a higher

value indicating that the model performs well:

R2 = 1 −
RSS sum   of   square   of   residualsð Þ

TSS   Total   sum   of   sqauresð Þ

= 1 −o
n
i=1 yi − ŷ ið Þ2

on
i=1 yi − �yð Þ2 (9)

After determining the overall best performing model, the

results were analyzed to have interpretability. This analysis focus

on identifying some key reasons for variation in model

performance across different time frame and geographical

locations. Any relation between the source of error and

weather and soil properties was assessed state-wise. To

perform this analysis, the Pearson correlation coefficient

between the RMSE and various model features was calculated.
3 Results

3.1 Model performance

The developed ML models had RMSE from 0.99 to 1.45

(Mg/ha), RRMSE from 8 to 14%, R2 from 0.5 to 0.75, and MBE

from -0.78 to 0.03 (Mg/ha) across all test years and locations

(Table 2). The optimized weighted ensemble outperformed all

the prediction ML models, with RRMSE from 9 to 9.35% and R2

from 0.72 to 0.8.

Graphical analysis of measured versus predicted values

revealed a weaker correlation for low maize yields whereas, a

stronger linear correlation for higher yield regions (Figure 3).

The ML predictions were more reliable for locations with normal

to high yields compared to regions with lower yields. These areas

mostly belong to Kansas and South Dakota which had an

average low cropland area (5-20% cropland per state).

In addition, the robustness of the developed prediction

model was evaluated by exploring residual plots (Figure 3).

The errors in the residual plots from the model for the years

2018, 2019, and 2020 were random and well distributed for both

the county level and for crop reporting districts. This indicates

that the model had good performance in terms of

being unbiased.

After analyzing the performance of all the models using

different evaluation criteria (Table 2, Figure 3) we found that the

optimized ensemble model outperformed all other models;

therefore, this model was considered to be the final model,

and the prediction results from this model were used for

further analysis.
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TABLE 2 Model evaluation statistical values.

Criteria Year Model

LASSO XGBoost LightGBM Random
Forest

Linear
Regression

Optimized Weighted
Ensemble

Average Weighted
Ensemble

RMSE
(Mg/ha)

2018 1.43 1.04 1.01 1.08 1.45 1.01 1.14

2019 0.96 0.92 0.94 0.94 1.1 0.92 0.91

2020 1.11 0.99 1 1.12 1.12 0.99 1.01

RRMSE
(%)

2018 13.25 9.61 9.35 10.05 13.42 9.35 10.54

2019 9.37 8.98 9.22 9.22 10.75 9.22 8.87

2020 10.26 8.84 9 10.04 10.05 9 9.07

R2-Score
(0-1)

2018 0.59 0.78 0.8 0.76 0.58 0.8 0.74

2019 0.71 0.73 0.72 0.72 0.62 0.72 0.74

2020 0.67 0.75 0.75 0.68 0.68 0.75 0.74

MBE
(Mg/ha)

2018 -0.78 -0.16 -0.16 -0.4 -0.62 -0.16 -0.43

2019 -0.32 -0.16 -0.24 -0.06 -0.5 -0.24 -0.26

2020 -0.48 -0.13 -0.06 -0.14 0.03 -0.06 -0.16
Frontiers in
 Plant
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FIGURE 3

(A) Predicted versus observed yield for the U.S Corn Belt for the years 2018-2020 at the county level. The straight lines at 450 show a strong
correlation between the predicted and observed yield (B) at the crop reporting district level. (C) Residual plot for the U.S Corn Belt for the years
2018-2020 at the county level (D) residual plot at the crop reporting district level. The errors are scattered around zero lines, indicating an
unbiased model. Each color corresponds to a particular state.
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3.2 Spatial and temporal analyses of
model performance

Across 3 test years and 12 states, the RMSE of the optimized

weighted ensemble model varied from 0.6 to 1.4 (Mg/Ha)

(Figure 4). The highest RMSE was observed in IL, OH, and

MO in the year 2018; and in IA in the year 2020. It should be

noted that the high RMSE for IA in 2020 was because of derecho

(Derecho | IOWA HSEMD). Even though the 27 counties

severely impacted by derecho were disregarded for analysis,

derecho caused an overall reduction in corn yield for Iowa in
Frontiers in Plant Science 10
2020, making a significant deviation from the yield trend and

causing higher error for Iowa in 2020.

The crop reporting districts, mostly from Iowa, Illinois,

Indiana, and Wisconsin, had the lowest RMSE, while the

Upper Peninsula crop reporting district from Michigan had

the highest RMSE (Figure 5). The crop reporting districts with a

higher cropland ratio had relatively lower RMSE, indicating that

the prediction model is more reliable for areas with a higher

cropland ratio as more data is available for those locations

(Figure 5, Supplementary Figures 1-3). An exception was

Central Iowa, even with a higher cropland ratio, which had a
FIGURE 4

State-wise RMSE for optimized weighted ensemble model from the year 2018 to 2020. The blue lines demonstrate the range of RMSE for each
state at the crop reporting district level for each year. MO had the highest RMSE in 2018 IL had the lowest RMSE in 2020.
FIGURE 5

Average model performance at CRD level in terms of RMSE (the year 2018-2020). The lighter color corresponds to lower RMSE (ranging from
0.37 to 1.11Mg/Ha), whereas the darker color stands for higher RMSE (ranging from 1.11 to 2.59 Mg/Ha). The green circles provide information
on the cropland ratio of the crop reporting districts. Overall, Iowa, Illinois, Indiana, and Ohio have lower prediction errors.
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higher average RMSE (deriving from the RMSE of Central Iowa

in 2020, in which derecho impacted crop yields).

The averaged RMSE of the optimized ensemble model at the

county level for the years 2018, 2019, and 2020 were lower in

counties from Iowa, Illinois, Indiana, Ohio, and Wisconsin

(Figure 6, Supplementary Figures 4-6). The relationship

between model performance (RMSE) and cropland ratio at the

county level was found to be similar to the relationship at the

CRD level. Counties with higher cropland ratios had lower

errors, which means the model is more reliable in high-

yield areas.
3.3 Relationship between model
performance and input features

The Pearson correlation coefficient between soil-weather

properties and RMSE ranged from -0.33 to 0.35, indicating no

strong correlation between soil-weather properties and RMSE

(Figure 7). For certain States, some features are negatively

correlated to RMSE, whereas, in other states, they have a

positive correlation. Across the soil-weather variables, the

RMSE is mostly correlated with maximum and minimum

temperature (annual and summer), followed by soil properties

clay percentage (Figure 7).

The correlation between weather properties and RMSE

varied from -0.32 to 0.24 (Figure 7). Both annual and summer

precipitation had a mixed impact on RMSE. For instance, higher

annual precipitation in Indiana increases RMSE, while higher
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summer precipitation relates to a lower RMSE. No consistent

pattern was observed with high or low RMSE and precipitation

regimes. For Nebraska, the RMSE was mostly correlated

with rain.

Similarly, an association of RMSE with maximum and

minimum temperature was random. However, it should be

noted that the direction of correlation for annual and summer

temperature was the same, both for maximum and minimum

temperature. In North Dakota, higher maximum annual or

summer temperature was related to higher RMSE, while in

Nebraska, higher minimum annual or summer temperature

was related to lower RMSE. In North Dakota, higher

maximum annual or summer temperature was related to

higher RMSE (p-value > 0.05), while in Nebraska, higher

minimum annual or summer temperature was related to lower

RMSE. The associated p-value indicates that the correlation with

all-weather variables for Minnesota is significant (p-value<

0.05), while the correlations were insignificant for Missouri,

North Dakota, and Ohio. Correlation with specific weather

features was significant for other states; for instance,

Iowa, Kansas, and Nebraska correlated significantly with

precipitation and minimum temperature.

A similar random relationship was found for soil properties

and RMSE, Pearson correlation coefficient varying from -0.32 to

0.35 for different states (Figure 7). For Indiana, a higher clay

percentage was related to a higher model RMSE (p-value<0.005).

At the same time, high RMSE in Nebraska was related to low

plant-available water content and clay percentage and with high

sand percentage and lower limit of plant-available water content
FIGURE 6

Average model performance at the county level in terms of RMSE (the year 2018-2020). The lighter color corresponds to lower RMSE (ranging
from 0 to 1.25Mg/Ha), whereas the darker color stands for higher RMSE (ranging from 1.26 to 4.26Mg/Ha). The green circles provide
information on the cropland ratio of the county. Iowa, Illinois, Indiana, Ohio, and Nebraska have lower prediction errors.
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(p-value<0.005). For Missouri, high RMSE was related to high

organic matter percentage (p-value = 0.01). In fact, high pH was

related to high RMSE for Kansas (p-value<0.005); the low sand

percentage was correlated to high RMSE for Nebraska (p-

value<0.005), and high saturated volumetric water content was

related to higher RMSE for Iowa (p-value<0.005). High water

table depth was related to low RMSE for Illinois and Wisconsin

(p-value = 0.01); in contrast, it was related to high RMSE for

Indiana (p-value = 0.01) and Kansas (p-value = 0.03). Finally,

observing the correlation with RMSE and soil-water properties

for all 12 states, it can be concluded that the source of error is

random, with no strong correlation with the certain soil-water

property (all p-value > 0.05).
4 Discussion

Based on the comprehensive analysis of the evaluation

matrices, the optimized ensemble model was the best-

performing model for maize yield prediction in the US Corn

Belt (Table 2). In a few cases, for example, in 2019, the RMSE &

RRMSE of the average weighted ensemble model are moderately

better than the optimized weighted ensemble model. The reason

is that one base model LASSO had relatively poor performance

for training years while performing well in the test year 2019. As

the optimized weighted ensemble model assigns weights to a

base model considering the performance in training years, it
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assigns a low weight to LASSO for predicting the test year.

Though the average weighted ensemble performed marginally

better in terms of RMSE and RRMSE for 2019, it had a higher

bias than the optimized weighted ensemble model.

In comparison, the optimized weighted ensemble model has

a consistent performance in terms of all different evaluation

matrices for three consecutive years for 12-states. Hence, the

optimized ensemble model results were selected for further

temporal and spatial analyses. For reference, in crop modeling

research, several investigators found that the multi-model

average provides the best prediction of crop yields (Asseng

et al., 2014; Iizumi et al., 2018; Heino et al., 2020; Shin et al.,

2020; Shahhosseini et al., 2021a). It appears that the use of multi-

model is a viable way toward increasing prediction in agriculture

at the expense of additional model runs and time. Further

analysis of the model’s sensitivity revealed that extreme

weather conditions did not extensively impact model

performance. The model performance was tested against

varying weather properties, and the model was able to

maintain a certain accuracy level.

The inputs of the prediction models play a vital role in model

performance. Among different sets of factors, weather

(temperature, rainfall, humidity, solar radiation, precipitation),

and soil information (soil type, soil maps, soil pH-value), images

were widely used in previous studies (van Klompenburg

et al., 2020). Along with weather data, information on soil

properties improves the performance of the prediction model
FIGURE 7

Correlation between soil-weather properties and RMSE. The darker the color, the higher the linear correlation between the RMSE of the model
and the feature along the x-axis. The first row provides the overall correlation for all 12 states with the feature along the x-axis. The remaining
rows demonstrate the correlation at the state level. The first value in each box represents the correlation value, and the second value
corresponds to the associated p-value.
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(Dai et al., 2011). Leuthold et al. (2022) applied a linear

regression model to identify the correlation between

topography and corn (crop) yield, where the relationship

varied with precipitation. Some recent studies focused on

understanding the impact of soil properties and meteorology

on crop yield (Guo et al., 2021; Jiang et al., 2021). Weather, soil,

and management information were fed as input to the ML

models and focused on interpreting the model performance

with different weather and soil conditions. However, by

evaluating the correlation between weather and soil properties,

it was found that the source of error in the model is random

(Figure 7). Using choropleth maps, we also spatially analyzed the

model performance at the county level (Figure 6) and for

different crop reporting districts (Figure 5). This analysis

revealed that the model performs better in locations with a

higher cropland ratio.

This study builds upon Shahhosseini et al. (2021a) work,

where it was reported that coupling ML with crop simulation

software (APSIM) improves the model performance.

Shahhosseini et al. (2021a) applied the coupled model to three

states, Indiana, Illinois, and Iowa, in 2018 and found an RRMSE of

7.5%. This study expands the analysis to twelve US Corn Belt

states and reveals that for all states except North Dakota, the

coupled ML model with APSIM data outperforms the model

without APSIM (Figure 8). Thus, coupling crop modeling with

ML is a way towards increasing prediction accuracy in agriculture.

While developing the prediction model for 12 states, we

found that minimizing MSE to determine optimum weights for

base models in the ensemble fails to assign optimum weights.

Using minimization of MSE assigns all weight to the best-

performing model in the training set, which impairs the

benefits of the ensemble model. The objective function was

modified to address this challenge and build more that can be

applied on a large scale. In our proposed ensemble model,

instead of minimizing MSE, we minimized the RMSE of the
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model. This modification resolves the issue. To verify the

consistency in performance for the proposed prediction model,

results were compared for similar years and states, as

Shahhosseini et al. (2021a) reported. It was observed that the

proposed model has an RMSE of 1.025 Mg/ha for those three

states. For the year 2018, the mean yield for these three states was

12.18 Mg/ha, which results in an RRMSE of 7.8% for the

prediction model. This comparison suggests that even after 12

states, the proposed model can maintain its consistency

in performance.

We further compared the proposed model performance with

two state-of-art models based on neural networks (Figure 9).

Khaki et al. (2020) achieved an RMSE of 1.2 Mg/ha for

predicting corn yield for the US Corn Belt for 2018. Our

proposed new model for the same year (2018) had a similar

RMSE (1.1 Mg/ha) while providing better interpretability.

Shahhosseini et al. (2021b) predicted corn yield for the same

12-states in 2019 by implementing an ensemble CNN-DNN

model with the weather, soil, and management data. For 2019,

the obtained RRMSE was around 8.5%, which is similar to our

work (average ensemble model RRMSE of 8.8% and optimized

weighted ensemble model RRMSE of 8.9%). Hence, the

proposed model can maintain similar accuracy as the CNN-

DNN model while with additional benefits in terms

of interpretability.

The model performance presented in Figure 5 and Figure 6

is based on RMSE. However, to decide on the reliability of a

model, one single criterion is insufficient. Another model

evaluation criterion is RRMSE. In RRMSE, RMSE is divided

by the mean of the corresponding observations. This approach

can create inconsistency in evaluating a model for a different

period. The mean yield for the 12 states for 2018, 2019, and 2020

were 10.77, 10.23, and 10.42 Mg/ha, respectively. When models

are evaluated temporally, a model with the same RMSE will have

a lower RRMSE in 2018, whereas a higher RRMSE in 2020. This
FIGURE 8

Model Performance with and without APSIM for the year 2020 for 12 states of the US Corn Belt. The blue lines demonstrate the range of RMSE
with and without APSIM. The first set of bars compares the model performance for the US Corn Belt, while the other set of bars compares the
model performance at the state level.
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approach may cause rejecting a reliable model in one year

whereas accepting it in another year. So, this will cause

complications in selecting a model which performs

well generically.

This study developed a robust modeling system to predict

county-scale yields. Future studies can leverage this system and

climate change scenarios to inform policy, aiding decision-

making. In addition, RMSE, RRMSE, and other evaluation

criteria can be explored to find an evolution matrix that can

ensure the identification of a reliable model on a generic level.

Furthermore, data from remote sensors can be included as an

input feature to develop better-performing models.
5 Conclusion

This research developed a crop yield prediction model for

the US Corn Belt that aims to be applicable for a wide region and

with improved model transparency. We integrated the outputs

from the crop growth model (APSIM) together will soil, weather,

and management data into ML models to build the crop yield

prediction model. The ensemble of various ML models was

found to be the best-performing model. Analysis of model

performance temporally and on different geographic levels

(county and crop reporting districts) revealed that areas with a

higher cropland ratio have a lower model prediction error. Our

study is among the first to explain the reasons for the low/high

prediction accuracy of ML models. Finally, we confirmed that

coupling crop modeling with ML increases crop yield

predictability in larger geographic areas than previously
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reported. For future research, the focus can be improving the

model performance for locations with limited historical data by

incorporating remote sensing data.
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