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Effects of low temperature on
flowering and the expression of
related genes in Loropetalum
chinense var. rubrum

Damao Zhang1,2,3†, Qianru Chen1,2,3†, Xia Zhang1,2,3, Ling Lin4,
Ming Cai5, Wenqi Cai1,2,3, Yang Liu1,2,3, Lili Xiang1,2,3,
Ming Sun5*, Xiaoying Yu1,2,3* and Yanlin Li1,2,3,6*

1Hunan Agricultural University, College of Horticulture, Changsha, Hunan, China, 2Engineering
Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of
Education, Changsha, China, 3Hunan Mid-Subtropical Quality Plant Breeding and Utilization
Engineering Technology Research Center, Changsha, China, 4School of Economics, Hunan
Agricultural University, Changsha, China, 5Beijing Key Laboratory of Ornamental Plants Germplasm
Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing
Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in
Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture,
Beijing Forestry University, Beijing, China, 6Kunpeng Institute of Modern Agriculture, Foshan, China
Introduction: Loropetalum chinense var. rubrum blooms 2-3 times a year,

among which the autumn flowering period has great potential for exploitation,

but the number of flowers in the autumn flowering period is much smaller than

that in the spring flowering period.

Methods: Using ‘Hei Zhenzhu’ and ‘Xiangnong Xiangyun’ as experimental

materials, the winter growth environment of L. chinense var. rubrum in

Changsha, Hunan Province was simulated by setting a low temperature of 6-

10°C in an artificial climate chamber to investigate the effect of winter low

temperature on the flowering traits and related gene expression of L. chinense

var. rubrum.

Results: The results showed that after 45 days of low temperature culture and a

subsequent period of 25°C greenhouse culture, flower buds and flowers

started to appear on days 24 and 33 of 25°C greenhouse culture for ‘Hei

Zhenzhu’, and flower buds and flowers started to appear on days 21 and 33 of

25°C greenhouse culture for ‘Xiangnong Xiangyun’. The absolute growth rate

of buds showed a ‘Up-Down’ pattern during the 7-28 days of low temperature

culture; the chlorophyll fluorescence decay rate (Rfd) of bothmaterials showed

a ‘Down-Up-Down’ pattern during this period. The non-photochemical

quenching coefficient (NPQ) showed the same trend as Rfd, and the

photochemical quenching coefficient (QP) fluctuated above and below 0.05.

The expression of AP1 and FT similar genes of L. chinense var. rubrum gradually

increased after the beginning of low temperature culture, reaching the highest

expression on day 14 and day 28, respectively, and the expression of both in the

experimental group was higher than that in the control group. The expressions

of FLC, SVP and TFL1 similar genes all decreased gradually with low
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temperature culture, among which the expressions of FLC similar genes and

TFL1 similar genes in the experimental group were extremely significantly lower

than those in the control group; in the experimental group, the expressions of

GA3 similar genes were all extremely significantly higher than those in the

control group, and the expressions all increased with the increase of low

temperature culture time.

Discussion:We found that the high expression of gibberellin genes may play an

important role in the process of low temperature promotion of L. chinense var.

rubrum flowering, and in the future, it may be possible to regulate L. chinense

var. rubrum flowering by simply spraying exogenous gibberellin instead of the

promotion effect of low temperature.
KEYWORDS

low temperature, flowering, bud, gibberellin, FLC, FT, Ap1
1. Introduction
Loropetalum chinense var. rubrum, an evergreen shrub or

small tree (Xia et al., 2020), which with bright leaves and as an

important landscape application tree species in Hunan and even

the middle and lower reaches of the Yangtze River (Runmin and

Xiaoying, 2012). The flower color of L.chinense var. rubrum is

absolutely gorgeous (Zhang et al., 2022)and annual flowering 2-3

times. The spring flowers is in March-April, while autumn

flowers are in October-November. Although the large amount

of flowers opened in spring, the flowering period of L.chinense

coincides with other ornamental plants, which resulting in no

competitive advantage in the application direction of flowering.

The autumn flowering period coincides with the National Day,

and its bright red flower color complements the atmosphere of

the National Day celebration, which provides a new idea for the

development of its flowering value. However, the number of

spring flowers is much larger than that of autumn flowers in the

natural environment (Bao et al., 2007). Whether this

phenomenon is related to the low temperature in winter has

not yet been proved. Clarifying this relationship has certain help

for the excavation of the flower value of L.chinense var. rubrum.

Numerous studies have shown that photoperiod and low

temperature induction are the main inducers of flowering in

most plants, and that changes in these environmental conditions

ultimately regulate flowering through substances in the leaves

called ‘florigen’ (Taoka et al., 2013). Low temperature in winter

is an important environmental condition for inducing and

accelerating the flowering of many plants (Lina et al., 2003;

Zhonghua et al., 2006). Plants start the transformation from
02
vegetative growth to reproductive growth under the induction of

low temperature, which is also called vernalization (Alexandre and

Hennig, 2008). FLC plays an important role in floral transition by

encoding a MADS-box transcription factor (Changsheng et al.,

2021). It was shown that the expression of the FLC-like gene VRN2

was suppressed in wheat leaves after vernalization induction,

reducing the suppression of a MADS box protein-containing

VRN1 gene (with high homology to the downstream flowering

regulator AP1 in Arabidopsis) in leaves, thereby promoting

flowering (Yan et al., 2004). The results showed that the

transcription level of FLC gene was higher in cabbage without

vernalization. At this time, cabbage showed late flowering traits.

After 10 days of induction at 4°C, the expression level of FLC gene

in cabbage with early flowering traits decreased significantly (Kim

et al., 2007; Kitamoto et al., 2013). During vernalization, FLC not

only suppresses the transcriptional expression of FT by binding to

the promoter of the downstream gene FT, but also hinders the

regulation of the floral meristem gene AP1 by FT and inhibits the

flower-forming transition, but also binds to the transcription factor

SVP to form heterodimer, which jointly negatively regulates the

expression of FT gene, thereby inhibiting flowering (Mateos et al.,

2015; Luo et al., 2019; Kinmonth-Schultz et al., 2021). FT gene can

also inhibit the expression of FLC gene in vegetative and

reproductive growth stages, especially in seed development stages

(Chen and Penfield, 2018). In 2007, it was shown that FT proteins

in leaves are ‘florigen’ that bind to FD proteins in stem tips and

promote the expression of genes in downstream floral meristems,

thus promoting flowering (Taoka et al., 2011). FT and TFL1 belong

to the same family of PEBPs and share 98% amino acid sequence

similarity, but they have opposing functions (Kobayashi et al.,

1999; Karlgren et al., 2011; Sriboon et al., 2020). The balance
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between FT and TFL1 determines the early and late flowering of

pear trees, and they are antagonistic. The flowering time is

controlled by the combination of competition and FD to activate

the transcription and expression of downstream floral meristem

gene AP1 (Abe et al., 2005; Hanano and Goto, 2011; Ito et al.,

2022). AP1 gene, as an important member of the ABCDEmodel of

floral development, which can identify and accept a large number

of signal pathways. These signals can guide floral meristem

development into flowers by inhibiting or promoting the

expression of AP1 (Wellmer and Riechmann, 2010;

O’Maoileidigh et al., 2014).

The initiation of flower bud differentiation marks the

transition of plants from vegetative growth to reproductive

growth. In this process, a large number of nutrients,

endogenous hormones and other contents are changed

(Blázquez et al., 1998; Han et al., 2016; Rizza and Jones, 2019).

The changes in gibberellin content are interspersed throughout

the developmental stages of flowers and make a difference

(Shihao et al., 2008; Wang et al., 2015). When exogenous

gibberellin is applied, it induces flowering in long-day plants

instead of low temperature, while when endogenous GA

synthesis is blocked, flowering is delayed (Qiaoxia et al., 2019).

This is the well-known gibberellin pathway that promotes

flowering by inhibiting SVP gene expression and positively

regulating FT and SOC1 genes (Mateos et al., 2015). At the

same time, the increase of gibberellin content in the process of

flowering induction can improve the photosynthetic capacity of

plant leaves (Weicai et al., 2014), then providing more energy for

the flowering process and ensuring the successful completion of

the flowering process (Christiaens et al., 2015).

This experiment was conducted with a new varieties of

L.chinense and a L.chinense var. rubrum, and the experiment

was carried out after the end of their autumn flowering period.

The low-temperature environmental conditions in winter were

simulated by low-temperature incubation at 6-10°C, and the

effect of winter low temperature on the flowering of red frond

was initially investigated by combining parameters such as the

number of flowers, chlorophyll fluorescence parameters, and the

expression of related genes.
2. Materials and methods

2.1 Materials

The experimental materials included a new variety ‘Xiangnong

Xiangyun’ selected by Hunan Agricultural University (variety

registration number: 20201102, variety registration agency: State

Forestry and Grassland Administration) and ‘Hei Zhenzhu’.

Among them, ‘Xiangnong Xiangyun’ is the L. chinense of the

Loropetalum, which blooms 1-2 times a year, with a large number

of flowers, and the petal color is pure white or light beige; ‘Hei
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Zhenzhu’ is the L.chinense var. rubrum of the Loropetalum, which

blooms 1-2 times a year, blooms in large numbers, and the petal

color is magenta or rose. All experimental materials were the

progeny of cuttings from both cultured for two years with stable

genetic background. The experimental sites include the artificial

climate room at Hunan Agricultural University (Room 007, 11th

Teaching Building, Hunan Agricultural University) and the

intelligent greenhouse in the flower base of Hunan

Agricultural University.

The experiment started in November 2020 after the end of the

autumn flowering period of Loropetalum Chinense.Eight pots

each of ‘Xiangnong Xiangyun’ and ‘Hei Zhenzhu’ with good

growth and consistent crown size were selected and numbered

X.T1-X.T8 and H.T1-H.T8, respectively. After 5 days of gradient

low temperature exercise (Starting from 25°C, adjust the

parameters of the artificial climate chamber to reduce

the ambient temperature by 3°C per day and end with 10°C),

the above 16 pots of material were sequentially transferred to the

artificial climate chamber for low temperature culture. The

artificial climate chamber was set for a total of five cycles, 8:00-

12:00, 8°C, light; 12:00-14:00, 10°C, light; 14:00-18:00, 8°C, light;

18:00-8:00 the next day, 6°C, dark. At the same time, the ambient

temperature in the smart greenhouse was maintained at 25°C.

After 42 days of continuous incubation in the artificial climate

chamber, the plants were moved into the smart greenhouse

sequentially after 3 days of gradient warming in the artificial

climate chamber and incubated in the same environment as the

control plants for subsequent observation (Starting from 10°C,

adjust the parameters of the artificial climate chamber to increase

the ambient temperature by 5°C per day and end with a warming

of 25°C).During the experimental cycle, the water and fertilizer

management was kept consistent for all plants, watering once

every 3 days and fertilizing moderately once every 15 days.
2.2 Methods

2.2.1 Observation of buds
After the experiment started, the maximum transverse

diameter and the longest longitudinal diameter of their shoots

were measured sequentially every 7 days using a digital vernier

caliper, and the shoots from the same part of the same plant were

taken each time and repeated three times and recorded. After the

low-temperature culture ended and the room-temperature

culture started, the status of each plant bud was observed once

every 3 days, and the number and time of present buds and

flowers were recorded.

2.2.2 Determination of chlorophyll
fluorescence parameters

Chlorophyll fluorescence parameters were measured

randomly every 3 days after the start of the experiment using

a hand-held chlorophyll fluorometer on leaves from the same
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location of the same plant. For the measurement, the leaves to be

measured are first held in a dark adaptation using a leaf clamp

for 30 minutes. After dark adaptation, chlorophyll fluorescence

parameters were measured sequentially using the ‘OJIP’ and

‘NPQ3’ programs in the instrument, and each measurement was

repeated three times.
2.2.3 Detection of gene expression
During the experiment, 7-8 pieces of apical leaves from

different plants of the same species were taken every 7 days in

lyophilization tubes, snap-frozen in liquid nitrogen and stored in

an ultra-low temperature refrigerator at -80°C. Two tubes were

sampled and stored each time. Refer to the StarSpin HiPure

Plant RNA Mini Kit (GeneStar, Beijing) kit instructions to

extract total RNA. The cDNA was synthesized by referring to

the Evo M-MLV (Ekore, Hunan) reverse transcription kit

instructions. And we compared the protein sequences of the

related genes of L.chinense var. rubrum in NCBI (https://www.

ncbi .nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi) , and

preliminarily identified the similar functions of the related

genes and similar genes through the protein domain, and the

identification results were provided in the form of

supplementary figures, primers were designed using Beacon

Designer 8 (Table 1).The PCR reaction system was 2X SYBR

Green Pro Taq HS Premix*5µL, 0.8µL each of upstream and

downstream primers (10µmol/L), 1µL of cDNA, and ddH2O to
Frontiers in Plant Science 04
make up to 10µL.PCR amplification conditions were: step 1, 95°

C for 30 seconds, step 2, 95°C for 5 seconds, 60°C for 30 seconds,

72°C for 10 minutes for 40 cycles, 65°C for 5 seconds, 95°C for 5

seconds, 3 repetitions, and the relative expression of the target

gene was calculated according to the 2-DCt method.
2.3 Statistical analysis

The experimental data were statistically analyzed using SPAS

22.0, the Duncan method was used for multiple comparisons,

Origin 2019b was used for graph drawing.
3 Results

3.1 Effect of low temperature on
flowering

Combined with Tables 2 and 3, ‘Xiangnong Xiangyun’ and

‘Hei Zhenzhu’, which were cultured at low temperature and then

at room temperature, were able to flower, and both had the

maximum number of flower buds of 33 and 22 on days 27 and

30, respectively, after being cultured at room temperature. The

maximum number of flowering was 39 and 16 on day 36,

respectively. The flowering process was the same for both, but

‘Xiangnong Xiangyun’ had more buds and flowers than ‘Hei
TABLE 1 Real-time fluorescence quantitative PCR primer information for L.chinense var. rubrum.

Gene type Gene Primer sequence (5´-3´)

Internal reference genes b-actin2 F CCACAAGGCTTATTGATAGAAT

R CAATGGTTGAACCTGAATACT

AP1-like gene augustus40012 F CCAGCTTGATAATGCTCTTAA

R GTGCCTTCTCCTTCTCTT

FT-like genes augustus63326 F ATCTTAGGACCTTCTACACTC

R AATATCAGTCACCAACCAATG

augustus34660 F GTCTCTACCGATCTCTACAC

R CTTCTGGAATGTCAACAACA

SVP-like gene augustus15211 F CAGCCATCTCCATCTCTT

R ACACGACTCAATCCAACT

FLC-like gene augustus27517 F GTTTCTTCCTCAAATTCAACTTT

R CTACCATCCTCATTATTCTTCTTAT

TFL1-like gene augustus62587 F CTAGAAGAGAGGTGGTGAC

R CAGTGAAGAAGGTGGAGTA

GA-like genes augustus49213 F CACATTCTCGGCATTATCAA

R TCACCACCTTGTCTTCTC

augustus58706 F TCCTACCTCCTTAACTATACTTC

R CCTGTTCACTATTGCTCTATG

augustus63711 F GGTGAGCACTGTGGATAT

R CCTCGCAATAGTCCTGAT
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Zhenzhu’. In contrast, the two experimental materials, which

were continuously cultured at 25°C, did not show buds or

flowers throughout the experimental cycle.
3.2 Effect of low temperature on bud
growth rate and photosystem

From Figure 1, the absolute growth rates of ‘Xiangnong

Xiangyun’ and ‘Hei Zhenzhu’ showed a ‘Up-Down’ pattern

during the 7-28 days of low temperature culture, after which

the absolute growth rates of shoots continued to increase. In

combination with the Rfd curve of chlorophyll fluorescence

decay rate (right 1) and the NPQ curve of non-photochemical

quenching coefficient (middle) in Figure 2, the Rfd curves of

‘Xiangnong Xiangyun’ and ‘Hei Zhenzhu’ showed an overall

pattern of ‘Down-Up- Down’. And reached a higher level on day

21 of this period, the trend of NPQ curve was consistent with

Rfd, and the value of photochemical quenching coefficient QP

fluctuated regularly above and below 0.05.
Frontiers in Plant Science 05
3.3 Effect of low temperature on the
expression of flowering-related genes

3.3.1 Effect of low temperature on AP1 gene
expression

The expression of agustus40012, a similar gene of AP1 in L.

chinense var. rubrum, was generally in an up-regulated state as

the low-temperature induction time progressed. In particular,

the expression reached the highest level in the leaves of

‘Xiangnong Xiangyun’ and ‘Hei Zhenzhu’ on day 14 after the

beginning of low-temperature induction, the expression in the

leaves of ‘Xiangnong Xiangyun’ is 7.74 times that of the T0

period (Figure 3A), and the expression in the leaves of ‘Hei

Zhenzhu’ is 20.78 times that of the T0 period (Figure 3B), and

the expression in the leaves of both reaches the highest state at

this time. The expression at T28 was still 2.39 and 3.44 times

higher than that at T0, which was still in an up-regulated

expression state. Moreover, in the period from T7 to T28, the

expression of this gene in the T group was significantly higher

than that in the CK group. It can also be seen that in the CK

group, the expression of AP1-like genes in the leaves of both
TABLE 3 Flowering number and flowering time under normothermic (25°C) culture after low-temperature induction.

Date Time/day Number of flowering bud

Hei Zhenzhu Xiangnong Xiangyun

20210117 29 0 0

20210118 30 0 1

20210121 33 8 19

20210124 36 16 39

20210127 39 6 12

20210130 42 0 2

20210131 43 0 0
The two experimental materials incubated continuously at 25°C throughout the experimental cycle did not see flowering.
TABLE 2 Number of flower buds and time to bud emergence under normothermic (25°C) culture after low-temperature induction.

Date Time/day Number of flowering bud

Hei Zhenzhu Xiangnong Xiangyun

20210108 20 0 0

20210109 21 0 6

20210112 24 5 13

20210115 27 21 33

20210118 30 22 32

20210121 33 14 25

20210124 36 4 3

20210125 37 0 0
No flower buds were seen for the two experimental materials that were continuously incubated at 25°C throughout the experimental cycle.
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experimental subjects in the T0 period is higher than that in the

T7 to T28 period.
3.3.2 Effect of low temperature on FT gene
expression

Since the beginning of low temperature culture, FT similar

genes in the low temperature treatment group had similar

expression phenomena in ‘Xiangnong Xiangyun’ and ‘Hei

Zhenzhu’. Both genes showed up-regulated expression in

general, but the expression of augustus63326 appeared to

increase and then decrease during the low-temperature

culture. In ‘Xiangnong Xiangyun ’ , the expression of

augustus63326 was 2.63 times higher at T14 than at T0 and

2.52 times higher at T21 than at T0, and the gene had higher
Frontiers in Plant Science 06
expression in both periods (Figure 4A1). In ‘Hei Zhenzhu’,

augustus63326 is expressed 4.40 times more in the T14 period

than in the T0 period, and augustus63326 is expressed in the T21

period is 5.28 times that in the T0 period, both of which also

have higher expression (Figure 4B1). The expression of

augustus63326 in both subjects decreased in the T28 period,

but it was still 1.26 times and 2.56 times that of the T0 period.

The expression of this gene in the T28 period was 68.79 times

(Figure 4A2) and 6.50 times (Figure 4B2) higher than that in the

T0 period, both reaching the highest values in ‘Xiangnong

Xiangyun’ and ‘Hei Zhenzhu’. At the same time, the

expression of augustus34660 was significantly higher than that

of the CK group in all periods under low temperature treatment.

It can be found that except for augustus63326 of ‘Xiangnong

Xiangyun’, the expression of FT-like genes in the low-
FIGURE 1

Absolute growth rate of shoots of ‘Xiangnong Xiangyun’ and ‘Hei Zhenzhu’ during low temperature culture. ‘XNXY’ stands for ‘Xiangnong
Xiangyun’, ‘HZZ’ stands for ‘Hei Zhenzhu’.
FIGURE 2

Changes in chlorophyll fluorescence parameters of 'Xiangnong Xiangyun' and 'Hei Zhenzhu' during low temperature culture. ‘XNXY’ stands for
‘Xiangnong Xiangyun’, ‘HZZ’ stands for ‘Hei Zhenzhu’.
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temperature treatment group was higher than that in the CK

group in all periods.

3.3.3 Effect of low temperature on SVP, FLC
and TFL1 gene expression

After the experiment started, with the experimental time, the

similar genes of SVP and FLC in the low temperature treatment

group were consistently down-regulated in the leaves of

‘Xiangnong Xiangyun’ and ‘Hei Zhenzhu’. The expression of

augustus15211 reached the lowest expression at T21, 0.39

(Figure 5) and 0.42 (Figure 5) times that of T0, respectively.

augustus27517 had lower expression at T28, 0.44 (Figure 5) and

2.64 (Figure 5) times that of T0, respectively, and The expression

of augustus27517 was overall highly significant higher in the CK-

treated group than in the low-temperature-treated group. Except

for the T21 period, the expression of augustus62587, a similar

gene of TFL1, was extremely significantly lower in both

‘Xiangnong Xiangyun ’ and ‘Hei Zhenzhu’ under low

temperature treatment than in the CK treatment group. In the

T21 period, the expression of augustus62587 showed extreme

values in both materials, at which time the highest expression of

augustus62587 appeared in both materials under low

temperature treatment, which were 1.27 (Figure 5) and 3.25

(Figure 5) times higher than in the T0 period, respectively. While

the lowest expression of augustus62587 appeared in both

materials in the CK group, which were 0.62 (Figure 5) and 2.33

(Figure 5) times higher than that in the T0 period, respectively.

3.3.4 Effect of low temperature on GA gene
expression

Overall, the expression of the similar genes of GA in the low-

temperature treatment group increased sharply within 7 days
Frontiers in Plant Science 07
after the start of the low-temperature treatment. Among the

three, except for augustus58706, the expression of the other two

genes under low temperature treatment was very different from

that in the period before low temperature treatment was started,

and the extreme values were: the expression in the T7 period was

28.50 times that of the T0 period (Figure 6A1), the expression in

the T14 period was 81.31 times that in the T0 period

(Figure 6B1), and the expression in the T21 period was 26.81

times that in the T0 period (Figure 6A3), The expression in the

T28 period is 6.13 times that in the T0 period (Figure 6B3). The

expression of augustus58706 under low temperature treatment

was not much different from that in the non-low temperature

treatment period, and the highest expression was 2.09 times

(Figure 6A2) and 1.13 times (Figure 6B2) of the T0 period,

respectively. In general, the expression of the T group was

significantly higher than that of the CK group in all periods. It

can also be seen that the expression of all three in the CK group

is at a very low level.
4 Discussion

On the one hand, some deciduous and evergreen plants

escape the cold by losing their leaves and changing their leaf

structure to minimize respiration and photosynthesis during

winter (Oquist and Huner, 2003), and some plants, such as

hostas (Hawryzki et al., 2011), escape the cold by cutting

themselves above ground and keeping the lower part of the

ground in a dormant state (Dogramaci et al., 2010; Yu et al.,

2010). On the other hand, through long-term adaptation, most

plants have evolved a trait that needs to be induced by low winter
A B

FIGURE 3

Relative expression of the similar gene augustus40012 of AP1 in the leaves of plants with different treatments in L. chinense var. rubrum. ‘(A)’
represents the relative expression of similar genes of AP1 in leaves of ‘Xiangnong Xiangyun’ under different treatments. ‘(B)’ represents the
relative expression of similar genes of AP1 in leaves of ‘Hei Zhenzhu’ under different treatments. ‘T’ represents the low-temperature treatment
group and ‘CK’ represents the blank control group treated at 25°C. '*' significant difference, '**' extremely significant difference.
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temperatures to flower and bear fruit, a phenomenon

called vernalization.

In this study, it was found that after low-temperature

induction, the L. chinense var. rubrum can still flower

successfully even if the autumn flowering period has passed,

while no flowering was seen in the same batch of L. chinense var.

rubrum cultured at a constant temperature of 25°C. It shows that

appropriate low-temperature induction can promote not only

flowering and fruiting of some plants, but also flowering of L.

chinense var. rubrum. Similarly, when Satsuma mandarins are

grown continuously at 25°C, they have only nutritional growth,

whereas when they are cultivated at a relatively low temperature

of 15°C there is a distinction between nutritional and
Frontiers in Plant Science 08
reproductive growth (Agusti et al., 2022). Combined with the

absolute growth rate of buds in Figure 1, we found that when the

low temperature started, the growth rate of buds was very low,

and the plant responded to the low temperature environment by

weakening its various physiological activities at low temperature

(Sønstebya and Heideb, 2019), indicating that the various

physiological activities of L. chinense var. rubrum itself had

been weakened at this time. Subsequently, with the

continuation of low temperature culture time, the growth rate

of buds began to rise, at this time the L. chinense var. rubrum has

adapted to the low temperature environment, and by the low

temperature induced after the promotion of buds began to

undergo transformation, in the low temperature buds from the
A1 B1

A2 B2

FIGURE 4

Relative expression of similar genes augustus63326 and augustus34660 of FT in the leaves of plants with different treatments in L. chinense var.
rubrum. ‘(A)’ represents the relative expression of similar genes of FT in leaves of ‘Xiangnong Xiangyun’ under different treatments. ‘(B)’
represents the relative expression of similar genes of FT in leaves of ‘Hei Zhenzhu’ under different treatments. ‘T’ represents the low-
temperature treatment group and ‘CK’ represents the blank control group treated at 25°C. ** extremely significant difference.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1000160
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2022.1000160
A B

DC

FE

FIGURE 5

Relative expression of similar genes augustus15211, augustus27517, and augustus62587 of SVP, FLC, and TFL1 in leaves of plants with different
treatments of L. chinense var. rubrum. ‘(A)’, ‘(C)’ and ‘(E)’ represent the relative expressions of SVP, FLC and TFL1 similar genes in leaves of
‘Xiangnong Xiangyun’ under different treatments, respectively. ‘(B)’, ‘(D)’ and ‘(F)’ represent the relative expression of similar genes of SVP, FLC
and TFL1 of ‘Hei Zhenzhu’ in leaves under different treatments, respectively. ‘T’ represents the low-temperature treatment group and ‘CK’
represents the blank control group treated at 25°C. '*' significant difference, '**' extremely significant difference.
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original dormant state or nutrient growth state to reproductive

growth state. After that the growth rate of the buds of the L.

chinense var. rubrum decreased and then increased again.

During this stage, the buds may pass through a period of low

temperature induction before first completing part of the process

of transition to reproductive growth and then entering

dormancy again. After a period of time, with the continuation
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of the low temperature induction, the buds are prompted to

complete the subsequent stage of floral bud differentiation.

The inhibition of plant growth and physiological functions

in low temperature environments is related to the reduction in

the activity of photosystem II and photosystem I at low

temperatures (Tang et al., 2020). The energy conversion

efficiency of photosystem II can be visualized by chlorophyll
A1 B1

A2 B2

A3 B3

FIGURE 6

Relative expression of similar genes augustus49213, augustus58706 and augustus63711 of GA in the leaves of plants with different treatments of
L. chinense var. rubrum. ‘(A)’ represents the relative expression of GA similar genes in leaves of ‘Xiangnong Xiangyun’ under different treatments.
‘(B)’ represents the relative expression of GA similar genes in leaves of ‘Hei Zhenzhu’ under different treatments. ‘T’ represents the low-
temperature treatment group, ‘CK’represents the blank control group treated at 25°C. ** extremely significant difference.
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fluorescence parameters (Maxwell and Johnson, 2000), in

agriculture, real-time monitoring of chlorophyll fluorescence

parameters of crops enables accurate measurement of crop

photosynthesis, allowing more accurate prediction of

agricultural productivity and climate effects on crop yield. And

the efficiency of photosystem II can usually be reflected by the

value of Fv/Fm, while Rfd is a more sensitive indicator of plant

vigor and photosynthetic rate than Fv/Fm (Lysenko et al., 2014;

Shin et al., 2017). It can be seen that the Rfd values of the L.

chinense var. rubrum in this experiment decreased sharply after

the beginning of the experiment, indicating that the

photosynthetic efficiency and physiological activities of the L.

chinense var. rubrum at the initial stage of low temperature

decreased rapidly, which is consistent with the result that the

growth rate of the buds of the L. chinense var. rubrum decreased

at the beginning of the experiment. From the 6th day of the

experiment, the trend of Rfd was opposite to the growth rate of

the shoots, and the growth rate of the shoots started to decrease

when the value of Rfd increased. When plants suddenly enter

reproductive growth, nutritional growth will suffer inhibition,

inhibited nutritional growth will in turn inhibit reproductive

growth (Gaaliche et al., 2011; Li and Zhang, 2012; Rosati et al.,

2018), reproductive growth intervenes, the increase in

photosystem activity of the leaves to obtain more nutrients to

supply reproductive growth (Yang et al., 2012a; Yang et al.,

2019). At this time, the supply of nutritional growth of buds is

reduced, and the growth rate is reduced, followed by the

inhibition of reproductive growth by nutritional growth, and

the combined effect of the low temperature environment causes

a decrease in photosynthetic efficiency and a decrease in the

value of Rfd. This was repeated until the flower bud

differentiation was completed in the low temperature

environment. In the low temperature environment, the trend

of NPQ is consistent with Rfd (Shin et al., 2021), therefore, the

NPQ curve of L. chinense var. rubrum under low temperature

treatment has a similar trend to the Rfd curve. The magnitude of

the QP value reflects the photosynthetic efficiency of

photosystem II to a certain extent (Shouren, 1999; Xin and

Jirui, 2012), and the QP value of L. chinense var. rubrum under

low-temperature environment remained above and below 0.05,

indicating that photosystem II of redbud suffered a stronger

inhibition under low-temperature conditions. Combined with

Figure 2 , the phenomenon that ‘Xiangnong Xiangyun’ has more

buds and flowers can be explained because the Rfd value of

‘Xiangnong Xiangyun’ showed a rapid increasing trend in the

late low temperature culture, indicating that its photosystem II

recovered some activity at this time. The photosynthetic

efficiency of ‘Xiangnong Xiangyun’ was much higher than that

of ‘Hei Zhenzhu’, which caused ‘Xiangnong Xiangyun’ to obtain

more organic assimilated material to provide more energy for

reproductive growth. Eventually, ‘Xiangnong Xiangyun’ had

more flower buds to complete the transformation.
Frontiers in Plant Science 11
Among the four pathways that regulate flowering in plants,

the main signal for the vernalization pathway is low temperature

from the environment (Bond et al., 2011). The most important

gene in the vernalization pathway is FLC, which encodes a

MADS-box transcription factor and a flowering repressor, and

the higher the expression, the stronger the repression of

flowering (Yang et al., 2012b), its expression is inhibited by

low temperatures during vernalization (Helliwell et al., 2006).

FLC can inhibit flowering by interacting with SVP to form a

dimer (Mateos et al., 2015), and by binding to the first intron

region of FT, it strongly inhibits FT transcription and thus

prevents bud differentiation (Li et al., 2008). FT is highly

conserved in flowering plants and it can integrate regulatory

signals from different pathways to regulate flowering (Sheng

et al., 2013; Song et al., 2013), it promotes flowering when its

expression is upregulated and loses its ability to promote

flowering when it is downregulated (Nishikawa et al., 2007).

As for TFL1, which belongs to the same PEPB family, its

function is contrary to that of FT due to the alteration of a key

amino acid residue in its PEPB structural domain (Klintenäs

et al., 2012), and the two regulate the expression of downstream

flowering genes such as AP1 by competitively binding FD

proteins (Corbesier et al., 2007; Zhu et al., 2020). As can be

seen from Figure 5, the similar genes augustus27517 and

augustus15211 of FLC and SVP, both of which showed a

decreasing trend in expression since the beginning of low-

temperature culture, while in CK both of which were

maintained at high levels, indicating that the low-temperature

culture environment in the experiment suppressed the

expression of similar genes of FLC and SVP in L. chinense var.

rubrum. The similar gene augustus62587 of TFL1 was also at a

low expression level under low temperature conditions, and was

at a disadvantage when competing with FT to bind FD protein

and therefore promoted flowering, while augustus62587 in the

CK group was at a high expression level and was at an advantage

in the competition and therefore inhibited flowering. Combined

with Figure 4, the expression of both FT similar genes in the low

temperature treatment group was consistently elevated, while

the expression of FT genes in the CK group were maintained at

low levels. the high level of FT expression again indicated that

the low temperature treatment suppressed the expression of FLC

and SVP, while the high level of FT expression was at an

advantage relative to TFL1 when competing for FD proteins,

thus promoting bud differentiation and flowering.

During plant flower formation, various regulatory signals are

eventually fed back to AP1 through different pathways (Quan

et al., 2019). The above FT integrator signal is also ultimately

delivered to the AP1 gene via the FD protein in order to function

(Wigge et al., 2005). AP1 is a floral meristem characteristic gene

in the ABCDE model of flower development and belongs to the

MADS-box family, which plays an extremely important role in

the flower-forming transition (Li et al., 2021). As shown in
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Figure 3 , the similar gene augustus40012 of AP1 maintained a

higher expression level in the low temperature treatment group,

while the expression level of augustus40012 was at a lower

expression level in the CK group, indicating that the above

genes together increased the expression level of augustus40012

under low temperature through different pathways and ways,

thus promoting flowering.

Flower bud differentiation is the process of transition from

nutritional to reproductive growth, and the process of breaking

the hormonal balance in the plant (Munne-Bosch and Lalueza,

2007; Pan et al., 2012). Among the many endogenous plant

hormones, gibberellin (GA) has been shown to be closely related

to flowering (Zhang et al., 2018). In the gibberellin flowering

pathway, exogenous gibberellin regulates the up-regulated

expression of AP1 gene to promote flowering in Arabidopsis

under short sunlight with LFY protein as an intermediate
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(Eriksson et al., 2006). It has been shown that the internal

active gibberellin content of Brassica juncea gradually

increased to a peak during its floral bud differentiation after

vernalization treatment, indicating that low temperature also

promotes the expression of GA genes (Shang et al., 2017).

Combined with Figure 6, in this study, the similar genes

augustus49213, augustus58706 and augustus63711 of GA were

maintained at higher expression levels during the low

temperature treatment, while the gibberellin content in the CK

group in all periods was always lower than that in the T0 period,

indicating that low temperature promoted the expression of

augustus49213, augustus58706 and augustus63711 in L. chinense

var. rubrum. The up-regulation of gibberellin-related gene

expression and low temperature together activated the

gibberellin flowering pathway and promoted flowering in L.

chinense var. rubrum.
FIGURE 7

Regulation model for low temperature promotion of flowering in Eryngium. The gene expression values in the heat map are obtained from the
original values after homogenization by the scale function. ‘T’ represents the low-temperature treatment group and ‘t’ represents the blank
control group treated at 25°C, ‘XNXY’ represents the ‘Xiangnong Xiangyun’ and ‘HZZ’ represents the ‘Hei Zhenzhu’.
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5 Conclusion

In summary, low-temperature culture is a reliable way to

promote the flowering of L. chinense var. rubrum as a form of

regulation, and low-temperature induction in winter is one of

the reasons why the number of flowers in the spring flowering

period of L. chinense var. rubrum is more than the number of

flowers in the autumn flowering period. The molecular

regulatory network of low temperature-promoted flowering is

complex (Bond et al., 2011), the most critical of which is that the

genes FLC and SVP, which are repressors offlowering formation,

suffer from repression of transcript levels at low temperatures

(Yan et al., 2006), and that low temperature conditions promote

the expression of GA genes activating the gibberellin flowering

pathway, which together activate the expression of the

downstream flowering-promoting gene FT, which is capable of

integrating multiple signals (Xu et al., 2012), and ultimately the

FT gene positively regulates the expression of the floral meristem

gene AP1 to promote flowering transformation (Wellmer and

Riechmann, 2010), based on these results we can obtain Figure 7.

Through our research, we can lay the foundation for the

subsequent development and use of exogenous gibberellin

spraying to regulate the flowering of L. chinense var. rubrum,

so that the goal of making full use of autumn flowers of L.

chinense var. rubrum can be realized.
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