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Flooding entails different stressful conditions leading to low oxygen availability

for respiration and as a result plants experience hypoxia. Stress imposed by

hypoxia affects cellular metabolism, including the formation of toxic

metabolites that dramatically reduce crop productivity. Aldehyde

dehydrogenases (ALDHs) are a group of enzymes participating in various

aspects of plant growth, development and stress responses. Although we

have knowledge concerning the multiple functionalities of ALDHs in

tolerance to various stresses, the engagement of ALDH in plant metabolism

adjustment to hypoxia is poorly recognized. Therefore, we explored the ALDH

gene superfamily in the model plant Arabidopsis thaliana. Genome-wide

analyses revealed that 16 AtALDH genes are organized into ten families and

distributed irregularly across Arabidopsis 5 chromosomes. According to

evolutionary relationship studies from different plant species, the ALDH gene

superfamily is highly conserved. AtALDH2 and ALDH3 are the most numerous

families in plants, while ALDH18was found to be the most distantly related. The

analysis of cis-acting elements in promoters of AtALDHs indicated that

AtALDHs participate in responses to light, phytohormones and abiotic

stresses. Expression profile analysis derived from qRT-PCR showed the

AtALDH2B7, AtALDH3H1 and AtALDH5F1 genes as the most responsive to

hypoxia stress. In addition, the expression of AtALDH18B1, AtALDH18B2,

AtALDH2B4, and AtALDH10A8 was highly altered during the post-hypoxia-

reoxygenation phase. Taken together, we provide comprehensive functional
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information on the ALDH gene superfamily in Arabidopsis during hypoxia stress

and highlight ALDHs as a functional element of hypoxic systemic responses.

These findings might help develop a framework for application in the genetic

improvement of crop plants.
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Introduction

Aldehyde dehydrogenases (ALDHs) are a group of

ubiquitous enzymes involved in metabolism of both

prokaryotes and eukaryotes. They can oxidize excess of

aliphatic and aromatic aldehydes that are intermediates or

byproducts of crucial biochemical pathways in living cells

(Kirch et al., 2004; Stiti et al., 2011; Brocker et al., 2013). The

enzyme catalyzes the conversion of reactive aldehydes to the

corresponding non-toxic carboxylic acids with the participation

of NAD(P)+. Thus, the ALDH-mediated detoxification of

aldehydes may attenuate reactive compounds that provide

reactive carbonyl groups, which directly interact with DNA to

cause severe changes and in consequence, lead to programmed

cell death. Plants and animals have many common ALDH

families and many genes are highly conserved between these

two evolutionarily distinct groups (Brocker et al., 2013). ALDH

was shown to play an essential role in carnitine biosynthesis,

gluconeogenesis, glycolysis, amino acid metabolism and other

physiological processes (Marchitti et al., 2008; Tylichová

et al., 2010).

In plants ALDHs represent a widespread expression that

underscores their multifaceted physiological roles, which are still

largely unclear, and unraveling them is currently a priority of

many scientific investigations (Guo et al., 2020; Tola et al., 2021;

Islam and Ghosh, 2022). ALDH proteins are found under both

physiological and pathophysiological conditions in different

subcellular compartments, including cytosol, mitochondria,

chloroplasts, peroxisomes and microsomes (Mitsuya et al.,

2009; Missihoun et al., 2011) (Huang et al., 2008; Pawłowski

et al., 2017; Guo et al., 2020). The multifaceted role of ALDHs

has been well documented in rice. The aldehyde detoxification

activity of rice OsALDH7 was proven to maintain seed viability

(Shin et al., 2009; Shen et al., 2012), while OsALDH2b was found

to negatively regulate tapetal programmed cell death and be

essential for male reproductive development (Xie et al., 2020). In

turn, OsALDH2a potentially functions in submergence

tolerance (Nakazono et al., 2000).

Most plant ALDH genes studied so far are expressed under

adverse environmental conditions accompanied by oxidative
02
stress. Thus, the ALDH-dependent scavenging activity against

toxic aldehydes derived from lipid peroxidation fulfills a

cytoprotective role. Induction of ALDH at various gene

expression levels was documented during a wide range of

stress stimuli , including heat, ultraviolet radiation,

dehydration, salinity, heavy metal or aluminum stresses,

excessive light exposure or anaerobic conditions (Sunkar et al.,

2003; Kotchoni et al., 2006). The stress-inducible ALDH

proteins are predicted to be necessary for the mechanisms of

stress metabolism adjustment and long-term adaptation, since

the activity can alleviate the effects of oxidative stress (Stiti et al.,

2011). This could not only be due to direct aldehyde

detoxification activity, but also to the ALDH contribution to

the homeostasis of pyridine nucleotides which are important

redox sensors in cells. As indicated by Missihoun et al. (2018),

the loss of function of Arabidopsis ALDH3I1 and ALDH7B4 led

to a decrease in NAD(P)H, the NAD(P)H/NAD(P) ratio and an

alteration of the glutathione pools affecting the efficiency of

photosynthesis in Arabidopsis. It is known that reducing

equivalents such as NAD(P)H and reduced glutathione are

essential for maintaining cellular redox homeostasis (Xiao and

Loscalzo, 2020). Thus, widespread ALDHs may participate in

stress-induced dynamic redox changes.

Flooding as one of the most serious abiotic stresses affects

plant cellular metabolism leading to a dramatic reduction in

crop productivity. It restricts seed germination, plant growth and

development at all stages of the life cycle; however, the

developmental stage of the stressed plant and its duration are

crucial for the scale and extent of damage (Fukao and Bailey-

Serres, 2004; León et al., 2021). The adverse effects on plant

organisms may vary depending on the flooding conditions that

may affect only roots (waterlogging) or both roots and shoots

(partial or complete submergence) (Sasidharan et al., 2017).

Plants that experience flooding undergo hypoxia until the water

subsides and normoxia conditions are restored. Plant responses

induced by molecular-oxygen deficiency involve changes at the

transcriptomic, proteomic, metabolomic and enzyme activity

levels (e.g. León et al., 2021; Wang and Komatsu, 2022).

Although the root is the first organ that senses hypoxia caused

by floods, a set of physiological and biochemical changes is also
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provoked at the leaf level (Wang and Komatsu, 2022). This is

confirmed by the fact that a reduction of available oxygen results

in the limited net photosynthetic rate, diminished

photosynthetic electron transport rate and photosystem II

photochemical efficiency, alike the inhibition of transport from

roots to leaves (Liu et al., 2014).

Plants that survive or undergo transient flooding reprogram

their metabolism from the hypoxia phase to post-hypoxia

reoxygenation, which is accompanied by an increased

generation of reactive oxygen species (ROS) creating an

oxidative cellular environment (Jethva et al., 2022; Zafari et al.,

2022). ALDH is recognized as an aldehyde scavenger that

eliminates toxic aldehydes caused by oxidative stress, while its

implication in cellular response to hypoxia was evidenced in

organisms belonging to various domains of life (Mustroph et al.,

2009; Hermes-Lima et al., 2015; Sun et al., 2017). However,

identification of the precise participation of plant ALDH in the

unique metabolic switch induced by hypoxia still requires

detailed research.

In the present study, we provided a detailed genome-wide

identification, comprehensive gene description, evolution and

expression analysis of the ALDH gene families in Arabidopsis

thaliana. By integrating these data, we uncovered the importance

of ubiquitous ALDHs in molecular-oxygen deficiency conditions

created by flooding. To better understand the function of

AtALDHs under hypoxia and post-hypoxia recovery, its

expression patterns were examined by semi-quantitative RT-

PCR. Although ALDHs of many species including Arabidopsis

thaliana have been well characterized (Estey et al., 2007; Gao and

Han, 2009; Jimenez-Lopez et al., 2010; Shen et al., 2012;

Missihoun et al., 2018), this work contributes to more focused

research and applications of these multifunctional enzymes in

plants exposed to flooding. It highlights ALDHs as a functional

element of hypoxic systemic responses, and identifies ALDH

candidates involved in a metabolic switch induced by hypoxia

and post-hypoxia conditions.
Methods and materials:

Characterization and phylogenetic
analysis of the ALDH superfamily in
A. thaliana

To retrieve the AtALDH superfamily gene and protein

sequences the TAIR (https://www.arabidopsis.org/index.jsp),

NCBI (https://www.ncbi.nlm.nih.gov/) and Sol genomics network

(https://solgenomics.net/) databases were used, with the obtained

sequences confirmed by the Hidden Markov Model (HMM). The

AtALDH gene and protein nomenclature was adopted from the

TAIR database and a previous study by Kirch et al. (2004).

The presence of AtALDHs glutamic acid and cysteine activity

sites was confirmed using PROSITE (https://prosite.expasy.org/).
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Multiple sequence alignments of 163 AtALDH protein sequences

from selected crop plants: Arabidopsis thaliana (16 proteins),Oryza

sativa (20 proteins), Glycine max (53 proteins), Solanum

lycopersicum (29 proteins), Solanum tuberosum (22 proteins) and

Zea mays (23 proteins) were performed using Clustal-W with

default parameters in Clusal Omega (https://www.ebi.ac.uk/Tools/

msa). MEGA7’s Maximum-likelihood method with 1000 bootstrap

replicates was used to calculate genetic distances and construct the

phylogenetic tree, while the obtained results were visualized by

iTOL (https://itol.embl.de/).
Chromosomal localization, collinearity
analysis, gene structure and protein
sequence analyses

The genome annotation file (GTF) containing the locations of

theAtALDH genes in the genome and their structural information

was extracted from the EnsemblPlants database (https://plants.

ensembl.org/index.html) and TBtools (https://github.com/CJ-

Chen/TBtools/releases) was used with default parameters to

localize AtALDHs in chromosomal regions. Gene duplication

events were analyzed using the Multiple Collinearity Scan

toolkit (MCScanX) in TBtools with the default parameters. For

the syntenic relationship between Arabidopsis and other plant

species (O. sativa, G. max, S. lycopersicum, S. tuberosum and Z.

mays)ALDHs, One stepMCScanX toolkit analysis was carried out

and visualized using the Dual Synsteny Plot in TBtools.

Synonymous rate (dS), non-synonymous rate (dN), and

evolutionary constraint (dN/dS) were calculated using the

MEGA7 codon-based Z-test of selection (https://www.

megasoftware.net/). The gene structure (intron/exon

organization) of the AtALDH gene family was displayed by the

Gene Structure Displayer Server 2.0 (http://gsds.gao-lab.org/).

Conserved motifs in the protein sequences were predicted using

the Multiple Expectation Maximization for Motif Elicitation

program (MEME https://meme-suite.org/), with the number of

motifs set at 10, while the distribution of motifs was based on

“zero or one occurrence per sequence (zoops)”. Pfam (http://

pfam.xfam.org/) and NCBI CDD (https://www.ncbi.nlm.nih.gov/

Structure/cdd/cdd.shtml) were applied for AtALDH proteins to

examine protein conserved domains and TBtools visualized

obtained results.
Analysis of cis-acting regulatory
elements in the promoter region of the
AtALDH genes

The 1500 bp genomic DNA sequence upstream of the

initiation codon (ATG) was extracted from the Eukaryotic

Promoter Database (https://epd.epfl.ch/), while the obtained

sequences were then submitted to the PLACE database (http://
frontiersin.org
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www.dna.affrc.go.jp/PLACE/signalscan.html) and PlantCARE

database (https://bioinformatics.psb.ugent.be/webtools/

plantcare/html/) to search for potential cis-acting regulatory

elements in the promoter regions of the AtALDH genes.
Functional characterization analysis of
AtALDH genes

Gene symbols of the AtALDH genes were submitted to the

DAVID Bioinformatics Resources (https://david.ncifcrf.gov/

home.jsp) with the default parameter and the obtained results

were visualized by Hiplot (https://hiplot.com.cn).
Gene expression profile during
development stage and hypoxia stress
of AtALDHs

AtALDH gene expression data during development were

extracted from the developmental map of the Arabidopsis eFP

Browser (https://www.bioinformatics.nl/efp/cgi-bin/efpWeb.

cgi). The gene expression data were downloaded as expression

levels, followed by calculation with the log 10 value. The

expression levels of AtALDHs were visualized using a heatmap

in TBtools. For the gene expression profiles of AtALDHs under

hypoxia treatments, array- and sequence-based datasets were

obtained from the NCBI-GEO repository (https://www.ncbi.

nlm.nih.gov/geo/) and analyzed with GEO2R with default

parameters. The heatmap diagram was constructed with logFC

values using TBtools.
Plant material, hypoxia stress and
recovery procedure

The Arabidopsis ecotype Col-0 was used in this study. Seeds

were sterilized with 1% sodium hypochlorite for 5 minutes and then

rinsed at least 3 timeswith sterile water. The seedswere sown on peat

pellets and incubated at 4°C for 72 hours in dark. Further plant

growthwasperformed in a climate chamber (Binder,Germany)with

aphotoperiodof 16h, temperature 23°C, relativehumidity 70%, light

intensity 180 mmol × m-2 × s-1 until ready for use.

The 4-week-old plants were submerged in sterile water tanks

approximately 1 cm above peat pellets to assess expression levels

of AtALDHs under hypoxic conditions, whereas untreated plants

served as blank controls (0h). Arabidopsis leaves were collected

at 24, 48 and 72 hours after hypoxia treatment and subsequently

stored at -80°C. Further, plants that had undergone 24h hypoxia

were reoxygenated to normal conditions, and samples were
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collected at 24 and 48 hours to analyze the gene expression

during the recovery phase after hypoxia treatment.
RNA isolation, reverse transcription and
qRT-PCR gene expression analysis

According to the user’s guide, total RNA from Arabidopsis

leaves was extracted using the TRI reagent (Sigma-Aldrich,

USA). The RevertAid First-Strand cDNA Synthesis Kit

(Thermo Scientific, USA) was used to synthesize first strand

cDNA. Primers for the AtALDH gene superfamily were designed

by Primer Blast (https://www.ncbi.nlm.nih.gov/tools/primer-

blast/), each primer sequence was tested with a blast search in

the genome of Arabidopsis for specific hits and for its septicity to

yield a single amplicon on 3% agarose gel. All the primers were

synthesized commercially at Genomed (https://www.genomed.

pl/) and listed in Supplementary Table S2. The SYBR Green PCR

Master Mix (Applied Biosystems, USA) and the Quant Studio 3

Real-Time PCR system (Applied Biosystems, USA) were used to

perform qRT-PCR. The reaction consisted of denaturation at

95 °C for 10 s, primer annealing at 56 °C for 20s and primer

extension at 72°C for 30s. For the entire qRT-PCR reaction 55

cycles were performed. After the data were collected from the

Quant Studio 3 Real-Time PCR system, the CT value was

determined by the PCR Miner Program (Zhao and Fernald,

2005). The relative gene expression was calculated using the

Pfaffl method (Pfaffl, 2001). Obtained results were calculated

based on the reference gene Actin2 (At3g18780). All the results

were based on three biological replicates and three technical

replicates. The analysis of variance was conducted and the least

significant differences (LSDs) between means were determined

using Tukey’s test at the level of significance a=0.05.
Structural feature analysis and homology
modeling of AtALDH proteins

To predict the secondary structure of AtALDH proteins,

SOPMA (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?

page=/NPSA/npsa_sopma.html) was used with default

parameters. N-glycosylation sites of AtALDH proteins were

predicted by NetNGlyc-1.0-services (https://services.healthtech.

dtu.dk/service.php?NetNGlyc-1.0). Three hypoxia responsive

AtALDH proteins AtALDH2B7; AtALDH3H1; and

AtALDH5F1 were selected for the homology modelling using

suitable homologous templates from the PDB database (http://

ncbi.nlm.nih.gov/). ALDH protein models were built by the top

PDB closed template via the target-template input using the

SWISS-MODEL of the ExPASy web server (https://swissmodel.
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expasy.org/). Additionally, the PROCHECK test was used to

inspect the 3D structure of AtALDH proteins in the SAVES

server (http://nihserver.mbi.ucla.edu/SAVES/).
Results

Genome-wide characterization of ALDH
in A. thaliana

In total, 16members of the ALDH superfamily are present inA.

thalianabelonging to ten subfamilies (ALDH2,3, 5, 6, 7, 10, 11, 12, 18

and 22). Among these ten subfamilies, AtALDH2 andAtALDH3are

largest in number (with threemembers each), while AtALDH10 and

AtALDH18have twomembers each, followed by onemember in the

rest of the subfamilies. The distribution of cysteine and glutamic

activity sites was determined by PROSITE (https://prosite.expasy.

org/scanprosite/). Among the 16members ofAtALDHprotein, both

glutamic acid and cysteine acid active sites were present in 8 proteins

(AtALDH2B4, AtALDH2B7, AtALDH2C4, AtALDH5F1,

AtALDH10A8, AtALDH10A9, AtALDH11A3, At ALDH22A1),

whereas 2 proteins (AtALDH3H1, AtALDH7B4) had only a

glutamic active site and 3 proteins had only a cysteine active site

(AtALDH3I1,AtALDH6B2,AtALDH12A1). Interestingly, noactive

siteswere observed inAtALDH3F1,AtALDH18B1, andALDH18B2

(Figure 1). The largest protein among the AtALDH superfamily was

AtALDH18B2, which length was 726aa and molecular weight was

78.88 kDa. Conversely, the smallest protein in the AtALDH

superfamily was ALDH3H1, with a length of 484aa and molecular

weight of 53.16 kDa.
Localization of AtALDH superfamily
genes on chromosomes

The analysis of the chromosomal location of the AtALDH

gene superfamily indicated that all the 16 AtALDH genes are

located at 5 different chromosomes (Figure 2). Chromosomes 1

and 3 contained the greatest number of AtALDH genes, 5
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AtALDH genes were located on chromosome 1 (AtALDH2B7;

AtALDH3H1; AtALDH7B4; AtALDH10A8; AtALDH5F1) as well

as chromosome 3 (AtALDH22A1; AtALDH2C4; AtALDH2B4;

AtALDH10A9; AtALDH18B2), followed by Chromosome 2,

which contained three AtALDH genes (AtALDH6B2;

AtALDH11A3; AtALDH18B1). Chromosome 4 harbored two

AtALDH genes (AtALDH3I1; AtALDH3F1) and chromosome 5

had only one AtALDH gene (AtALDH12A1). Interestingly, no

gene duplication was found in the Arabidopsis AtALDH genes.

Additionally, to further understand the evolutionary

relationship of ALDH family members, collinearity analyses

were conducted between A. thaliana, the model dicot and

monocot crop plant species such as G. max, O. sativa, S.

lycopersicum, Z. mays and S. tubersoum. A total of 10

AtALDHs (62.5%) were identified with coll inearity

relationships to ALDHs in other plant species, of which 9, 7,

7, 1, and 1 orthologous gene pairs were identified from A.

thaliana - G. max, A. thaliana - S. lycopersicum, A. thaliana -

S. tuberosum, A. thaliana - Z. mays, and A. thaliana - O. sativa,

respectively (Figure 3).
Exon-intron structure, conserved
domain, motif distribution and
phylogenetic analysis of AtALDHs

A phylogenetic tree was created using the protein sequences

encoded by the ALDH genes to study the evolution and

phylogeny of ALDH proteins. Protein sequences of ALDH

from A. thaliana (16), O. sativa (20), S. tuberosum (22), S.

lycopersicum (29), Z. mays (23) and G. max (53) were utilized to

construct a phylogenetic tree (Figure 4). All the proteins were

grouped into 11 subfamilies (ALDH2, 3, 5, 6, 7, 9, 10, 11, 12, 18,

19, 22). Surprisingly, most proteins from the same family were

grouped together regardless of the reference species; however,

ALDH19 was exclusively found in S. lycopersicum. ALDH 2 and

3 constituted the largest clusters among all the crop plants in this

study, whereas ALDH 5, 12, and 22 had the fewest members. To

further determine the evolutionary relationships of AtALDH
FIGURE 1

Multiple sequence alignments of the ALDH domain of all 16 AtALDH proteins. All 16 AtALDH protein sequences were analysed, the boxes
represent conserved active sites for AtALDH proteins. *1 indicates a glutamic acid active site (PS00687) and *2 indicates a cysteine acid active
site (PS00070).
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proteins, using the MEGA-7 a phylogenetic tree was constructed

applying the maximum likelihood method. The AtALDH genes

from the particular subfamily clustered together in the

phylogenetic tree (Figure 5A). The analysis of exon-intron

structures of the AtALDH genes (Figure 5D) revealed that all

the AtALDH genes have 5’-UTR and 3’-UTR, while the length of

genomic DNA ranges from 2836 bp (AtALDH2B7) to 6494 bp

(AtALDH5F1). The number of exons varies between individual

members; among the 16 AtALDH genes we found that

AtALDH2C4 and AtALDH3F1 had the lowest number of

exons (nine each), while AtALDH5F1, AtALDH18B1 and

AtALDH18B2 had the highest number of exons (20 each). The

subfamilies may have similar numbers of exons, which may

indicate functional similarity. The ALDH10 subfamilies had

equal numbers of exons.

To determine the presence of conserved protein domains of

ALDHs, studies were performed using NCBI-CDD (https://

www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml). As shown in

Figure 5C, 10 of the 16 AtALDH proteins (AtALDH2B4,

AtALDH2B7, AtALDH2C4, AtALDH5F1, AtALDH6B2,

AtALDH7B4, AtALDH10A8, AtALDH10A9, AtALDH11A3

and AtALDH22A1) had Aldedh (pfam00171), while 4 of the
Frontiers in Plant Science 06
16 AtALDH proteins (AtALDH3H1, AtALDH3I1, AtALDH3F1

and AtALDH12A1) had an ALDH-SF domain (cl11961).

AtALDH18B1 and AtALDH18B2 had the AA_kinase

(pfam00696) domain.

The MEME-suite was used to analyze the conserved motifs

in the AtALDH proteins and as a result 10 motifs were

determined. As can be seen in Figure 5B, motifs 8, 1, 5, 9, 7, 3,

6, 10 and 2 are present in AtALDH6B2, AtALDH5F1,

AtALDH10A8, AtALDH10A9, AtALDH2B4, AtALDH2B7 and

AtALDH2C4. The arrangement of conserved motifs was similar

in most of the AtALDH proteins, except for AtALDH12A1 and

the AtALDH18 subfamily. AtALDH12A1 contained 3 motifs (1,

7 and 6), while the AtALDH18 members comprised 5 motifs (3,

7, 5, 6, and 2).
Analysis of cis-acting regulatory
elements in the promoters of
AtALDH genes

The PlantCARE database was used to detect the cis-acting

regulatory elements (CREs) upstream 1500 bp of the
FIGURE 2

Chromosomal localization of ALDH genes in Arabidopsis. All 16 AtALDH genes were indicated on 5 different chromosomes of Arabidopsis with a
black label. Arabidopsis chromosome length and AtALDH gene localization on chromosomes were derived from Ensemblplants (http://plants.
ensembl.org/index.html).
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Arabidopsis ALDH genes family. We identified a total number of

706 CREs in the promoter regions of the AtALDH genes

(Supplementary Material S3) . Based on functional

categorization, the selected CREs (176) were further

categorized as involved in plant development and growth,

plant hormone response, l ight response, and stress

responses (Figure 6).

The identified CREs were composed of a higher proportion

of light-responsive and abiotic-responsive components, as well

as a larger portion of TATA-box and CAAT-box basic elements

(Supplementary Material S3). Light-responsive elements ranging

from 1 to 5 included AE-boxes, G-boxes, TCT-motifs, G-box,

Gap-box and GA-motifs. There were also substantial numbers of

ABRE elements involved in the abscisic acid (ABA)

responsiveness, ranging from 1 to 8. Plant growth and

development elements ranged from 1 to 5 and they were

engaged in meristem expression and palisade mesophyll cell

proliferation. In the abiotic stress category MBS and MYB were

the main elements implicated in drought-inducibility, ranging

from 1 to 2.
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Functional annotation of ALDH genes
in Arabidopsis

The David Functional Annotation tool was used to annotate

the AtALDH genes with functional databases for the GO (gene

ontology) and KEGG pathways. Figure 7A shows the results of

the AtALDH genes annotated in the GO database. The AtALDH

genes were divided into three categories: molecular function

(MF), cell component (CC), and biological process (BP). The

largest proportion of the molecular function was aldehyde

dehydrogenase activity (NAD) and oxidoreductase activity. In

the biological process categories the most significant proportion

was distributed in the cellular aldehyde metabolic process. In the

category of cell components, the highest proportion of ALDHs

was distributed in the cytosol.

KOBAS was used to test the statistical enrichment of the

KEGG pathways. Figure 7B shows the results of the AtALDH

genes in 13 pathways in the KEGG database. The AtALDH genes

enriched pathway in limonene and pinene degradation had the

largest numbers of the AtALDH genes. Meanwhile, the other
FIGURE 3

Synteny analysis of ALDH genes in Arabidopsis and other plants (G. max, O. sativa, S. lycopersicum, Z. mays and S. tuberosum). Gray lines in the
background indicate collinearity blocks, whereas syntenic ALDH genes are shown as red lines.
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AtALDH genes enriched pathways were histidine metabolism,

lysine degradation, as well as arginine and proline metabolism.
Expression analysis of AtALDH genes
during development stages

All the AtALDH genes were investigated in various organs,

according to the developmental map of the AtALDH genes

during different stages of development: seed, flower, leaf,

rosette, apex, stem, pollen, hypocotyl, root, node, and

cotyledon, respectively (Figure 8). As shown, almost every

member of the AtALDH family is engaged in every stage of

development. However, some AtALDH genes are tissue-specific,

such as ALDH2B7, which is abundantly expressed in the flower

stage of 12 stamens. Similarly, AtALDH7B4 is primarily involved

throughout the seed stages.
Expression profile of AtALDH genes
under hypoxia stress

To gain further insight into the AtALDH gene responses to

hypoxia stress, five microarrays available in the databases were

used to identify the pattern of the AtALDH genes under multiple

stages of hypoxia stress: 2h (seedling), 4h (rosette), 12h (leaves),
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and 48h (leaves and roots) (Figure 9). AtALDH2B4 was shown to

be upregulated as hypoxia severity increased, while

AtALDH2C4, AtALDH6B2, AtALDH7B4, AtALDH10A9,

AtALDH12A1, AtALDH18B1 and AtALDH18B2 showed a

similar trend. After 48h hypoxia treatment among all the 16

AtALDH genes AtALDH6B2 and AtALDH7B4 demonstrated the

most significant upregulation, while AtALDH3F1 was shown to

be the most downregulated. Importantly, expression of the

selected AtALDH genes at 48h of stress in leaves and roots

revealed opposing tendencies, e.g. AtALDH3F1 and

AtALDH22A1 were upregulated in leaves, whereas they were

downregulated in roots. This may refer to the abundance of the

ALDH genes in different tissue types. Obtained results indicated

that AtALDH3F1, AtALDH6B2 and AtALDH7B4 were the most

hypoxia-responsive.
qRT-PCR analysis of AtALDH genes
under hypoxia in A. thaliana leaves

Since flooding creates a natural hypoxia condition,

Arabidopsis was partially submerged in water to evaluate the

impact of the stress on AtALDHs in leaves. As shown in

Figure 10, hypoxia at 72h caused the most significant

modifications in ALDH expression. The most impressive

transcript accumulation was observed in the case of
FIGURE 4

Phylogenetic analysis of ALDH superfamily proteins from various plant species. The subfamilies are highlighted in different colors. At; A. thaliana,
Os; O. sativa, St; S. tuberosum, Sl; S. lycopersicum, Zm; Z. mays, Gm; G. max. The tree was constructed using the neighbor-joining method with
1000 bootstrap replications in MEGA 7.
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AtALDH2B7, which increased almost 3.5-fold at 72h of hypoxia

in comparison to the control. In general, stress conditions

provoked upregulation of AtALDH2B4, AtALDH2C4,

AtALDH3F1, AtALDH3H1 and AtALDH3I1. Diminished

transcript accumulation was observed for AtALDH5F1. A

similar tendency was observed in the case of AtALDH6B2,

AtALDH7B4, AtALDH10A8, AtALDH11A3, AtALDH12A1,

AtALDH18B1, AtALDH18B2 and AtALDH22A1. Interestingly,

expression of AtALDH10A9 did not alter much during hypoxia.
qRT-PCR analysis of AtALDH
genes under recovery phase in
A. thaliana leaves

To investigate the expression pattern of the ALDH genes

during post-hypoxia reoxygenation (recovery phase),

Arabidopsis plants were partially submerged in water for 24h,

followed by recovery for 24 h and 48 h. As shown in Figure 11,

ALDH18B2 was the most upregulated gene after 48 h recovery,

nearly 2-fold when compared with the control. Generally, the

recovery phase led to the upregulation of ALDH2B4, ALDH2B7,

ALDH3I1, ALDH7B4, ALDH10A8, ALDH10A9, ALDH11A3,

ALDH18B1, ALDH18B2 and ALDH22A1. The most decreased

transcript accumulation was observed for ALDH3H1 after 48h
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recovery, while a similar tendency was also observed in

ALDH2C4, ALDH3F1, ALDH3I1, ALDH5F1, ALDH6B2,

ALDH12A1 and ALDH22A1. Interestingly, the expression of

the ALDH3I1 and ALDH10A9 genes was upregulated at 24 h

recovery and downregulated as the recovery phase progressed

to 48 h.
Homology modelling of AtALDH
proteins encoded by the hypoxia
responsive genes

The SOPMA (self-optimized prediction method with

alignment) was employed to predict the ratio of alpha helices,

extended strands, beta turns, and random coil in all the AtALDH

proteins (Table S8). Among all secondary structure prediction of

AtALDH proteins, the alpha helix predominates, ranging from

33.44% to 50.96%, followed by the random coil (24.66%-

41.01%), extend strand (12.58%-19.60%) and beta turn

(4.53%-8.90%). Meanwhile, protein glycosylation of AtALDHs

was also determined in this study, as shown in Table S6. The

results indicated that 13 out of 16 AtALDH proteins have N-

glycosylation sites, with AtALDH18B1 having the largest

number of N-glycosylation sites, i.e. 7. The derived homology

models were verified using the Procheck Ramachandran plot
B C DA

FIGURE 5

Protein sequence and gene structure analysis of ALDHs in Arabidopsis. Phylogenetic relationships, architecture of conserved protein motifs, and
gene structure of AtALDH genes. (A) A phylogenetic tree was constructed based on AtALDH protein sequences, MEGA7's Maximum-likelihood
method with 1000 bootstrap replicates was used to calculate genetic distances. (B) Motif composition of AtALDH proteins. The motifs, numbers
1-10, are displayed in different colored boxes. (C) Conserved domains of AtALDHs. (D) Exon-intron structure of AtALDH genes. Green boxes
indicate untranslated 5’-UTR and 3’-UTR regions; yellow boxes indicate CDS regions; black lines indicate introns.
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analysis. The majority of the residues of AtALDH2B7,

AtALDH3H1, and AtALDH5F1 were located in the preferred

region of 93.0%, 91.8%, and 93.0%, respectively (Table S9). The

homology model revealed that the overall structure of

AtALDH2B7 and AtALDH5F1 was very similar in terms of

common strands and helices in the Rossmann folding

type (Figure 12).
Discussion

Aldehyde dehydrogenases are a group of enzymes involved

in NAD+/NADP+ dependent conversion of various aldehydes to

their non-toxic carboxylic acids (Brocker et al., 2013). Plant

ALDH genes play an important role not only in seed

germination and developmental stages, but also in oxidative

stress responses under plant dehydration or high salinity (Guo

et al., 2020; Islam et al., 2021; Islam and Ghosh, 2022). Flooding

caused by excessive or persistent rainfall in a region with poorly

drained soil is one of the most serious environmental stresses.

According to estimates from the Food and Agriculture

Organization of the United Nations (FAO), between 2008 and

2018 floods caused losses of around US$ 21 billion to agriculture
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in the developing countries (https://www.fao.org/resources/

digital-reports/disasters-in-agriculture/en/). Flooding caused by

waterlogging or submersion frequently results in hypoxia in

plants. In general, hypoxia, the oxygen (O2) depletion due to

water’s lower oxygen availability than that of air, disrupts

metabolic processes leading in consequence to plant growth

inhibition and cell death. ALDH has been recognized to be an

aldehyde scavenger that eliminates toxic aldehydes induced by

oxidative stress, but its involvement in unique metabolic

conversions induced by hypoxia is still poorly understood. A

comprehensive investigation of the ALDH superfamily genes in

a model plant Arabidopsis was therefore undertaken in order to

clarify the role of ALDHs in response to hypoxia stress.

In Arabidopsis a total of 16 ALDH genes have been

identified, which were grouped into 10 subfamilies (Families 2,

3, 5, 6, 7, 10, 11, 12, 18 and 22). In order to evaluate the sequence

resemblance and evolutionary relationships of the ALDH genes

in Arabidopsis, ALDHs from five different crop plants (Solanum

lycopersicum, Solanum tuberosum, Zea mays, Oryza sativa,

Glycine max) were used. Phylogenetically, the ALDHs in the

selected crop plants were grouped into 11 subfamilies (Families

2, 3, 5, 6, 7, 10, 11, 12, 18, 19 and 22). Interestingly, ALDH19 was

found only in S. lycopersicum. Importantly, A. thaliana ALDH
FIGURE 6

Distribution of cis-acting regulatory elements (CRE) in promoter sequences of AtALDH genes. The 1500 bp genomic DNA sequence upstream
of the initiation codon (ATG) was extracted from the Eukaryotic Promoter Database (https://epd.epfl.ch/), potential CREs were analyzed by the
PLACE database (http://www.dna.affrc.go.jp/PLACE/signalscan.html). The obtained data were visualized by PowerPoint (https://www.microsoft.
com/en-us/microsoft-365/powerpoint). The yellow line indicates light responsiveness CREs; the red line indicates abiotic stress CREs; the black
line indicates phytohormone responsive CREs; green line indicates plant growth and development CREs. The number in squares indicates the
presence of CREs.
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members were clustered together with five other crop plants into

the same family. Phylogenetic analysis showed that the ALDH

genes are highly conserved across the monocotyledonous and

dicotyledonous plants. It implies that the plant ALDH genes

evolved prior to the divergence of monocots and dicots.

Previously, tandem duplication events had been recorded in O.

sativa (OsALDH2C1 and OsALDH2C2; OsALDH3E1 and
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OsALDH3E3) (Gao and Han, 2009) and S. tuberosum

(StALDH2B4, StALDH2B4, and StALDH2B6; StALDH18B1

and StALDH18B2) (Islam et al., 2021). However, no gene

duplication event was found in A. thaliana, which might be

due to the relatively small genome size (approximately 135MB)

of A. thaliana as compared with other plants (The Arabidopsis

Genome Initiative, 2000). Meanwhile, synteny analysis of ALDH
B

A

FIGURE 7

Functional analysis of ALDH in Arabidopsis. (A) GO functional annotation results, Molecular Function (MF), Cell Component (CC), and Biological
Process (BP). The horizontal axis shows the gene count of AtALDH genes, while the vertical axis represents the biological process, molecular
function, and cellular component, respectively. (B) Significantly Enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The
horizontal axis shows the gene ratio of AtALDH genes, while the vertical axis represents the significant biological pathway. The Database for
Annotation, Visualization and Integrated Discovery (https://david.ncifcrf.gov/home.jsp) was used for both GO annotation and KEGG pathway
analysis of ALDH in Arabidopsis, with default parameters.
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genes among Arabidopsis and other plants revealed that the

correlation between AtALDH genes and GmALDH genes is

similar, which is significant when exploring the relationship

between species and forecasting gene functions. Furthermore,

the Codon-based dN/dS ratios (Table S5.) of all the AtALDH

genes were less than one, which supports the evolution of

AtALDH genes by purifying selection pressure during the

evolutionary process. Moreover, phylogenetic analysis
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indicated that the AtALDH families 2, 5, 6 and 10 are the

most closely related, while additionally AtALDH family 18 is

the most phylogenetically distant. Due to the fact that

AtALDH18B1 and AtALDH18B2 contained a completely

separate conserved domain (AA kinase), it is possible that

these two AtALDHs differ significantly from the other

AtALDHs. Furthermore, in this study we also determined

glutamic acid and cysteine acid activity sites in AtALDHs. A
FIGURE 8

The AtALDH gene expression profile during plant growth and development stages of Arabidopsis. The AtALDH gene expression profile was
extracted from the Arabidopsis eFP browser (http://bar.utoronto.ca/efp//cgi-bin/efpWeb.cgi ). Regarding growth and development stages of
Arabidopsis, the expression profiles of 16 AtALDH genes were investigated during different stages of development (seed, flower, leaf, rosette,
apex, stem, pollen, hypocotyl, root, node, and cotyledon). The scale of figure indicates the fold change of AtALDH genes.
FIGURE 9

Gene expression profiles of AtALDH genes in Arabidopsis under hypoxia stress. The microarray datasets used in this analysis are presented in
coloured rectangular boxes. Five microarrays related to hypoxia stress in Arabidopsis were extracted from the GEO database (https://www.ncbi.
nlm.nih.gov/geo/ ), GSE50679 (Arabidopsis seedling with 2h hypoxia treatment); GSE44344 (Arabidopsis rosette with 4h hypoxia treatment);
GSE116996 (Arabidopsis leaves with 12h hypoxia treatment); GSE59719 (Arabidopsis leaves with 48h hypoxia treatment); and GSE119327
(Arabidopsis root with 48h hypoxia treatment). The scale of the graph represents the log fold change value for the AtALDH genes.
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cysteine acid activity site is present in 10 out of 16 AtALDHs. A

glutamic acid and a cysteine residue have been implicated in the

catalytic activity of mammalian aldehyde dehydrogenases

(Farres et al., 1995). It is worth noticing that the nitric oxide

signaling through redox-based modification of protein cysteine

residues known as S-nitrosylation can affect a broad range of

proteins (Nakamura and Lipton, 2011; Wang et al., 2022). Thus,

the presence of the cysteine acid active site in ALDH may
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constitute a target of nitric oxide dependent S-nitrosylation,

and function as a metabolic sensor of nitric oxide signaling.

In this study we determined the cis-acting regulatory

elements (CREs) in the promoter regions of the AtALDH

genes. The identified CREs were found to be involved in

growth and development, light, phytohormone and stress

responses. We also analyzed the expression of the AtALDH

genes in different organs using the publicly available database.
FIGURE 11

Relative gene expression of AtALDHs under recovery phase. Analyses were performed in Arabidopsis leaves of plants recovered from 24 h
hypoxia stress at selected time points: 0h (control), 24h, 48h. All values represent means of data ± SD of at least three independent experiments
(n=9). Asterisks (*) indicate values that differ significantly during recovery phase as compared to the control at a<0.05, respectively. The analysis
of variance was conducted and the least significant differences (LSDs) between means were determined using Tukey’s test at the level of
significance a=0.05.
FIGURE 10

Relative gene expression of AtALDHs under hypoxia. Analyses were performed in Arabidopsis leaves of plants exposed to stress at selected time
points: 0h (control), 24h, 48h, and 72h. All values represent the means of data ± SD of at least three independent experiments (n=9). Asterisks
(*) indicate values that differ significantly after hypoxia treatment as compared to 0h (control) at a<0.05. The analysis of variance was conducted
and the least significant differences (LSDs) between means were determined using Tukey’s test at the level of significance a=0.05.
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The obtained results indicated that almost all the AtALDH genes

were engaged in every stage of development (Figure 8).

Plant phytohormones play pivotal roles in stress adaptation

of plants (Waadt et al . , 2022). In previous studies

phytohormones have been reported to regulate the expression

of the ALDH genes (Wu et al., 2007). In Arabidopsis abscisic

acid can regulate ALDH3 gene expression (Brocker et al., 2013).

In turn, in Z. mays the phytohormone elevated ALDH22A1 gene

expression (Huang et al., 2008). It was also documented that

ALDH6 was upregulated in O. sativa treated with auxin and

gibberellin (Oguchi et al., 2004; Marchitti et al., 2008). A recent

study indicated that hypoxia stress can led to the accumulation

of ethylene, which may further regulate ABA catabolism to

impact plant hypoxia tolerance (Wang et al., 2021). In our

study we determined that the ABA-responsive element

(ABRE) was present in 14 out of 16 AtALDHs (ALDH2B7,

ALDH2C4, ALDH3F1, ALDH3H1, ALDH3I1, ALDH5F1,

ALDH6B2, ALDH7B4, ALDH10A8, ALDH11A3, ALDH12A1,

ALDH18B1, ALDH18B2, ALDH22A1), which can be induced

by ABA in Arabidopsis. These results indicate that ALDHsmight

play an important role in response to hypoxia stress through the

regulation of ABA.

Another crucial aspect that was taken into account when

searching for the AtALDHs involvement in adaptation to

hypoxia stress is the hypoxia condition. In this experimental

context Tsuji et al. (2003) showed that the hypoxia condition can

regulate the expression of the ALDH2A in rice. Based on the

analysis of the expression profile of the AtALDH genes from the

microarray datasets our analysis confirmed that the hypoxia
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condition could regulate the expression of the AtALDH genes.

Moreover, data revealed that the AtALDH genes might be

differently expressed in various organs with the same stressful

scenario. For example, ALDH7B4 was up-regulated in leaves, but

down-regulated in roots after 48 h hypoxia stress. This finding

was further supported by the GO and KEGG database

annotations. Eight out of 16 AtALDH genes (ALDH11A3,

ALDH10A9, ALDH3I1, ALDH3H1, ALDH18B1, ALDH7B4,

ALDH10A8, ALDH2B7) have been found to be responsive to

water, which also includes response to flooding and submergence

in water. Plants encounter multiple challenges during hypoxia at

flooding conditions. Under these circumstances the ability of plant

cells to absorb CO2 for photosynthesis and O2 for respiration is

severely hampered by the substantial drop in gas diffusion.

Additionally, plants may experience cellular energy and glucose

shortages due to the lower light availability under water

(MOMMER and VISSER, 2005). Hence, plant cells switch from

aerobic respiration to anaerobic fermentation, accumulating toxic

metabolites such as lactic acid, acetaldehyde and ethanol, which

cause further cell damage. During O2 deprivation pyruvate

decarboxylase (PDC) converts pyruvate to acetaldehyde, which

is metabolized by alcohol dehydrogenase (ADH) to ethanol, while

regeneration of NAD+ sustains glycolysis. Ethanol production is

benign owing to its rapid diffusion out of cells, whereas the

intermediate acetaldehyde is toxic. Aldehyde dehydrogenase

catalyzes the conversion of acetaldehyde to acetate, with the

concomitant reduction of NAD+ to NADH. The mitochondrial

ALDH is significantly induced by anoxia in coleoptiles of rice

(Nakazono et al., 2000; Lasanthi-Kudahettige et al., 2007), in
B CA

FIGURE 12

Three-dimensional structure analysis of the proteins encoded by three hypoxia responsive AtALDH genes. (A) AtALDH2B7; (B) AtALDH5F1; and
(C) AtALDH3H1. All the structures were visualized by rainbow color from N to C terminus. Coils and smooths represent alpha helices and beta
sheets, respectively.
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contrast to the Arabidopsis seedlings (Kürsteiner et al., 2003).

ALDH activity correlates with the anaerobic germination

capability of Echinochloa crus-galli under strict anoxia (Fukao

et al., 2003). Under O2-limiting conditions ALDH also consumes

NAD+ and may thereby limit glycolysis, whereas upon

reoxygenation acetaldehyde is converted to acetate by

mitochondrial ALDH that enters the tricarboxylic acid (TCA)

cycle. Increasing evidence suggests that an oxidative burst

resulting from the ROS production started immediately upon

exposure of anaerobic plant tissues to normoxia leads to severe

peroxidation of cellular components. The enzymatic scavenging of

aldehydes derived from stress-related lipid peroxidation involves

ALDHs. ALDHs are also engaged in a variety of other activities,

such as (i) controlling secondary metabolism, particularly amino

acid and retinoic acid metabolism (Zhang et al., 2012); (ii)

generating osmoprotectants such as glycine betaine to protect

against osmotic stress (Wani et al., 2013; Xiao and Loscalzo, 2020);

and (iii) contributing to the maintenance of redox equilibrium.

ALDHs also play an important role in cellular homeostasis by

maintaining cellular redox equilibrium; for example, ALDHs may

scavenge hydroxyl radicals via the thiol groups of their cysteine

and methionine residues (Estey et al., 2007). Additionally, ALDH

isozymes may contribute to the cellular antioxidant capacity by

generating NAD(P)H, which is critical for the regeneration of

GSH and as a direct antioxidant (Singh et al., 2013).

Although the root is the first organ that senses hypoxia

caused by flooding, a set of physiological and biochemical

changes are also induced in leaves. Leaves are usually fully

aerobic t i ssues and also produce oxygen through

photosynthesis. Leaves are the most variable organs in long-

term adaptation to the environment. Therefore, in this study to

verify AtALDH gene expression patterns under hypoxia

conditions Arabidopsis plants were submerged in the water

tank to assess the hypoxia effect on leaf metabolism

adjustment. Obtained qRT-PCR results suggest that hypoxia

for 72h provokes the most significant modifications in AtALDH

gene expression (Figure 10). The expression of AtALDH2B7 and

AtALDH3H1 was significantly upregulated during hypoxia and

both of them were localized in the cytoplasm (Hou and Bartels,

2015). Additionally, the AtALDH5F1 gene was downregulated

during hypoxia; interestingly, ALDH5F1 is mitochondrial

specific (Hou and Bartels, 2015). Thus, our investigation may

indicate that different AtALDH genes have different expression

patterns in an organelle-specific manner. Previous research

showed that in Arabidopsis the ALDH2B7 gene was expressed

not only in anoxia, but also in response to drought, as evidenced

by the downregulation of glycolysis and the stimulation of

acetate production (Kim et al. , 2017). ALDH3H1 is

constitutively expressed at a low level in leaves, but is activated

in response to osmotic stress and after ABA treatment in roots

(Kirch et al., 2004). Notably, it results from our cis-elements

analysis that AtALDH3H1 also has 6 ABRE elements in the

promoter region. Plant hormones such as ethylene and ABA
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play crucial roles in the genetically controlled survival of plants

to hypoxia under waterlogging or submergence (Phukan et al.,

2016). Ethylene has been extensively characterized as a critical

hormone in hypoxia-triggered responses (Geisler-Lee et al.,

2010; Hartman et al., 2019; Waadt et al., 2022). Therefore,

ALDH3H1 might play an essential role in regulating hypoxia

responses through the regulatory network involving an interplay

between ROS, ABA, and ethylene. Extended hypoxic conditions

can result in decreased ATP synthesis and cytoplasmic acidosis,

both of which can damage plant cells. However, plant cells may

also be damaged during reoxygenation after hypoxia as a result

of the formation of ROS and acetaldehyde (Tsuji et al., 2003).

Hereby, the expression pattern of ALDHs under the recovery

phase was also investigated in our study. During the

reoxygenation, ALDH18B1, ALDH18B2, ALDH2B4 and

ALDH10A8 were found to be upregulated; meanwhile,

ALDH18B1, ALDH18B2 and ALDH2B4 have been reported to

be localized in the mitochondria (Hou and Bartels, 2015). It

should be noted that under O2-limiting conditions ALDH also

consumes NAD+ and may limit glycolysis, whereas upon

reoxygenation acetaldehyde is converted to acetate by

mitochondrial ALDH and enters the tricarboxylic acid (TCA)

cycle. ALDH10A8 is a leucoplastidial protein, which was found

upregulated in response to abscisic acid, salinity, cold and

oxidative stress in Arabidopsis (Missihoun et al., 2011).

Compared with post-hypoxia treatment, AtALDH3H1 was

downregulated, while the expression of AtALDH2B7 was not

changed during reoxygenation. This implies that they are the

most hypoxia-responsive ALDH genes. Additionally, the

AtALDH5F1 gene was downregulated during hypoxia and

reoxygenation conditions. ALDH5F1 is mitochondrial specific.

In a previous study the expression of the ALDH5F1 gene was

found to be regulated by waterlogging stress in sugarcane

(Gomathi et al., 2015). Moreover, ALDH5 Arabidopsis

mutants presented ROS over-accumulation and cell death in

response to light and heat stress (Bouche et al., 2003). ALDH5

was found to participate in the g-aminobutyrate (GABA) ‘shunt’

pathway in bacteria, plants, and animals. It worth noting that in

plants the non-protein amino acid GABA is associated with

pollen-pistil interactions, herbivore deterrence, oxidative stress,

and hypoxia, as a its high concentration enhances plant defence

or tolerance responses (Brocker et al., 2013).

Cellular function is accomplished by 3D well-folded protein

structures, protein-protein and protein-ligand interactions

(Jimenez-Lopez et al., 2010). In this study we identified three

hypoxia responsive AtALDH genes, and the encoded proteins

were homology modelled using swiss-modelling. The 3D

structures of all the proteins showed the number of residues >

90% in the most favoured region as per the Ramachandran plot

analysis, which suggests the high accuracy of the structure

prediction. Protein glycosylation is one of the crucial

components of protein structure, which regulate a range of

biological activities including protein folding, signalling,
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stability, conformation, and cell-cell interactions (Corfield,

2017). In this study, N-glycosylation sites were recognized for

all the AtALDH proteins, while 13 out of 16 AtALDHs

contained N-glycosylation sites. In eukaryotic cells protein N-

glycosylation is one of the most important post-translational

modifications. By altering protein functions, it mediates diverse

biological processes, including intercellular communication

(Chen et al., 2020). The numerous functions of N-

glycosylation in regulating plant stress tolerance and

development were previously reported (Kaulfürst-Soboll et al.,

2021). The glycosylation in multiple ways is involved in

maintaining the redox homeostasis during the plant’s response

to oxidative stress, including i) modification of a molecule’s

antioxidant property, as in the case of flavonoids, ii) promoting

the biosynthesis of its corresponding aglycone by changing its

subcellular location, and iii) influencing the phytohormone

translocation, signalling capacity, and downstream gene

expression regulation (Behr et al., 2020). Therefore, in our

study, it can be assumed that after hypoxia stress, during

recovery, the ALDHs might be associated with redox-related

patterns and signalling pathways for glycol-redox interplay in

response to oxidative stress.
Conclusion

We characterized the ALDH genes in Arabidopsis at the whole-

genome scale to provide insight into their genomic and structural

organization, regulatory framework, physicochemical properties,

phylogenetic and evolutionary relationships, as well as expression

profiles during developmental stages and under abiotic stresses. In

addition, functional validation of the ALDH genes in Arabidopsis

leaves carried out by qRT-PCR analysis help indicate that the

candidate genes are responsive to hypoxia and post-hypoxia

reoxygenation. Thus, a future detailed characterization of the

selected genes will provide comprehensive understanding of the

ALDH role in mechanisms of hypoxia tolerance and post-hypoxia

recovery. Notably, different patterns of ALDHs expression observed

during stress and recovery phases indicated that plant ALDH is a

crucial element of the oxygen-dependent metabolic switch in cells.

The results broaden our knowledge on plant ALDHs and provide

valuable information for future genetic improvement programs in

crop plants potentially challenged by hypoxia stress. It worth noting

that hypoxia in nature can also be caused both by pathogen

infestation or occur sequentially with flooding events (Tang and

Liu, 2021). Thus, the recognition of most potent ALDHs may

provide effective defence strategies to cope also with microbes.
Frontiers in Plant Science 16
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