

Genome-Wide Identification and Expression Profiling of Germin-Like Proteins Reveal Their Role in Regulating Abiotic Stress Response in Potato

Madiha Zaynab^{1†}, Jiaofeng Peng^{2†}, Yasir Sharif³, Mahpara Fatima⁴, Mohammed Albaqami⁵, Rashid Al-Yahyai⁶, Khalid Ali Khan^{7,8,9}, Saqer S. Alotaibi¹⁰, Ibrahim A. Alaraidh¹¹, Hassan O. Shaikhaldein¹¹ and Shuangfei Li^{1*}

OPEN ACCESS

Edited by:

Mohammad Anwar Hossain, Bangladesh Agricultural University, Bangladesh

Reviewed by:

Naeem lqbal, Muhammad Nawaz Shareef University of Agriculture, Pakistan Faheem Shehzad Baloch, Sivas Bilim Ve Teknoloji Fakültesi, Turkey

*Correspondence:

Shuangfei Li sfli@szu.edu.cn †These authors have contributed

equally to this work

Specialty section:

This article was submitted to Plant Biotechnology, a section of the journal Frontiers in Plant Science

Received: 08 December 2021 Accepted: 31 December 2021 Published: 17 February 2022

Citation:

Zaynab M, Peng J, Sharif Y, Fatima M, Albaqami M, Al-Yahyai R, Khan KA, Alotaibi SS, Alaraidh IA, Shaikhaldein HO and Li S (2022) Genome-Wide Identification and Expression Profiling of Germin-Like Proteins Reveal Their Role in Regulating Abiotic Stress Response in Potato. Front. Plant Sci. 12:831140. doi: 10.3389/fpls.2021.831140 ¹ Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China, ² Instrument Analysis Center, Shenzhen University, Shenzhen, China, ^a College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China, ⁴ College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China, ⁵ Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia, ⁶ Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman, ⁷ Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia, ⁸ Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, Abha, Saudi Arabia, ⁹ Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia, ¹⁰ Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia, ¹¹ Botany and Microbiology Department, Science College, King Saud University, Riyadh, Saudi Arabia

Germin and germin-like proteins (GLPs) perform a significant role in plants against biotic and abiotic stress. To understand the role of GLPs in potato, a comprehensive genome-wide analysis was performed in the potato genome. This study identified a total of 70 StGLPs genes in the potato genome, distributed among 11 chromosomes. Phylogenetic analysis exhibited that StGLPs were categorized into six groups with high bootstrap values. StGLPs gene structure and motifs analysis showed a relatively wellmaintained intron-exon and motif formation within the cognate group. Additionally, several cis-elements in the promoter regions of GLPs were hormones, and stressresponsive and different families of miRNAs target StGLPs. Gene duplication under selection pressure also exhibited positive and purifying selections in StGLPs. In our results, the StGLP5 gene showed the highest expression in response to salt stress among all expressed StGLPs. Totally 19 StGLPs genes were expressed in response to heat stress. Moreover, three genes, StGLP30, StGLP17, and StGLP14, exhibited a relatively higher expression level in the potato after heat treatment. In total, 22 genes expressed in response to abscisic acid (ABA) treatment indicated that ABA performed an essential role in the plant defense or tolerance mechanism to environmental stress. RNA-Seq data validated by RT-qPCR also confirm that the StGLP5 gene showed maximum expression among selected genes under salt stress. Concisely, our results provide a platform for further functional exploration of the StGLPs against salt and heat stress conditions.

Keywords: abiotic stress, gene expression, gene structure, miRNA, RNA-seq, stress responses

INTRODUCTION

Germin-like proteins (GLPs) are pervasive proteins regarded as water-soluble glycoproteins present in either cell apoplast or its extracellular matrix (Lane et al., 1992; Dunwell et al., 2008). These proteins were first identified in wheat germinating embryos (Lu et al., 2010). At present, several proteins have been identified in different plant groups that exhibit 30–70% sequence homogeneity with wheat germin proteins (Finn et al., 2007).

Germin-like genes are expressed in embryos, leaves, stems, roots, flowers, and seeds of plants responding to various environmental stimuli based upon the species or genes under consideration (Wang et al., 2013). Abiotic and biotic stresses significantly affect plant growth and production worldwide (Raza et al., 2020; Qasim et al., 2021, 2018a; Raza, 2021). Various evidence has been given as an indication of GLPs involvement in defense and tolerance mechanisms of plants (Breen and Bellgard, 2010). Incidents like pathogen infections, insect infestation, or exposure to various chemicals such as salicylic acid, hydrogen peroxide, or ethylene may trigger the expression level of GLPs (Godfrey et al., 2007). Many internal elements have influenced the expression of germin, as in wheat, where the germin gene gf-2.8 is induced by hormone auxin (Schweizer et al., 1999). Transient overexpression and silencing of some Hordeum vulgare GLP genes have imparted enhanced resistance against fungal infection of powdery mildew (Schweizer et al., 1999). The promoter alternative of rice oxalate oxidase genes envisaged in the resistance against Magnaporthe oryzae. For some subfamilies, transitory and stable expression depicted the superoxide dismutase activity of the encoded protein (EC1.15.1.1) (Zimmermann et al., 2006). The silencing of GLPs in Nicotiana attenuate has proved fruitful in enhancing performance against herbivores (Lou and Baldwin, 2006). Fluctuation in the transcription of germin genes in Brassica napus and nearly associated Arabidopsis is found during the circadian cycle (Heintzen et al., 1994). These GLPs are associated with the protective mechanisms of cereals against the infection of fungal pathogens (Lane, 2000). Studies have revealed that the transfer of GLPs from soybean and sunflower to Nicotiana tabacum can increase its resistance against Sclerotinia sclerotiorum (Beracochea et al., 2015; Zhang et al., 2018). Transient-enhanced expression of TaGLP4 and HvGLP4 makes wheat and barley plants more resistant to Blumeria graminis. At the same time, the ephemeral gene that is silenced by utilizing RNA interference minimizes the basal resistance in cereals (Christensen et al., 2004, p. 4). A study is conducted to explore that the regulatory factors in various GLP gene promoters and several regulatory factors are associated with many essential roles with variable copy numbers and dispersed in locations of various positive or negative strands. Cotton GLP as GhABP19 is involved in various essential tasks in the exhibition of resistance to Verticillium and Fusarium wilt in crops (Pei et al., 2019, p. 19). A few GLP subfamily members are intricated in a vast range of fungal disease resistance in the tissues of leaves (Davidson et al., 2009).

Germin-like protein genes have variable expression and multiple tasks in several tissues and at different phases of plant

growth processes (Barman and Banerjee, 2015). This gene family is one of those gene families that are crucial and indispensable for the defense and stress tolerance mechanisms of plants. Expression of these genes varies against various abiotic stress such as salt (Wang et al., 2013), heavy metal (Berna and Bernier, 1999), and drought stress. Moreover, some purposes of *GLP* genes have been characterized in *Hordeum vulgare* (Zimmermann et al., 2006), *Arabidopsis thaliana* (Rietz et al., 2012), *Oryza sativa* (Li et al., 2016), and *Glycine max* (Wang et al., 2014). The expression levels of many rice *GLP* genes were altered under salt stress (Das et al., 2019). *OsGLP8-14* was found to be involved in salt stress response (Banerjee et al., 2017). Liao et al. (2021) reported the differential expression of *CsGLP* genes in response to salt, drought, and ABA treatments (Liao et al., 2021).

Potato (Solanum tuberosum L.) is an economically essential field crop and is widely grown as a basic food commodity worldwide. About 368,168,914 tons of potatoes were harvested in 2018 on 17,578,672 ha of land, and over 1 billion people consumed them (Rashid et al., 2021). Like other plant species, potato yield is also in jeopardy due to many biotic and abiotic environmental fluctuations (Zaynab et al., 2021d). To date, the expression analysis of GLP genes against abiotic stress has not been reported in potatoes. Therefore, this study used genome-wide analysis to find GLP genes in the potato genome. Furthermore, their evolutionary relationships, synteny analysis, gene structures, conserved motifs, cis-elements, and miRNA predictions were investigated. Expression profiling in many tissues/organs and response to various hormones and abiotic stresses have been substantially explored, enabling us to explore and understand these GLPs in extensive detail in the potato genome.

MATERIALS AND METHODS

Identification and Characterization of GLP Genes in Potato

In this study, we used two methods to identify *GLP* genes from the genome of the *Solanum tuberosum*. The first method was the Hidden Markov Model (HMM), and the second one was the BLASTP search (Raza et al., 2021; Zaynab et al., 2021d). Potato genome sequences were retrieved from JGI Phytozome 12.0¹ database (Goodstein et al., 2012). GLP amino acids sequences of *A. thaliana* were taken from TAIR² (Rhee, 2003) database and used as a query to run BLASTP search. The HMM file with Pfam ID PF00190 containing *GLP* genes was downloaded from Pfam³ (El-Gebali et al., 2019) database. Moreover, a local HMMER 3.1⁴ webserver was utilized to identify the *GLP* genes with default parameters (Finn et al., 2015). Eventually, a total of 70 *GLP* genes were identified from the genome of the potato. Non-redundant genes with conserved domains were serially named through *StGLP1–StGLP70* and used for further analysis.

¹https://phytozome.jgi.doe.gov/pz/portal.html

²http://www.arabidopsis.org/

³http://pfam.xfam.org/

TABLE 1 | List of identified putative StGLPs and their features.

Gene name	Transcript name	Gene start (bp)	Gene end (bp)	Chromosome name	Transcript end (bp)	Transcript start (bp)	No. of amino acids	Molecular weight	PI
StGLP1	PGSC0003DMT400040093	20,824,518	20,825,297	ST4.03ch02	20,825,297	20,824,518	228	24,389.04	7.79
StGLP2	PGSC0003DMT400032968	40,814,829	40,816,831	ST4.03ch02	40,816,831	40,814,829	515	61,094.18	5.12
StGLP3	PGSC0003DMT400081522	43,168,850	43,169,134	ST4.03ch00	43,169,134	43,168,850	94	10,650.29	7.99
StGLP4	PGSC0003DMT400057096	55,379,029	55,379,951	ST4.03ch07	55,379,951	55,379,029	201	22,001.22	7.71
StGLP5	PGSC0003DMT400033858	38,547,986	38,548,621	ST4.03ch07	38,548,621	38,547,986	211	22,055.77	5.84
StGLP6	PGSC0003DMT400000051	71,669,764	71,670,896	ST4.03ch01	71,670,896	71,669,764	313	34,015.31	6.9
StGLP7	PGSC0003DMT400034084	79,622,868	79,623,667	ST4.03ch01	79,623,667	79,622,868	228	24,491.01	5.62
StGLP8	PGSC0003DMT400017373	64,470,132	64,472,699	ST4.03ch01	64,472,699	64,470,132	188	19,878.96	8.52
StGLP9	PGSC0003DMT400034092	79,600,750	79,614,804	ST4.03ch01	79,601,534	79,600,750	228	24,517.12	5.88
StGLP10	PGSC0003DMT400046879	79,534,943	79,535,624	ST4.03ch01	79,535,624	79,535,115	169	18,065.87	9.74
StGLP11	PGSC0003DMT400017382	64,505,199	64,505,959	ST4.03ch01	64,505,959	64,505,199	225	24,736.65	5.51
StGLP12	PGSC0003DMT400061076	80,764,817	80,766,134	ST4.03ch01	80,766,134	80,764,817	362	38,977.83	5.75
StGLP13	PGSC0003DMT400053377	79,649,888	79,650,650	ST4.03ch01	79,650,650	79,649,888	216	23,186.36	5.36
StGLP14	PGSC0003DMT400047065	79,150,246	79,151,880	ST4.03ch01	79,151,880	79,150,246	210	22,228.7	8.44
StGLP15	PGSC0003DMT400017379	64,490,847	64,491,641	ST4.03ch01	64,491,641	64,490,847	225	24,708.72	9.28
StGLP16	PGSC0003DMT400046995	79,507,167	79,507,900	ST4.03ch01	79,507,900	79,507,167	228	24,625.34	6.17
StGLP17	PGSC0003DMT400047067	79,135,984	79,137,376	ST4.03ch01	79,137,376	79,135,984	211	22,272.7	7.8
StGLP18	PGSC0003DMT400053424	79.647.675	79.648.034	ST4.03ch01	79.648.034	79.647.675	119	13.318.31	6.9
StGLP19	PGSC0003DMT400046887	79.523.462	79.524.263	ST4.03ch01	79.524.263	79.523.462	230	24.753.47	8.55
StGLP20	PGSC0003DMT400000042	71.626.643	71.627.873	ST4.03ch01	71.627.873	71.626.643	348	38.041.87	5.74
StGLP21	PGSC0003DMT400088315	80 783 956	80 786 749	ST4 03ch01	80 786 749	80 783 956	207	22 017 21	7 69
StGL P22	PGSC0003DMT400061073	80 803 974	80,805,300	ST4 03ch01	80,805,300	80,803,974	362	38,986,74	6.04
StGL P23	PGSC0003DMT400017381	64 501 551	64 502 069	ST4 03ch01	64 502 069	64 501 551	128	14 095 21	5 42
StGL P24	PGSC0003DMT400017372	64 463 708	64 464 591	ST4 03ch01	64 464 591	64 463 714	222	24 245 05	6.95
StGLP25	PGSC0003DMT400046992	79,536,560	79 537 367	ST4 03ch01	79 537 367	79 536 560	228	24 522 09	6 4 9
StGL P26	PGSC0003DMT400053421	79 661 664	79 662 463	ST4 03ch01	79 662 463	79 661 664	174	18 975 74	8 89
StGL P27	PGSC0003DMT400000049	71 661 596	71 662 286	ST4 03ch01	71 662 286	71 661 596	192	21 734 96	5 39
StGLP28	PGSC0003DMT400017366	64 436 796	64 437 584	ST4 03ch01	64 437 584	64 436 796	225	24 725 77	8 77
StGL P29	PGSC0003DMT400088001	64 444 053	64 444 436	ST4 03ch01	64 444 436	64 444 053	127	14 195 59	9.43
StGLP30	PGSC0003DMT400053423	79 654 305	79 655 071	ST4 03ch01	79 655 071	79 654 305	228	24 429 06	6 4 9
StGLP31	PGSC0003DMT400017387	64 508 106	64 508 869	ST4 03ch01	64 508 869	64 508 106	162	17 779 49	5 19
StGLP32	PGSC0003DMT400017363	64 424 713	64 425 516	ST4 03cb01	64 425 516	64 424 713	225	24 860 8	8 94
StGLP33	PGSC0003DMT400046891	79 517 314	79 518 118	ST4.03cb01	79 518 118	79 517 314	230	24,608.3	8 55
StGLP34	PGSC0003DMT400017367	64 450 575	64 451 350	ST4.03cb01	64 451 350	64 450 575	200	24,020.0	8.4
StGL P35	PGSC0003DMT400058298	6 670 7/1	6 672 120	ST4.03cb05	6 672 120	6 670 741	211	22 544 89	8 58
StGL P36	PGSC0003DMT400030317	52 610 030	52 610 665	ST4.03ch12	52 610 665	52 610 039	208	21 6/3 96	6.82
StGL P37	PGSC0003DMT400019402	55 885 5/3	55 887 /21	ST4.03ch06	55 887 421	55 885 543	159	51 649 76	8.05
StGL P38	PGSC0003DMT400019402	55 877 736	55 879 480	ST4.03ch06	55 879 480	55 877 736	459	51 627 42	7 32
SIGLF 30	PGSC0003DMT400019309	55 873 8/1	55 875 211	ST4.03ch06	55 875 211	55 873 8/1	374	12 030 48	0.32
SIGLE 59	PGSC0003DMT400008098	55 880 622	55 801 351	ST4.03ch06	55 801 351	55 889 622	455	42,009.40 51 137 94	9.00 Q 1
StGL PA1	PGSC0003DMT400019308	55 882 134	55 883 080	ST4.03ch06	55 883 080	55 882 134	455	51 300 11	6.04
Stall 41	PGSC0003DMT400044214	56 455 606	56 459 497	ST4.03ch00	56,458,487	56 455 606	520	59 799 22	6.50
SIGLF 42	PGSC0003DIVIT400044214	56 325 068	56 227 126	ST4.03ch09	56 227 126	56 325 068	220	24 086 01	5.77
SIGLF43	PGSC0003DIVIT400044229	50,323,000	50,327,130	ST4.03ch09	50,327,130	50,323,000	220	24,900.91 41 766 95	6.42
SIGLF 44	PGSC0003DIVIT400020703	56 200 010	56 202 071	ST4.03ch09	56 202 071	56 200 919	004	41,700.00 00 005 76	5.40
SIGLF45	PGSC0003DIVIT400044231	47.006.075	49 000 960	ST4.03ch09	19 000 960	47,006,075	224	20,900.70	0.05
SIGLF40	PGSC0003DIVIT400049623	47,990,073	40,000,009	ST4.03ch09	40,000,009	47,990,075	401	04 704 45	5.70
SIGLF41		54 000 007	51 005 000	ST4.030109	51 005 000	54 000 007	220	24,124.40	J.12
SIGLE 40		50 160 000	50 160 005	ST4.030109	50 160 005	50 160 000	100	54 407 00	6.00
SIGLF49		56 220 050	56 221 514	ST4.030109	56 221 514	56 220 050	401	04,421.20 05 100 0	0.02
SIGLEUU		56 224 000	56 220 770	ST4.030109	56 220 770	56 227 601	220	20,100.0	9.17 1 16
SIGLEST		50,334,000	50,338,772	ST4.030109	50 100 000	50 100 510	303	40,007.09	4.40
SIGLP92	FG3CUUU3DIVI14UUU2665U	00,132,519	50,132,890	514.03CN09	30,132,890	50,132,519	123	13,073.41	0.72

(Continued)

TABLE 1 | (Continued)

Gene name	Transcript name	Gene start (bp)	Gene end (bp)	Chromosome name	Transcript end (bp)	Transcript start (bp)	No. of amino acids	Molecular weight	PI
StGLP53	PGSC0003DMT400063164	53,565,261	53,565,923	ST4.03ch03	53,565,923	53,565,261	220	23,470.25	6.5
StGLP54	PGSC0003DMT400036428	61,605,492	61,606,118	ST4.03ch03	61,606,118	61,605,492	208	21,519.77	5.83
StGLP55	PGSC0003DMT400053916	7,589,586	7,592,195	ST4.03ch03	7,592,195	7,589,586	450	51,300.84	7.77
StGLP56	PGSC0003DMT400063166	53,567,656	53,568,309	ST4.03ch03	53,568,309	53,567,656	217	23,201.87	6.27
StGLP57	PGSC0003DMT400034989	639,862	644,028	ST4.03ch03	644,028	639,862	430	48,782.81	8.28
StGLP58	PGSC0003DMT400067755	40,482,716	40,483,336	ST4.03ch11	40,483,336	40,482,716	206	21,854.14	5.51
StGLP59	PGSC0003DMT400061586	5,333,291	5,333,929	ST4.03ch11	5,333,929	5,333,291	212	23,300.94	6.41
StGLP60	PGSC0003DMT400067758	40,480,217	40,480,828	ST4.03ch11	40,480,828	40,480,217	203	21,650.87	6.91
StGLP61	PGSC0003DMT400067709	40,477,347	40,479,544	ST4.03ch11	40,479,544	40,477,347	303	32,003.43	6.34
StGLP62	PGSC0003DMT400003235	5,633,348	5,633,974	ST4.03ch11	5,633,974	5,633,348	208	22,581.1	9.36
StGLP63	PGSC0003DMT400040214	45,351,028	45,352,678	ST4.03ch11	45,352,678	45,351,028	356	38,205.97	6.15
StGLP64	PGSC0003DMT400070424	43,975,664	43,979,229	ST4.03ch11	43,979,229	43,975,664	509	57,013.7	5.67
StGLP65	PGSC0003DMT400040162	45,354,585	45,358,874	ST4.03ch11	45,358,874	45,354,585	513	56,512.04	6.58
StGLP66	PGSC0003DMT400092000	40,481,535	40,482,146	ST4.03ch11	40,482,146	40,481,535	203	21,422.5	6.26
StGLP67	PGSC0003DMT400029687	58,884,139	58,885,066	ST4.03ch10	58,885,066	58,884,139	217	22,866.41	7.72
StGLP68	PGSC0003DMT400092672	58,892,246	58,892,689	ST4.03ch10	58,892,689	58,892,246	147	16,028.43	6.16
StGLP69	PGSC0003DMT400029689	58,881,482	58,882,474	ST4.03ch10	58,882,474	58,881,482	217	23,082.58	7
StGLP70	PGSC0003DMT400087849	58,876,226	58,879,838	ST4.03ch10	58,879,838	58,876,226	429	45,493.44	6.45

CDS, coding sequence; pl, isoelectric point.

Physiochemical characteristics, including molecular weight and isoelectric points, were identified through ProtParam⁵ (Gasteiger et al., 2005).

Phylogenetic, Gene Structure, Motif, and Synteny Analysis

In order to investigate the evolutionary history of the *StGLP* family genes, a phylogenetic tree was constructed among the amino acid sequences of *Solanum lycopersicum*, *S. tuberosum*, and *A. thaliana*. We used MEGA 7⁶ (Kumar et al., 2018) for the construction of phylogenetic tree. The neighbor-joining method was applied to make a phylogenetic tree with 1,000 bootstrap values. TBtools software⁷ was deployed to construct the gene structure of *StGLPs* (Chen et al., 2020). Conserved motifs present in *StGLPs* sequences were recognized through MEME⁸ (Bailey et al., 2009) server. For comparative synteny analysis, Circoletto Tool⁹ was used.

Chromosomal Locations, Selection Pressure, and *Cis*-Elements Analysis

Data related to the chromosomal location was taken from general feature format (GFF) files of *S. tuberosum* genome database (PGSC Ref seq v4.03) (The Potato Genome Sequencing Consortium, 2011). The localization of 70 identified genes on chromosomes was performed by utilizing TBtools (Chen et al., 2020). To explore the putative *cis*-elements in the promoter

region of *StGLPs*, we extracted a sequence of 2 Kb upstream of start codons in the genome of *S. tuberosum*. Afterward, to analyze the promoter region of each gene, we deployed them to PlantCARE¹⁰ (Lescot, 2002) and figures made by TBtools (Chen et al., 2020). Besides, the synonymous and non-synonymous substitution rate was computed by employing KaKs Calculator 2.0 software using the MYN procedure. Ks and Ka refer to the number of synonymous and non-synonymous substitutions concerning the synonymous non-synonymous site (Wang et al., 2010). Divergence time (t = Ks/2r) was estimated through exchange rate as ($r = 2.6 \times 10^{-9}$) (Li et al., 2019).

Prediction of miRNA and Protein–Protein Interactions

For identifying miRNA targeting *StGLPs*, psRNAtarget¹¹ was used with default parameters (Dai et al., 2018). For illustrating the protein–protein interaction network, the STRING 11.0^{12} server was employed, and for reference, the genome of *S. tuberosum* was used. The exhibit specifications were propped as the confidence value is 0.9 for network; and 10 for edges evidence and maximum number of interaction.

Expression Profiling of StGLP Genes in Different Tissues

In order to investigate the expression of *StGLP* genes in various tissues and under various stress conditions, the transcriptome data were obtained from the available public database BioProject

⁵http://web.expasy.org/protparam/

⁶https://megasoftware.net/home

⁷https://github.com/CJ-Chen/TBtools

⁸https://meme-suite.org/meme/db/motifs

⁹tools.bat.infspire.org/circoletto/

¹⁰http://bioinformatics.psb.ugent.be/webtools/plantcare/html/

¹¹https://www.zhaolab.org/psRNATarget/

¹²https://string-db.org/

ID: Project: PRJEB2430. For the expression analysis of *StGLP* genes in different tissues and under different stresses, fragments per kilobase million (FPKM) were observed (Zaynab et al., 2021d). The obtained data were arranged according to their expression in different tissues. The observed FPKM values were utilized to construct a heatmap through TBtools after the normalization of log2 values.

Potato Growth Conditions and Stress Treatment

The rooster variety of *S. tuberosum* was selected as the sample for these experiments, which were conducted at the experimental station of the National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan. After 6 weeks of growth, the sample was treated with 150 mM NaCl for 0 and 24 h, respectively, for salt treatment. The first time point (0 h) served as a control. After NaCl treatment, leaves were taken, and samples were immediately frozen in liquid nitrogen and stored at -80° C for total RNA extraction.

RNA Extraction and RT-qPCR Analysis

Total RNA was extracted using TransZol Up Plus RNA Kit (TransGen Biotech, Beijing, China). For cDNA synthesis, cDNA Synthesis SuperMix was purchased from the above-mentioned Chinese company. Instructions given by manufacturers were followed during the whole process. The comprehensive knowledge about reactions of RT-qPCR has been reported in our earlier published work (Zaynab et al., 2021a). In our study, the expression data were evaluated by using the $2^{-\Delta\Delta CT}$ methods (Zaynab et al., 2021c), and the elongation factor 1-alpha was chosen as a housekeeping gene (Zaynab et al., 2021b). The primers used in this study are given in **Supplementary Table 1**.

RESULTS

Identification, Phylogenetic, Gene Structure, Motif Analysis of *GLP* Genes in Potato

A total of 70 *GLP* genes were identified in the potato genome by employing sequences of *A. thaliana* as a query (**Table 1**). In this study, Batch-CD and SMART were utilized to confirm the domain with Pfam ID (PF00190). All these 70 genes contain a domain with Pfam ID (PF00190). The protein sequences of *A. thaliana*, *S. lycopersicum*, and identified StGLPs are given in **Supplementary Table 2**. Amino acids length varied from 94 to 567, the molecular weight from 10.650 to 65.780 kDa, and the isoelectric point values from 4.46 to 9.74 (**Table 1**). A phylogenetic tree was constructed using the neighbor-joining method through MEGA7 to illustrate the phylogenetic relationship among *A. thaliana, S. lycoperiscum,* and *S. tuberosum.* This study results showed that the phylogenetic tree was divided into six groups. Group-6 is the largest group, and group-3 is the smallest among all groups (**Figure 1**). Exons and introns are two main determinants in the gene family evolution. The detailed analysis of the phylogenetic relationship and gene composition illustration corroborated our understanding of the structures of *StGLPs* genes (**Figure 2**). The

results revealed that numerical attributes of exon and intron in StGLP genes possessed high inconsistency in numbers of exons and introns (Figure 2). In this study, the StGLP46 gene possessed the most extended sequence. Some genes such as StGLP41 and StGLP38 exhibited similarities in exon numbers. Additionally, StGLP21 and StGLP57 genes were equal in exons numbers but differed in their sequence lengths. For determining structural diversification and functional characterization of these StGLPs, we analyzed full-length sequences of 70 StGLPs through MEME software to localize their conserved motifs. The motif results revealed that a total of ten motifs were identified (Figure 2). The sequences of predicted motifs are given in Supplementary Table 3. All of the StGLPs genes contained motif 1 except genes StGLP StGLP18, StGLP26, StGLP29, StGLP31, StGLP51, StGLP52, StGLP63, StGLP65, StGLP21, StGLP6, StGLP20, StGLP12, StGLP22, StGLP8, and StGLP27. The length of the motif was varied from 21 to 50 amino acids. The highest 50 amino acids were possessed by motif 3,7, and 10, while motif 2 and 5 contained the lowest 21 amino acids. In our results, motif 4 had 39 amino acids, motif 8 had 35 amino acids, while motifs 1 and 9 had 41 amino acids in their sequence. In short, the reliability of group organization was exceedingly encouraged by analyzing conserved motif conformation, genetic structures, and phylogenetic relationship, indicating that StGLP proteins possess enormously well-sustained amino acid members and remain inside a group. Thus, it can be inferred that proteins with identical motifs and structures may possess functional similarities.

Chromosomal Locations, Synteny, and Gene Duplication Analysis

Chromosomal distribution analysis of StGLPs depicted their unequal localization on all chromosomes (Figure 3). A maximum number of 29 genes were present on the 1st chromosome, while the 9th chromosome had 11 genes. There are 9 genes present on chromosome number 11. Only 2 genes are located on chromosome number 02 (Figure 3) in our results. Furthermore, there was no gene located on chromosome number 08. To determine the rate of molecular evolution of each gene pair that has been duplicated, the Ka to Ks (synonymous/nonsynonymous substitution) ratios were calculated. When the value of the ratio is more than 1, then the selection effect will be positive; if its value is less than 1, then purifying selection will be exhibited, while when this ratio's value is equal to 1, then there will be the presence of neutral selection in gene pairs (Yang and Bielawski, 2000). The cosmic majority of StGLPs genes exhibited a value of Ks more than 0.52, and the corresponding deviation time may be more than 100 million years ago (MYA). In this study, duplicated genes (StGLP4/StGLP35) showed the Ks value 3.54 while its corresponding time may be 682.30 MYA (Table 2). Comparative synteny analysis was analyzed among A. thaliana, S. tuberosum, and S. lycoperiscum which exhibited a phenomenal relationship in the evolution expression, duplication, triplication, and function of genes. Genes sequence of SlGLP17 exhibited synteny with the sequence of StGLP2. At the same time, two potato genes, StGLP20 and StGLP22, showed synteny with the SlGLP41 gene of tomato. The comparative synteny analysis

TABLE 2	Gene	duplication	and	selection	pressure	of S	StGLPs.
		adpiloadori	ana	0010011011	procouro	0.0	JUGE 0.

Seq_1	Seq_2	Ka	Ks	Ka_Ks	Time (MYA)
StGLP6	StGLP20	0.00587159	0.019568986	0.300045672	3.763266576
StGLP12	StGLP22	0.059038628	0.193459314	0.305173356	37.20371428
StGLP63	StGLP65	0.047638432	0.282922672	0.168379692	54.40820612
StGLP42	StGLP57	0.321196935	1.332395831	0.241067202	256.2299675
StGLP39	StGLP55	0.237145767	0.571605039	0.41487697	109.924046
StGLP38	StGLP41	0.06693679	0.288679494	0.231872342	55.51528724
StGLP4	StGLP35	0.635162456	3.548006451	0.179019533	682.3089328
StGLP36	StGLP54	0.090222715	1.503069078	0.060025661	289.0517458
StGLP3	StGLP62	0.083490733	0.188993779	0.441764451	36.34495755
StGLP58	StGLP61	0.022084776	0.136249525	0.162090661	26.20183183
StGLP60	StGLP66	0.066557407	0.157685536	0.422089489	30.32414157
StGLP14	StGLP17	0.012705439	0.132943691	0.095570077	25.56609445
StGLP53	StGLP56	0.063376386	0.255022102	0.248513307	49.04271201
StGLP67	StGLP70	0.023344121	0.08530024	0.273670051	16.40389238
StGLP19	StGLP33	0.021457901	0.147797879	0.14518409	28.42266902
StGLP1	StGLP30	0.019660366	0.228158531	0.086169759	43.87664054
StGLP18	StGLP26	0.267626689	0.427706455	0.625725158	82.25124131
StGLP7	StGLP13	0.002038737	0.033904078	0.060132509	6.520014918
StGLP43	StGLP50	0.124561464	0.128964836	0.965856028	24.80093
StGLP11	StGLP28	0.149905888	0.166366256	0.901059457	31.99351068
StGLP31	StGLP32	0.119090894	0.142681101	0.834664809	27.43867323
StGLP29	StGLP34	0.206352764	0.292304449	0.7059515	56.21239411

Ka, number of non-synonymous substitutions per non-synonymous site; Ks, number of synonymous substitutions per synonymous site; MYA, million years ago.

revealed the conservation and duplication of inward and outward tangling events in ribbons, respectively (**Figure 4**).

Cis-Elements and miRNA Analysis

To observe the *StGLPs* gene function and their regulatory role, promoter *cis*-elements were analyzed using the PlantCARE database. The *cis*-elements that are associated with plant hormones were identified. As shown in **Figure 5**, the number of genes associated with phytohormones indicates the importance of these genes in phytohormone stress. Furthermore, the role of anaerobic, light, and low-temperature responsive factors in this study was discovered (**Figure 5**). Mainly several elements that are responsive to light were categorized to be extensively distributed in all genes, indicating the significant role of *StGLPs* in response to light stress. Generally, findings envisaged that diversification in the expression levels of various *StGLPs* might be attributed to different plant hormones and environmental stress. The Hormones- and stress-related cis-elements found in the promoter regions of StGLPs are given in **Supplementary Table 4**.

Many researchers have reported that microRNA mediated a significant role in enhancing stress response in plants (Su et al., 2021; Xu et al., 2021). Thus, for an in-depth comprehension of miRNA-triggered post-transcriptional modulations of *StGLPs*, we identified miRNAs targeting *StGLPs* genes. Several sites that are targeted by miRNA are illustrated in **Supplementary Table 1**. Our findings revealed that seven members of the miR166 family target six genes, including *StGLP8*, *StGLP54*, *StGLP23*, *StGLP24*, *StGLP38*, and *StGLP28*. A gene, *StGLP2*, was targeted by a single

member of the miR169 family. Targets *StGLP51*, *StGLP48*, and *StGLP47* (Figure 6 and Supplementary Table 5) are all three members of the miRNA gene family. The findings of our study revealed that two members of the miR8040 aimed at two genes, *StGLP51* and *StGLP62*. A gene *StGLP55* was the target of two members of the miR1886 family. Our results mainly estimated two genes, *StGLP40* and *StGLP8*, to target numerous miRNAs.

The protein-protein interaction network provided details about StGLPs in the genome of potatoes. The interaction network was observed among several proteins, including StGLP57, StGLP44, StGLP46, StGLP48, and StGLP2. These proteins depicted the concurrence, co-expression, fusion, and homology of genes. Likewise, another framework was also identified among StGLP53, StGLP63, and StGLP4 protein. Among all StGLPs, two proteins, StGLP48 and StGLP46, are responsible for framing a protein-protein interaction network, so these can be reputed as hub proteins of StGLPs (**Figure 7**).

Tissue-Specific Expression Profiling

Expression profiling of *StGLPs* revealed that many genes exhibited high expression in the tissues of roots than that in the tissues of stems and leaves. Some genes showed expression in some tissues, while some genes have no expression in others. For example, the *StGLP17* gene showed a higher expression level in the tissues of roots, leaves, and stems, while the *StGLP26* and *StGLP45* genes showed higher expression levels in the tissues of roots and stems. Furthermore, in the tissues of leaves, *StGLP5* genes showed the maximum expression in our results (**Figure 8**).

Expression Patterns of StGLP Genes in Response to Heat and Salt Stress

Transcriptional profiling of *GLPs* was performed when potato plants were subjected to heat stress. *StGLPs* may help potato plants cope better with high temperatures, according to some research. A total of 19 *StGLPs* genes were expressed in response to heat stress. Moreover, three genes, *StGLP30*, *StGLP17*, and *StGLP14*, exhibited a relatively higher expression level in potatoes after heat treatment (**Figure 9**). In our results, *StGLP30* gene expression was higher than *StGLP17* and *StGLP14*.

Furthermore, *StGLP16* genes showed the lowest expression compared with other expressed *StGLPs* after heat treatment. Likewise, 29 *GLPs* were expressed in response to salt treatment. This study showed that *StGLP54*, *StGLP12*, and *StGLP5* genes were highly expressed in potatoes after salt treatment (**Figure 9**), but the expression level of the *StGLP54* genes was relatively higher as compared to *StGLP12* and *StGLP54* genes in the potato genome.

Expression Patterns of StGLP Genes in Response to Phytohormones

Three hormones, abscisic acid (ABA), gibberellic acid (GA3), and indole acetic acid (IAA), were selected to evaluate the hormonal response of StGLPs.

This study results showed that 22 *StGLP* genes were expressed after the treatment of ABA. Similarly, in the case of IAA treatment, 24 *StGLP* genes were expressed. Furthermore, the

StGLP12 gene was highly expressed compared with others after the treatment of ABA, while *StGLP5* showed the highest expression after IAA treatment (**Figure 10**). Additionally, 27 *StGLPs* were expressed when treated with GA3, and the expression of gene *StGLP14* was highest among all 27 expressed genes (**Figure 10**). The upregulation of *StGLPs* after ABA, IAA, and GA3 treatment revealed the significant role of *StGLP* genes in mitigating the lethal effects of different hormonal and environmental stress.

RT-qPCR Analysis

Real-time-qPCR was performed to confirm the expression of five genes, namely, *StGLP63*, *StGLP17*, *StGLP51*, *StGLP14*, and *StGLP47*, in the tissues of roots, stems, and leaves (**Figure 11**). Two genes, namely, *StGLP17* and *StGLP14*, exhibited a comparatively higher expression level in the tissues of stems than that in the tissues of roots and leaves. In contrast, the expression of *StGLP47* was relatively more in the tissues of leaves than that in the tissues of roots and stems. Generally,

findings depicted that *StGLP* genes may perform particular functions in potato plant growth and developmental process. Similarly, RT-qPCR was performed to confirm the expression

of five genes, namely, *StGLP5*, *StGLP12*, *StGLP30*, *StGLP 36*, and *StGLP54*, in leaves treated with 150 mM NaCl. The results showed that the *StGLP5* genes showed the maximum

expression after 24 h of NaCl stress. In addition, genes such as *StGLP12*, *StGLP 36*, and *StGLP54* were highly expressed with the extension of stress time. Moreover, *StGLP30* showed expression but low expression compared with the other four genes (**Figure 12**).

DISCUSSION

Potato is an integral part of the food chain worldwide (Zaynab et al., 2017b). Potato plants are subjected to different biotic and abiotic stresses (Zaynab et al., 2021b). *GLPs* have a significant role in plant signaling and response to various environmental stresses (Yuan et al., 2021). Members of *GLPs* show variations in their expression and possess considerable functions in several tissues at different phases of growth cycle of the plant (Barman and Banerjee, 2015). This crucial gene family carried out vital defense mechanisms and is an essential part of plant

defense processes. The expression of the essential genes increases exponentially when plants encounter stress like salinity (Wang et al., 2013; Zaynab et al., 2021d), water shortage (Komatsu et al., 2010), heavy metals (Berna and Bernier, 1999), and heat stress (Qasim et al., 2018b). Various functions of *GLPs* have also been determined in different crops such as *Hordeum vulgare* (Zimmermann et al., 2006), *A. thaliana* (Rietz et al., 2012), *Oryza sativa* (Li et al., 2016), and *Glycine max* (Wang et al., 2014). But till now, there has been no considerable in-depth study of *GLPs* in the potato. These days, the whole-genomic sequence of potato is comfortably accessible, allowing us to conduct genomewide analysis of the *GLP* genes family that may prove worthy for further research.

Structural analysis of *StGLPs* will prove beneficial for their functional characterization. The utilization of the evolutionary relic of *GLPs* has established that the evolution of genes has been affected by the arrangement of their exons and introns (Moore and Purugganan, 2005; Flagel and Wendel, 2009). This is in

correlation with previous scientists finding that genes with short introns or no introns are retained in the genomic systems of plants during the evolutionary process. At the same time, the expression levels of such genes are also low in plants (Mattick and Gagen, 2001). Moreover, the compact arrangement of genes favors the expression response of the *GLPs* against different exo or endogenous stimuli (Jeffares et al., 2008). Our findings through structural analysis of these genes inferred that those sequences of *StGLP* depicted a similar number of exons–introns with identical functional properties because they may have arisen through duplication events in the course of evolution (Waqas et al., 2019).

Studying the defense mechanisms employed by plants against various types of environmental stress, *cis*-elements were investigated in the promoter region of these genes. According to our findings, different *cis*-elements were identified that show their response against light and hormone stress. Several identified *cis*-elements were associated with ABA, SA, GA, MeJA, low temperature, anaerobic induction, and light. Earlier reports have attributed the stress response of plants to these *cis*-acting elements (Osakabe et al., 2014). *Cis*-factors are integral parts of plant stress response machinery as they regulate stress-responsive genes (Wu et al., 2014). So, these crucial *Cis*-acting sites of *StGLPs* indicate their behavior when different stresses are imposed.

All identified *StGLP* genes were classified into six clades. Similarly, phylogenetic grouping was also observed in other plants. The comparative phylogenetic analysis revealed that the organization of *S. lycoperiscum*, *S. tuberosum*, and *A. thaliana* proteins was relatively similar in six clades, indicating that all *StGLP* genes in these groups may have descended from a common ancestor. Previous studies (Li et al., 2016) reported the classification of *GLPs* into six clades in rice and *Arabidopsis*, supporting our results.

The size of the genome, duplication events in the genome, and the distribution of genes are major determinants of genetic variability in land plants. Genetic duplication property has long been recognized throughout the origins of evolutionary novelty, expression, and complexity of the gene families. We also noticed some duplications in *StGLPs* that may carry out vital roles in their amplification. As gene duplication is an imperative character in neofunctionalization, expansion, and variability among gene families (Lavin et al., 2005), similarly, the arrangement and localization of *StGLP* genes at chromosomes will enable breeders of potato to breed better varieties with desirable features.

Several types of research have depicted the response of plants to salinity and other abiotic stresses, and it is now well understood that miRNAs and their objects have direct impacts on the stress tolerance processes of plants (Li, 2015; Villanueva et al., 2016). This study recognized micro RNAs from various families targeting *StGLP* genes. Likewise, the unique role of miR156 has been widely documented during various abiotic stress in several plants (Cui et al., 2014; Kohli et al., 2014). Similarly, a study on cotton established a critical role of miR827 in response to saline stress (Covarrubias and Reyes, 2010); miR167 has also been

recognized as one of the significant role players in response to various stressed environmental conditions (Khraiwesh et al., 2012). Concisely, these results are in concordance with our findings that revealed that miR156, miR167, and miR827 are significant determinants of tolerance in plants against several stresses as they alter the expression of *StGLP* genes in the genome of potatoes.

Germin-like gene miRNAs are generally present in embryos, cotyledons, leaves, stems, flowers, roots, and seeds. Some are expressed in response to different environmental conditions; this depends upon genes under analysis or species in which they are expressed. Many authentications have indicated that various *GLPs* may have a critical role in the defense mechanisms of plants (Breen and Bellgard, 2010). So, the expression profiling of *GLPs* in the potato is helpful for their in-depth comprehension. Many genes exhibited a high level of expression in tissues, suggesting the putative role of these genes in potato growth and developmental processes. Our RT-qPCR findings revealed that the upregulation of genes in the tissues of roots and stems indicated the role of *GLP* in potato plant growth.

Furthermore, *GLPs* expression was observed in response to hormones and abiotic stress. These findings are following earlier reports that GLPs are an integral part of the defense system in saline tolerance (Wang et al., 2013), drought stress

(Komatsu et al., 2010), cold tolerance, and heavy metals tolerance (Berna and Bernier, 1999). Up till now, numerous researches have depicted that *GLPs* are significant players of

plant stress response mechanisms. In our results, *StGLP14*, *StGLP17*, and *StGLP30* are upregulated in response to heat stress, and *StGLP5*, *StGLP12*, and *StGLP54* are highly expressed

in response to salt stress supported by the findings of Wang et al. (2013). Hormones may alter the physio-biochemical pathways or metabolisms of plants by different pathways of signal transduction (Zaynab et al., 2017a; Fatima et al., 2021). ABA and IAA are major hormones of the immune system in plants. Several studies have established that besides being part of plant response to different stresses, GLPs also are involved in developing systems and hormonal signaling (Wang et al., 2020). To study how hormone signaling affects the production of StGLPs, leaves of potato were treated with ABA, GA3, and IAA, and the expression of genes was investigated. There was the induction of 22 genes on the treatment of

ABA, 24 genes on the treatment of IAA, and 27 genes on the treatment of GA3, suggesting that various members of *StGLPs* carry out crucial roles in the plant defense system induced by these hormones. When the treatment of ABA and IAA was made, increasing the expression level of potato GLPs exhibited that these hormones possess an essential part in this

defense mechanism, similar to the results obtained by Wang et al. (2020). The strong correlation between clusters of genes and their expression was noted under various stresses and tissues.

CONCLUSION

In this study, we identified 70 *GLPs* in the genome of the potato by genome-wide analysis. The gene structure, synteny, phylogenetic motifs, promotor, and miRNA analysis were performed to enhance our comprehension. The expression profiling after various stresses has been analyzed. The findings exhibited that *GLPs* genes responded significantly against hormonal and abiotic stresses, strengthening our comprehension. In our results, the *StGLP5* gene showed the highest expression in response to salt stress. So, further analysis is needed to corroborate the persistent role of *GLPs* genes in response to salt stress.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/**Supplementary Material**, further inquiries can be directed to the corresponding author.

REFERENCES

- Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., et al. (2009). MEME SUITE: tools for motif discovery and searching. *Nucleic Acids Res.* 37, W202–W208. doi: 10.1093/nar/gkp335
- Banerjee, J., Gantait, S., and Maiti, M. K. (2017). Physiological role of rice germinlike protein 1 (OsGLP1) at early stages of growth and development in indica rice cultivar under salt stress condition. *Plant Cell Tissue Organ. Cult.* 131, 127–137. doi: 10.1007/s11240-017-1270-z
- Barman, A. R., and Banerjee, J. (2015). Versatility of germin-like proteins in their sequences, expressions, and functions. *Funct. Integr. Genomics* 15, 533–548. doi: 10.1007/s10142-015-0454-z
- Beracochea, V. C., Almasia, N. I., Peluffo, L., Nahirñak, V., Hopp, E. H., Paniego, N., et al. (2015). Sunflower germin-like protein HaGLP1 promotes ROS accumulation and enhances protection against fungal pathogens in transgenic *Arabidopsis thaliana. Plant Cell Rep.* 34, 1717–1733. doi: 10.1007/s00299-015-1819-4
- Berna, A., and Bernier, F. (1999). Regulation by biotic and abiotic stress of a wheat germin gene encoding oxalate oxidase, a H2O2-producing enzyme. *Plant Mol. Biol.* 39, 539–549. doi: 10.1023/A:1006123432157
- Breen, J., and Bellgard, M. (2010). Germin-like proteins (GLPs) in cereal genomes: gene clustering and dynamic roles in plant defence. *Funct. Integr. Genomics* 10, 463–476. doi: 10.1007/s10142-010-0184-1
- Chen, C., Chen, H., Zhang, Y., Thomas, H. R., Frank, M. H., He, Y., et al. (2020). TBtools: an integrative toolkit developed for interactive analyses of big biological data. *Mol. Plant* 13, 1194–1202. doi: 10.1016/j.molp.2020. 06.009
- Christensen, A. B., Thordal-Christensen, H., Zimmermann, G., Gjetting, T., Lyngkjær, M. F., Dudler, R., et al. (2004). The germinlike protein GLP4 exhibits superoxide dismutase activity and is an important component of quantitative resistance in wheat and barley. *MPMI* 17, 109–117. doi: 10.1094/MPMI.2004. 17.1.109
- Covarrubias, A. A., and Reyes, J. L. (2010). Post-transcriptional gene regulation of salinity and drought responses by plant microRNAs. *Plant Cell Environ.* 33, 481–489. doi: 10.1111/j.1365-3040.2009.02048.x

AUTHOR CONTRIBUTIONS

MZ, JP, and YS gave the idea. MF, MA, and RA-Y performed the experiments. KK and SA wrote the manuscript. SL revised the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by Shenzhen Special Project for Sustainable Development (KCXFZ20201221173211033). The authors appreciate the support of the Research Center for Advanced Materials Science (RCAMS) at King Khalid University Abha, Saudi Arabia, through a grant KKU/RCAMS/G002-21. Taif University Researchers Supporting Project number (TURSP-2020/38), Taif University, Taif, Saudi Arabia.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2021. 831140/full#supplementary-material

- Cui, L. G., Shan, J. X., Shi, M., Gao, J. P., and Lin, H. X. (2014). The *miR156-SPL* 9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. *Plant J.* 80, 1108–1117. doi: 10.1111/tpj.12712
- Dai, X., Zhuang, Z., and Zhao, P. X. (2018). psRNATarget: a plant small RNA target analysis server (2017 release). *Nucleic Acids Res.* 46, W49–W54. doi: 10.1093/nar/gky316
- Das, A., Pramanik, K., Sharma, R., Gantait, S., and Banerjee, J. (2019). In-silico study of biotic and abiotic stress-related transcription factor binding sites in the promoter regions of rice germin-like protein genes. *PLoS One* 14:e0211887. doi: 10.1371/journal.pone.0211887
- Davidson, R. M., Reeves, P. A., Manosalva, P. M., and Leach, J. E. (2009). Germins: a diverse protein family important for crop improvement. *Plant Sci.* 177, 499–510. doi: 10.1016/j.plantsci.2009.08.012
- Dunwell, J. M., Gibbings, J. G., Mahmood, T., and Saqlan Naqvi, S. M. (2008). Germin and germin-like proteins: evolution, structure, and function. *Crit. Rev. Plant Sci.* 27, 342–375. doi: 10.1080/07352680802333938
- El-Gebali, S., Mistry, J., Bateman, A., Eddy, S. R., Luciani, A., Potter, S. C., et al. (2019). The Pfam protein families database in 2019. *Nucleic Acids Res.* 47, D427–D432. doi: 10.1093/nar/gky995
- Fatima, M., Ma, X., Zhou, P., Zaynab, M., and Ming, R. (2021). Auxin regulated metabolic changes underlying sepal retention and development after pollination in spinach. *BMC Plant Biol.* 21:166. doi: 10.1186/s12870-021-02944-4
- Finn, R. D., Clements, J., Arndt, W., Miller, B. L., Wheeler, T. J., Schreiber, F., et al. (2015). HMMER web server: 2015 update. *Nucleic Acids Res.* 43, W30–W38. doi: 10.1093/nar/gkv397
- Finn, R. D., Tate, J., Mistry, J., Coggill, P. C., Sammut, S. J., Hotz, H.-R., et al. (2007). The Pfam protein families database. *Nucleic Acids Res.* 36, D281–D288. doi: 10.1093/nar/gkm960
- Flagel, L. E., and Wendel, J. F. (2009). Gene duplication and evolutionary novelty in plants. New Phytol. 183, 557–564. doi: 10.1111/j.1469-8137.2009.02923.x
- Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., et al. (2005). "Protein identification and analysis tools on the ExPASy server," in *The Proteomics Protocols Handbook*, ed. J. M. Walker (Totowa, NJ: Humana Press), 571–607.

- Godfrey, D., Able, A. J., and Dry, I. B. (2007). Induction of a grapevine germin-like protein (VvGLP3) gene is closely linked to the site of erysiphe necator infection: a possible role in defense? *MPMI* 20, 1112–1125. doi: 10.1094/MPMI-20-9-1112
- Goodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J., et al. (2012). Phytozome: a comparative platform for green plant genomics. *Nucleic Acids Res.* 40, D1178–D1186. doi: 10.1093/nar/gkr944
- Heintzen, C., Fischer, R., Melzer, S., Kappeler, S., Apel, K., and Staiger, D. (1994). Circadian oscillations of a transcript encoding a germin-like protein that is associated with cell walls in young leaves of the long-day plant *Sinapis alba* L. *Plant Physiol.* 106, 905–915. doi: 10.1104/pp.106.3.905
- Jeffares, D. C., Penkett, C. J., and Bähler, J. (2008). Rapidly regulated genes are intron poor. *Trends Genet.* 24, 375–378. doi: 10.1016/j.tig.2008.05.006
- Khraiwesh, B., Zhu, J.-K., and Zhu, J. (2012). Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. *Biochim. Biophys. Acta Gene Regul. Mech.* 1819, 137–148. doi: 10.1016/j.bbagrm.2011.05.001
- Kohli, D., Joshi, G., Deokar, A. A., Bhardwaj, A. R., Agarwal, M., Katiyar-Agarwal, S., et al. (2014). Identification and characterization of wilt and salt stressresponsive microRNAs in chickpea through high-throughput sequencing. *PLoS One* 9:e108851. doi: 10.1371/journal.pone.0108851
- Komatsu, S., Kobayashi, Y., Nishizawa, K., Nanjo, Y., and Furukawa, K. (2010). Comparative proteomics analysis of differentially expressed proteins in soybean cell wall during flooding stress. *Amino Acids* 39, 1435–1449. doi: 10.1007/ s00726-010-0608-1
- Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. *Mol. Biol. Evol.* 35, 1547–1549. doi: 10.1093/molbev/msy096
- Lane, B. G. (2000). Oxalate oxidases and differentiating surface structure in wheat: germins. *Biochem. J.* 349, 309–321. doi: 10.1042/bj3490309
- Lane, B. G., Cuming, A. C., Fregeau, J., Carpita, N. C., Hurkman, W. J., Bernier, F., et al. (1992). Germin isoforms are discrete temporal markers of wheat development. Pseudogermin is a uniquely thermostable water-soluble oligomeric protein in ungerminated embryos and like germin in germinated embryos, it is incorporated into cell walls. *Eur. J. Biochem.* 209, 961–969. doi: 10.1111/j.1432-1033.1992.tb17369.x
- Lavin, M., Herendeen, P. S., and Wojciechowski, M. F. (2005). Evolutionary rates analysis of leguminosae implicates a rapid diversification of lineages during the tertiary. *Syst. Biol.* 54, 575–594. doi: 10.1080/10635150590947131
- Lescot, M. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. *Nucleic Acids Res.* 30, 325–327. doi: 10.1093/nar/30.1.325
- Li, G., Hou, M., Liu, Y., Pei, Y., Ye, M., Zhou, Y., et al. (2019). Genome-wide identification, characterization and expression analysis of the non-specific lipid transfer proteins in potato. *BMC Genomics* 20:375. doi: 10.1186/s12864-019-5698-x
- Li, L., Xu, X., Chen, C., and Shen, Z. (2016). Genome-wide characterization and expression analysis of the germin-like protein family in rice and *Arabidopsis*. *IJMS* 17:1622. doi: 10.3390/ijms17101622
- Li, S. (2015). The Arabidopsis thaliana TCP transcription factors: a broadening horizon beyond development. Plant Signal. Behav. 10:e1044192. doi: 10.1080/ 15592324.2015.1044192
- Liao, L., Hu, Z., Liu, S., Yang, Y., and Zhou, Y. (2021). Characterization of germinlike proteins (GLPs) and their expression in response to abiotic and biotic stresses in cucumber. *Horticulturae* 7:412. doi: 10.3390/horticulturae7100412
- Lou, Y., and Baldwin, I. T. (2006). Silencing of a germin-like gene in Nicotiana attenuata improves performance of native herbivores. Plant Physiol. 140, 1126– 1136. doi: 10.1104/pp.105.073700
- Lu, M., Han, Y.-P., Gao, J.-G., Wang, X.-J., and Li, W.-B. (2010). Identification and analysis of the germin-like gene family in soybean. *BMC Genomics* 11:620. doi: 10.1186/1471-2164-11-620
- Mattick, J. S., and Gagen, M. J. (2001). The evolution of controlled multitasked gene networks: the role of introns and other noncoding RNAs in the development of complex organisms. *Mol. Biol. Evol.* 18, 1611–1630. doi: 10. 1093/oxfordjournals.molbev.a003951
- Moore, R. C., and Purugganan, M. D. (2005). The evolutionary dynamics of plant duplicate genes. *Curr. Opin. Plant Biol.* 8, 122–128. doi: 10.1016/j.pbi.2004.12. 001

- Osakabe, Y., Yamaguchi-Shinozaki, K., Shinozaki, K., and Tran, L. P. (2014). ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. *New Phytol.* 202, 35–49. doi: 10.1111/nph.12613
- Pei, Y., Li, X., Zhu, Y., Ge, X., Sun, Y., Liu, N., et al. (2019). GhABP19, a novel germin-like protein from Gossypium hirsutum, plays an important role in the regulation of resistance to Verticillium and Fusarium wilt pathogens. Front. Plant Sci. 10:583. doi: 10.3389/fpls.2019.00583
- Qasim, M., Baohua, W., Zou, H., Lin, Y., Dash, C. K., Bamisile, B. S., et al. (2018a). Phylogenetic relationship and genetic diversity of citrus psyllid populations from China and Pakistan and their associated *Candidatus bacterium*. *Mol. Phylogenet. Evol.* 126, 173–180. doi: 10.1016/j.ympev.2018.04.028
- Qasim, M., Lin, Y., Dash, C. K., Bamisile, B. S., Ravindran, K., Islam, S. U., et al. (2018b). Temperature-dependent development of Asian citrus psyllid on various hosts, and mortality by two strains of Isaria. *Microb. Pathog.* 119, 109–118. doi: 10.1016/j.micpath.2018.04.019
- Qasim, M., Xiao, H., He, K., Omar, M. A. A., Hussain, D., Noman, A., et al. (2021). Host-pathogen interaction between Asian citrus psyllid and entomopathogenic fungus (*Cordyceps fumosorosea*) is regulated by modulations in gene expression, enzymatic activity and HLB-bacterial population of the host. *Comp. Biochem. Physiol. C Toxicol. Pharmacol.* 248:109112. doi: 10.1016/j.cbpc.2021.109112
- Rashid, M.-O., Li, J.-H., Liu, Q., Wang, Y., and Han, C.-G. (2021). Molecular detection and identification of eight potato viruses in Gansu province of China. *Curr. Plant Biol.* 25:100184. doi: 10.1016/j.cpb.2020.100184
- Raza, A. (2021). Eco-physiological and biochemical responses of rapeseed (*Brassica napus* L.) to abiotic stresses: consequences and mitigation strategies. J. Plant Growth Regul. 40, 1368–1388. doi: 10.1007/s00344-020-10231-z
- Raza, A., Ashraf, F., Zou, X., Zhang, X., and Tosif, H. (2020). "Plant adaptation and tolerance to environmental stresses: mechanisms and perspectives," in *Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives I*, ed. M. Hasanuzzaman (Singapore: Springer Singapore), 117–145.
- Raza, A., Su, W., Gao, A., Mehmood, S. S., Hussain, M. A., Nie, W., et al. (2021). Catalase (CAT) gene family in rapeseed (*Brassica napus* L.): genome-wide analysis, identification, and expression pattern in response to multiple hormones and abiotic stress conditions. *IJMS* 22:4281. doi: 10.3390/ ijms22084281
- Rhee, S. Y. (2003). The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Res. 31, 224–228. doi: 10.1093/nar/gkg076
- Rietz, S., Bernsdorff, F. E. M., and Cai, D. (2012). Members of the germin-like protein family in *Brassica napus* are candidates for the initiation of an oxidative burst that impedes pathogenesis of *Sclerotinia sclerotiorum*. J. Exp. Bot. 63, 5507–5519. doi: 10.1093/jxb/ers203
- Schweizer, P., Christoffel, A., and Dudler, R. (1999). Transient expression of members of the germin-like gene family in epidermal cells of wheat confers disease resistance. *Plant J.* 20, 541–552. doi: 10.1046/j.1365-313X.1999.00624.x
- Su, W., Raza, A., Gao, A., Jia, Z., Zhang, Y., Hussain, M. A., et al. (2021). Genomewide analysis and expression profile of superoxide dismutase (SOD) gene family in rapeseed (*Brassica napus* L.) under different hormones and abiotic stress conditions. *Antioxidants* 10:1182. doi: 10.3390/antiox10081182
- The Potato Genome Sequencing Consortium (2011). Genome sequence and analysis of the tuber crop potato. *Nature* 475, 189–195. doi: 10.1038/ nature10158
- Villanueva, M. A., Islas-Flores, T., and Ullah, H. (2016). Signaling through WDrepeat proteins in plants. *Front. Plant Sci.* 7:1157. doi: 10.3389/fpls.2016. 01157
- Wang, D., Zhang, Y., Zhang, Z., Zhu, J., and Yu, J. (2010). KaKs_calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. *Genomics Proteomics Bioinform.* 8, 77–80. doi: 10.1016/S1672-0229(10)6 0008-3
- Wang, H., Zhang, Y., Xiao, N., Zhang, G., Wang, F., Chen, X., et al. (2020). Rice GERMIN-LIKE PROTEIN 2-1 functions in seed dormancy under the control of abscisic acid and gibberellic acid signaling pathways. *Plant Physiol.* 183, 1157–1170. doi: 10.1104/pp.20.00253
- Wang, T., Chen, X., Zhu, F., Li, H., Li, L., Yang, Q., et al. (2013). Characterization of peanut germin-like proteins, AhGLPs in plant development and defense. *PLoS One* 8:e61722. doi: 10.1371/journal.pone.0061722

- Wang, X., Zhang, H., Gao, Y., Sun, G., Zhang, W., and Qiu, L. (2014). A comprehensive analysis of the cupin gene family in soybean (*Glycine max*). *PLoS One* 9:e110092. doi: 10.1371/journal.pone.0110092
- Waqas, M., Azhar, M. T., Rana, I. A., Azeem, F., Ali, M. A., Nawaz, M. A., et al. (2019). Genome-wide identification and expression analyses of WRKY transcription factor family members from chickpea (*Cicer arietinum* L.) reveal their role in abiotic stress-responses. *Genes Genom.* 41, 467–481. doi: 10.1007/ s13258-018-00780-9
- Wu, J., Wang, J., Pan, C., Guan, X., Wang, Y., Liu, S., et al. (2014). Genome-wide identification of MAPKK and MAPKKK gene families in tomato and transcriptional profiling analysis during development and stress response. *PLoS One* 9:e103032. doi: 10.1371/journal.pone.010 3032
- Xu, T., Zhang, L., Yang, Z., Wei, Y., and Dong, T. (2021). Identification and functional characterization of plant MiRNA under salt stress shed light on salinity resistance improvement through MiRNA manipulation in crops. *Front. Plant Sci.* 12:665439. doi: 10.3389/fpls.2021.665439
- Yang, Z., and Bielawski, J. P. (2000). Statistical methods for detecting molecular adaptation. *Trends Ecol. Evol.* 15, 496–503. doi: 10.1016/s0169-5347(00)01994-7
- Yuan, B., Yang, Y., Fan, P., Liu, J., Xing, H., Liu, Y., et al. (2021). Genome-wide identification and characterization of germin and germin-like proteins (GLPs) and their response under powdery mildew stress in wheat (*Triticum aestivum* L.). *Plant Mol. Biol. Rep.* [Epub ahead of print]. doi: 10.1007/s11105-021-01291-w
- Zaynab, M., Wang, Z., Hussain, A., Bahadar, K., Sajid, M., Sharif, Y., et al. (2021d). ATP-binding cassette transporters expression profiling revealed its role in the development and regulating stress response in *Solanum tuberosum*. *Mol. Biol. Rep.* [Epub ahead of print]. doi: 10.1007/s11033-021-0 6697-z
- Zaynab, M., Chen, H., Chen, Y., Ouyang, L., Yang, X., Xu, W., et al. (2021a). Transcriptome analysis revealed transporter proteins role in the growth of *Labrenzia* sp. PO1 and SY1. *J. King Saud Univ. Sci.* 33:101433. doi: 10.1016/j. jksus.2021.101433
- Zaynab, M., Hussain, A., Sharif, Y., Fatima, M., Sajid, M., Rehman, N., et al. (2021b). Mitogen-activated protein kinase expression profiling revealed its role in regulating stress responses in potato (*Solanum tuberosum*). *Plants* 10:1371. doi: 10.3390/plants10071371

- Zaynab, M., Pan, D., Fatima, M., Sharif, Y., Chen, S., and Chen, W. (2021c). Proteomics analysis of *Cyclobalanopsis gilva* provides new insights of low seed germination. *Biochimie* 180, 68–78. doi: 10.1016/j.biochi.2020.10.008
- Zaynab, M., Kanwal, S., Hussain, I., Qasim, M., Noman, A., Iqbal, U., et al. (2017b). Rice chitinase gene expression in genetically engineered potato confers resistance against *Fusarium solani* and *Rhizictonia solani*. *PSM Microbiol*. 2, 63–73.
- Zaynab, M., Kanwal, S., Furqan, M., Islam, W., Noman, A., Ali, G. M., et al. (2017a). Proteomic approach to address low seed germination in *Cyclobalnopsis gilva. Biotechnol. Lett.* 39, 1441–1451. doi: 10.1007/s10529-017-2 393-3
- Zhang, Y., Wang, X., Chang, X., Sun, M., Zhang, Y., Li, W., et al. (2018). Overexpression of germin-like protein GmGLP10 enhances resistance to *Sclerotinia sclerotiorum* in transgenic tobacco. *Biochem. Biophys. Res. Commun.* 497, 160–166. doi: 10.1016/j.bbrc.2018.02.046
- Zimmermann, G., Bäumlein, H., Mock, H.-P., Himmelbach, A., and Schweizer, P. (2006). The multigene family encoding germin-like proteins of barley. Regulation and function in basal host resistance. *Plant Physiol.* 142, 181–192. doi: 10.1104/pp.106.083824

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Zaynab, Peng, Sharif, Fatima, Albaqami, Al-Yahyai, Khan, Alotaibi, Alaraidh, Shaikhaldein and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.