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A key component of photosynthetic electron transport chain, photosystem I (PSI), is
susceptible to the fluctuating light (FL) in angiosperms. Cyclic electron flow (CEF) around
PSI and water-water cycle (WWC) are both used by the epiphytic orchid Dendrobium
officinale to protect PSI under FL. This study examined whether the ontogenetic stage
of leaf has an impact on the photoprotective mechanisms dealing with FL. Thus,
chlorophyll fluorescence and P700 signals under FL were measured in D. officinale
young and mature leaves. Upon transition from dark to actinic light, a rapid re-oxidation
of P700 was observed in mature leaves but disappeared in young leaves, indicating that
WWC existed in mature leaves but was lacking in young leaves. After shifting from low
to high light, PSI over-reduction was clearly missing in mature leaves. By comparison,
young leaves showed a transient PSI over-reduction within the first 30 s, which was
accompanied with highly activation of CEF. Therefore, the effect of FL on PSI redox state
depends on the leaf ontogenetic stage. In mature leaves, WWC is employed to avoid
PSI over-reduction. In young leaves, CEF around PSI is enhanced to compensate for
the lack of WWC and thus to prevent an uncontrolled PSI over-reduction induced by FL.

Keywords: photosynthesis, photosystem I, photoprotection, cyclic electron flow, water-water cycle

INTRODUCTION

A typical light condition for plants in nature is the fluctuations of light intensity owing to
cloud, wind, and shading from upper leaves and plants (Pearcy, 1990). When light intensity
transiently shifts from low to high, photosystem II (PSII) electron flow rapidly increases but
CO2 assimilation rate increased slowly (Gerotto et al., 2016; Acevedo-Siaca et al., 2020; De
Souza et al., 2020; Grieco et al., 2020; Kimura et al., 2020; Yamori et al., 2020), leading
to the imbalance between light and dark reactions (Yamori et al., 2016; Slattery et al.,
2018). Within the first seconds after light intensity suddenly increase, electrons transported
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from PSII to photosystem I (PSI) cannot be immediately
transported to NADP+ because the consumption of nicotinamide
adenine dinucleotide phosphate (NADPH) is restricted, resulting
in the accumulation of reducing power in PSI as demonstrated
by PSI over-reduction (Yamamoto et al., 2016; Wada et al.,
2018). Therefore, fluctuating light (FL) can give rise to a risk of
PSI photoinhibition in photosynthetic organisms (Suorsa et al.,
2012; Kono et al., 2014; Yamamoto and Shikanai, 2019; Storti
et al., 2020). As PSI is the key component of photosynthetic
electron flow, PSI photoinhibition suppresses CO2 fixation and
photoprotection (Sejima et al., 2014; Brestic et al., 2015, 2016;
Zivcak et al., 2015, 2019; Chovancek et al., 2019, 2021; Shimakawa
and Miyake, 2019). In addition, the rate of PSI repair is
much shower than that of PSII (Zhang and Scheller, 2004;
Zivcak et al., 2015; Lima-Melo et al., 2019). Therefore, plants
should protect PSI from damage when exposed to natural FL
conditions (Tikkanen et al., 2012; Allahverdiyeva et al., 2015;
Ferroni et al., 2020).

The photoprotective mechanisms coping with the FL in
photosynthetic organisms is related to the evolutionary process
(Ilík et al., 2017). In non-angiosperms, O2 photo-reduction
catalyzed by flavodiiron proteins is the main regulatory
mechanism coping with FL, which is supplemented by cyclic
electron flow (CEF) (Gerotto et al., 2016; Jokel et al., 2018; Storti
et al., 2019, 2020). Interestingly, the genes of flavodiiron proteins
are completely lost in angiosperms (Yamamoto et al., 2016; Ilík
et al., 2017). However, CEF pathways, such as proton gradient
regulation 5 (pgr5) and chloroplast NADH dehydrogenase-like
(NDH) pathways, are retained in the most angiosperms to
sustain photosynthesis (Takahashi et al., 2009; Johnson, 2011;
Yamori et al., 2011; Nishikawa et al., 2012; Yamori and Shikanai,
2016; Shikanai and Yamamoto, 2017; Rantala et al., 2020).
Arabidopsis thaliana and rice (Oryza sativa) mutants lacking
pgr5 and NDH display stronger PSI over-reduction under high
light and thus are susceptible to PSI photoinhibition in the
FL (Suorsa et al., 2012; Kono et al., 2014; Yamori et al.,
2016; Tikkanen et al., 2017; Yamamoto and Shikanai, 2019). In
particular, pgr5 seedlings died when grown under FL owing to
an uncontrolled PSI photoinhibition (Suorsa et al., 2012). After
light intensity abruptly increases, CEF is highly stimulated in
model C3 plants Arabidopsis and tobacco (Tabacum nicotiana)
(Kono et al., 2014; Yang et al., 2019a). Such activation of CEF
favors the proton gradient (1pH) formation, which is essential
for the PSI photoprotection by slowing down plastoquinone
oxidation at the cytochrome b6f (Cyt b6f) and enhancing the
electron downstream of PSI (Armbruster et al., 2017). However,
the activation of CEF cannot immediately consume the excess
electrons in PSI and has some delay in alleviating PSI over-
reduction. In addition, a pseudo-CEF in angiosperms, called
water-water cycle (WWC), can rapidly consume the excess
electrons in PSI and thus protects PSI from damage under FL
more efficiently than CEF in angiosperms (Alric and Johnson,
2017; Huang et al., 2019b; Yang et al., 2019b, 2020; Sun et al.,
2020). During WWC, electrons transported from H2O to PSI
are consumed by photo-reduction of O2. The resulting reactive
oxygen species (ROS) are scavenged by superoxide dismutase
and ascorbate peroxidase (Asada, 1999). This process not only

consumes excess reducing power in PSI but also enhance 1pH
formation (Asada, 2000; Rizhsky et al., 2003; Hirotsu et al., 2004;
Roberty et al., 2014). Moreover, PSI redox state is always affected
by electron flow from PSII. Once PSII activity is downregulated,
FL-induced PSI over-reduction can be alleviated (Tikkanen et al.,
2014; Suorsa et al., 2016; Terashima et al., 2021). Therefore, the
strategies employed to cope with FL vary among angiosperms.

In addition to species difference, the response of PSI to FL
can be affected by leaf ontogenetic stage. In field-grown Cerasus
cerasoides plants, mature leaves displayed more severe PSI over-
reduction than young leaves after light increased, leading to
stronger FL-induced PSI photoinhibition in mature leaves (Yang
et al., 2019c). By comparison, in the crassulacean acid metabolism
(CAM) plant Bryophyllum pinnatum, FL induced more severe
PSI over-reduction and PSI photoinhibition in young leaves than
mature leaves (Yang et al., 2019b). These contrasting reports
indicated that young and mature leaves might display different
responses of PSI to FL. Furthermore, the regulatory mechanisms
related to PSI photoprotection significantly differed between
young and mature leaves in C. cerasoides and B. pinnatum.
In C3 plant C. cerasoides young leaves, the downregulation
of PSII activity and enhancement of CEF finely protected PSI
under FL (Yang et al., 2019c). In CAM plant B. pinnatum,
WWC was operational in mature leaves but was negligible
in young leaves (Yang et al., 2019b). In the facultative CAM
plant Dendrobium officinale, WWC was functional in PSI
photoprotection under FL in mature leaves (Yang et al., 2020,
2021b; Huang et al., 2021; Sun et al., 2021). CAM plants usually
experience drought stress under natural habitats. When CO2
assimilation is restricted under drought stress (Zhou et al., 2007;
Zhu et al., 2009; Zivcak et al., 2014; Dąbrowski et al., 2019),
WWC is a potential protective valve for excess energy (Zivcak
et al., 2013; Yi et al., 2014). Therefore, WWC might be a common
strategy employed by obligatory and facultative CAM plants to
cope with the drought stress and FL. However, it is unclear
whether the response of PSI to FL and the related strategies for
photosynthetic regulation are also affected by the leaf ontogenetic
stage in D. officinale. Specifically, we hypothesize that the relative
importance of CEF and WWC is dependent on leaf age in
D. officinale.

Dendrobium officinale is a perennial herb that belongs to the
Dendrobium of Orchidaceae. It is a traditional and extremely
precious Chinese herb with high medicinal value. Recently,
D. officinale has been widely cultivated to meet the market
requirement. However, little is known about the characteristics
of photosynthetic physiology. In this study, we measured the
chlorophyll fluorescence and P700 signals in young and mature
leaves of D. officinale. This study aimed to: (1) examine whether
the response of PSI to FL differs between young and mature
leaves, and (2) assess whether the mechanisms of photosynthetic
regulation under FL is influenced by the leaf ontogenetic stage.
Our results indicated that, when exposed to FL, PSI over-
reduction was observed in young leaves but disappeared in
mature leaves. The WWC activity contributed to the rapid
consumption of excess reducing power in mature leaves. In
contrast, CEF was enhanced in young leaves to compensate for
the lack of WWC activity and to adjust PSI redox state under FL.
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MATERIALS AND METHODS

Plant Materials and Growth Conditions
Tissue-cultured seedlings of D. officinale Kimura et Migo plants
came from the Kunming Institute of Botany, Chinese Academy of
Sciences and were cultivated in this place. All plants were grown
in a greenhouse with moderate relative air humidity (60–70%)
and 40% of full sunlight. Light condition is controlled using non-
woven shade net, and the maximum light intensity at daytime is
approximately 800 µmol photons m−2 s−1. To avoid water or
nutrition stresses, plants were watered every day and fertilized by
compound fertilizer. Young (flushed within 20 days) and mature
(flushed 2 months ago) leaves were used for photosynthetic
measurements that were conducted in late July 2021.

Chlorophyll Content Measurement
in vivo
The relative content of chlorophyll per unit leaf area was
measured using a two-wavelength-type, handy chlorophyll meter
(SPAD-502 Plus; Minolta, Tokyo, Japan).

Redox Changes of P700 After Transition
From Dark to Actinic Light
The redox change of P700 after transition from dark to actinic
light was measured using a Dual-PAM 100 measuring system
(Heinz Walz, Effeltrich, Germany). After dark adaptation for
at least 60 min to inactivate the Calvin–Benson cycle, intact
leaves were illuminated at 1,809 µmol photons m−2 s−1

under atmospheric air condition at approximately 25◦C
(Ilík et al., 2017).

Photosystem I and II Measurements
In the morning (9–11 a.m.), PSI and PSII parameters were
measured on intact uncut leaves at approximately 25◦C using
a Dual-PAM 100 measuring system (Heinz Walz, Effeltrich,
Germany) (Schreiber and Klughammer, 2008). The initial PSI
and PSII parameters were measured after dark-adaptation for
30 min. A 635-nm light-emitting diode array was used as
actinic light for illumination. After photosynthetic induction
at 923 µmol photons m−2 s−1 for 15 min, leaves were
illuminated at a low light of 59 µmol photons m−2 s−1 for
5 min. Afterward, leaves were exposed to FL alternating between
1,809 and 59 µmol photons m−2 s−1. During two cycles
of low/high light, PSI and PSII parameters were measured.
PSI parameters were calculated as follows: the quantum
yield of PSI photochemistry, Y (I) =

(
P
′

m − P
)/

Pm; the

oxidation ratio of P700, Y (ND) = P
/

Pm; and the extend

of PSI over-reduction, Y (NA) =
(

Pm − P
′

m

)/
Pm. The PSII

parameters were calculated as follows: the quantum yield of PSII
photochemistry, Y (II) =

(
F
′

m − Fs

)/
F
′

m; the quantum yield

of non-regulatory energy dissipation in PSII, Y (NO) = Fs
/

Fm;
and the quantum yield of non-photochemical quenching in PSII,
Y (NPQ) = 1− Y (II)− Y ( NO).

The photosynthetic electron transport rates (ETRs) through
PSI and PSII were calculated as follows: electron transport rate
through PSI (ETRI) = PAR × Y(I) × 0.84 × 0.5; electron
transport rate through PSII (ETRII) = PPFD×Y(II)× 0.84× 0.5.
PPFD is the photosynthetically active radiation; 0.84, the light
absorption of incident irradiance; 0.5, the fraction of absorbed
light reaching PSI or PSII. The apparent rate of CEF was
estimated by subtracting ETRII from ETRI (Zivcak et al.,
2013; Hepworth et al., 2021). These ETR calculations based
on assumptions that the light absorption and the fraction of
absorbed light reaching PSI or PSII did not differ between young
and mature leaves.

Statistical Analysis
All data are displayed as means of five leaves from five
independent plants. A T-test was used to determine whether
significant differences existed between different treatments
(α = 0.05).

RESULTS

The Activity of Water-Water Cycle
Differed Between Young and Mature
Leaves
For plants of D. officinale, the young leaves are reddish and
the mature leaves are green. The relative chlorophyll content, as
demonstrated by SPAD value, was significantly lower in young
leaves than mature leaves (Figure 1A). After shifting from dark
to 1,809 µmol photons m−2 s−1, mature leaves showed the rapid
re-oxidation of P700 in 3 s (Figure 1B). However, such rapid
P700 re-oxidation was not observed in young leaves (Figure 1B).
Many previous studies have indicated that this rapid re-oxidation
of P700 in angiosperms is caused by the fast outflow of electrons
from PSI to O2 mediated by the WWC activity (Shirao et al., 2013;
Huang et al., 2019b, 2021; Sun et al., 2020; Yang et al., 2020).
Therefore, WWC activity was present in mature leaves but was
lacking in young leaves.

Photosynthetic Performances Upon
Transition From Low to High Light
Differed Between Young and Mature
Leaves
Under FL, the responses of PSI and PSII to a sudden
increase in illumination significantly affected the extent of
photoinhibition (Suorsa et al., 2012; Huang et al., 2019a;
Yamamoto and Shikanai, 2019; Tan et al., 2021). Therefore,
we examined the performances of PSI and PSII under FL
alternating between 59 and 1,809 µmol photons m−2 s−1

in young and mature leaves. The PSI parameters included
Y(I) (the quantum yield of PSI photochemistry), Y(ND) (the
oxidation ratio of P700), and Y(NA) {the extent of PSI over-
reduction); and the PSII parameters included the quantum yield
of PSII photochemistry (YII), non-photochemical quenching in
PSII [Y(NPQ)], and quantum yield of non-regulatory energy
dissipation in PSII [Y(NO)]}.
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FIGURE 1 | (A) Relative chlorophyll content (measured by SPAD) in mature
and young leaves of Dendrobium officinale. (B) Redox kinetics of P700 after
shifting from dark to actinic light (1,809 µmol photons m−2 s−1) in mature
and young leaves. Data are means ± SE (n = 5). Asterisk indicates a
significant difference between mature and young leaves.

At low light, mature leaves had similar Y(I) (Figure 2A),
lower Y(ND) (Figure 2B), and higher Y(NA) (Figure 2C) when
compared with young leaves. After transition to high light
for 10 s, Y(ND) rapidly increased to high levels (>0.8) and
Y(NA) rapidly decreased to low levels (<0.15) in mature leaves,
indicating that PSI over-reduction was prevented in mature
leaves when exposed to FL (Figures 2B,C). By comparison,
Y(ND) increased more slowly in young leaves (Figure 2B).
Concomitantly, Y(NA) abruptly increased to a peak in 10 s,
followed by its gradual decrease, indicating the transient PSI
over-reduction in young leaves under FL (Figure 2C). Therefore,
the response of PSI redox state to FL largely differed between
young and mature leaves.

At low light, mature leaves displayed higher Y(II), lower
Y(NPQ), and similar Y(NO), when compared with young leaves
(Figure 3), suggesting the lower light use efficiency in young
leaves. After an abrupt increase in illumination, Y(II) largely
decreased and Y(NPQ) gradually increased in mature and young
leaves (Figures 3A,B). Concomitantly, Y(NO) first increased
and then gradually decreased during the prolonged exposure to
high light. The young leaves displayed higher Y(NPQ) capacity

than mature leaves (Figure 3B), leading to lower Y(NO) under
high light in young leaves (Figure 3C). The enhancement
of Y(NPQ) in young leaves can dissipate the excess light
energy harmlessly as heat and diminish the production of ROS.
Therefore, young leaves upregulated NPQ to compensate the
limitation of light use efficiency.

Mature and young leaves showed similar ETRI under low light
(Figure 4A). Upon the transition to high light, ETRI rapidly
increased within 10 s in mature leaves, followed by its decrease
and re-increase (Figure 4A). By comparison, ETRI peaked in the
first 10 s and then gradually decreased over time in young leaves.
The performance of ETRII under FL was largely different from
ETRI. By transitioning to high light, ETRII gradually increased
in mature and young leaves (Figure 4B). After exposure to high
light for 2 min, mature leaves displayed much higher ETRII
than young leaves (Figure 4B). Since the operation of ETRII is
largely determined by CO2 assimilation rate, this result indicates
that under high light mature leaves have much higher CO2
assimilation rate than young leaves.

Regulation of Cyclic Electron Flow
Activation Under High Light
Cyclic electron flow (CEF) contributes to the total photosynthetic
electron transport and thus helps 1pH formation (Wang et al.,
2015; Shikanai and Yamamoto, 2017). Upon the transition
to high light, ETRI–ETRII rapidly increased to the peaks in
mature and young leaves within the first 10 s (Figure 5A).
Subsequently, ETRI–ETRII gradually decreased in parallel.
Because the difference between ETRI and ETRII is an indicator
of CEF activation, these results indicated that CEF was highly
activated within the first 10 s upon transition to high light.
Furthermore, the CEF activation under FL was enhanced in
young leaves than mature leaves. After this light transition
for 2 min, ETRI–ETRII decreased to similar level in mature
and young leaves. During this process, young leaves displayed
much higher ETRI–ETRII values than mature leaves. Since an
important role of CEF activation under FL is to alleviate PSI over-
reduction, we examined the relationship between ETRI–ETRII
and Y(NA), and found that the ETRI–ETRII value was strongly
correlated to Y(NA) (Figure 5B). At the same ETRI–ETRII value,
the Y(NA) was higher in young leaves than in mature leaves,
indicating that young leaves enhanced CEF activity to protect PSI
from the FL-induced over-reduction.

DISCUSSION

Generally, the induction speed of PSII electron flow is faster
than that of CO2 assimilation in photosynthetic organisms,
leading to the accumulation of excited states in PSI when
light intensity abruptly changes from low to high (Gerotto
et al., 2016; Yamori et al., 2016; Li et al., 2021). Meanwhile,
photosynthetic angiosperms cannot generate a sufficient 1pH
(Huang et al., 2019a; Yang et al., 2021a), leading to a temporary
uncontrolled electron flow from PSII to PSI through the Cyt
b6f complex (Tikkanen and Aro, 2014; Armbruster et al., 2017).
If the excess reducing power in PSI cannot be immediately
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FIGURE 2 | Changes in PSI parameters under fluctuating light alternating
between 59 and 1809 µmol photons m−2 s−1 for mature and young leaves
of Dendrobium officinale. (A) Y(I), the quantum yield of PSI photochemistry;
(B) Y(ND), the oxidation ratio of P700; (C) Y(NA), the extent of PSI
over-reduction. Data are means ± SE (n = 5). Asterisk indicates a significant
difference between mature and young leaves.

consumed by downstream sinks of PSI, FL can induce a
transient PSI over-reduction and thus causes PSI photoinhibition
(Allahverdiyeva et al., 2013; Gerotto et al., 2016; Jokel et al.,
2018; Yamamoto and Shikanai, 2019). To avoid FL-induced
PSI photoinhibition, both flavodiiron proteins and CEF are
employed by non-angiosperms to avoid PSI photoinhibition, in
which flavodiiron proteins are the main players (Gerotto et al.,
2016; Chaux et al., 2017; Shimakawa et al., 2017; Jokel et al.,
2018). However, the genes of flavodiiron proteins are lacking in

FIGURE 3 | Changes in PSII parameters under fluctuating light alternating
between 59 and 1809 µmol photons m−2 s−1 for mature and young leaves
of Dendrobium officinale. (A) Y(II), the quantum yield of PSII photochemistry;
(B) Y(NPQ), the quantum yield of non-photochemical quenching in PSII; (C)
Y(NO), the quantum yield of non-regulatory energy dissipation in PSII. Data are
means ± SE (n = 5). Asterisk indicates a significant difference between mature
and young leaves.

angiosperms (Ilík et al., 2017). Therefore, many angiosperms,
such as Arabidopsis, rice, and tobacco display transient PSI over-
reduction upon a sudden increase in irradiance (Yamamoto et al.,
2016; Wada et al., 2018). Our results supported this notion by
showing the transient increase in Y(NA) in young leaves after
transition from low to high light (Figures 2A–C). To prevent an
uncontrolled PSI over-reduction under high light, CEF around
PSI is employed by angiosperms to help the rapid 1pH formation
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FIGURE 4 | Changes in photosynthetic electron transport rates under
fluctuating light alternating between 59 and 1809 µmol photons m−2 s−1 for
mature and young leaves of Dendrobium officinale. (A) ETRI, electron
transport rate through PSI; (B) ETRII, electron transport rate through PSII.
Data are means ± SE (n = 5). Asterisk indicates a significant difference
between mature and young leaves.

(Suorsa et al., 2012; Kono et al., 2014; Tazoe et al., 2020).
An increased 1pH not only strengthens the downregulation
of plastoquinone oxidation at the Cyt b6f but also enhances
the electron sink downstream of PSI via providing additional
ATP (Armbruster et al., 2017; Yamamoto and Shikanai, 2019).
Consistently, we here observed the highly stimulation of CEF
within the first 10 s after transition from low to high light in
both young and mature leaves (Figure 5A). Additionally, an
interesting phenomenon is that some angiosperms do not display
PSI over-reduction under FL, which is caused by the operation
of a pseudo-CEF pathway called WWC (Huang et al., 2019b;
Sun et al., 2020; Yang et al., 2020). Therefore, angiosperms can
use diverse strategies for protecting the PSI against FL-induced
photoinhibition.

Both strategies are effective in protecting the PSI against
photoinhibition under FL in angiosperms as demonstrated by
their normal growth under natural FL conditions. However, CEF
is a universal protective mechanism while the activity of WWC
in angiosperms largely varies among angiosperms (Driever and
Baker, 2011; Shirao et al., 2013; Huang et al., 2019b; Yang
et al., 2020). The operation of WWC can consume excess light
energy and favors the regulation of photosynthetic electron flow
(Asada, 1999; Miyake and Yokota, 2000; Makino et al., 2002;

FIGURE 5 | (A) Changes in ETRI–ETRII under FL alternating between 59 and
1,809 µmol photons m−2 s−1 for mature and young leaves of D. officinale.
(B) The relationship between ETRI–ETRII and Y(NA) in high-light phases
during FL. Data are means ± SE (n = 5). Asterisk indicates a significant
difference between mature and young leaves.

Miyake, 2010; Alric and Johnson, 2017). The WWC activity
in plants can be affected by environmental conditions, such as
chilling temperature, drought stress, and high light (Zhou et al.,
2004; Zivcak et al., 2013; Yi et al., 2014; Ferroni et al., 2021).
It is unclear whether the activity of WWC is also affected by
the ontogenetic stage of leaf in a given species. In the studied
species D. officinale, WWC is documented to be operational
in PSI photoprotection under FL in mature leaves. To test
the effect of leaf ontogenetic stage on photosynthetic strategies
coping with FL, the photosynthetic performance under FL was
compared between mature and young leaves of D. officinale. We
found that in mature leaves, WWC rapidly consumed excess
reducing power in PSI and thus avoided the PSI over-reduction
after any increase in illumination (Figure 1). In contrast, the
WWC activity was negligible in young leaves as indicated by
the clearly missing of rapid P700 re-oxidation upon transition
from dark to actinic light. These results indicate that the
establishment of WWC activity is largely dependent on the
leaf ontogenetic stage. Furthermore, young leaves significantly
displayed PSI over-reduction within the first 30 s after shifting
from low to high light (Figure 2C), which was similar
to the phenomenon observed in other angiosperms lacking
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WWC pathway (Yamamoto et al., 2016; Yamamoto and Shikanai,
2019). Therefore, the differential response of PSI to FL in mature
and young leaves in D. officinale is largely caused by their
difference in WWC activity.

It has been indicated that CEF and WWC have large functional
overlap but can cooperate to protect PSI from photoinhibition
under FL (Alboresi et al., 2019; Storti et al., 2019, 2020). In mature
leaves of D. officinale, WWC was enhanced more strongly than
CEF when exposed to FL at high temperature (Yang et al., 2021b).
At low temperature, WWC activity was largely inhibited and
CEF was highly activated to regulate the PSI redox state under
FL (Huang et al., 2021). Upon the transition to high light at
25◦C, WWC functioned to prevent the PSI over-reduction in
the mature leaves. Meanwhile, CEF was stimulated moderately
within the first 10 s. Therefore, WWC and CEF cooperate to fine-
tune photosynthesis in mature leaves under FL at normal growth
temperature (Sun et al., 2021). When light intensity abruptly
shifted from low to high for 10 s, CEF was highly stimulated
as indicated by the rapid increase of ETRI–ETRII value, and
the CEF activation was stronger in young leaves than mature
leaves (Figure 5A). Concomitantly, the PSI over-reduction was
not completely avoided in young leaves. These results indicated
that in young leaves, the lack of WWC activity was partially
compensated by the enhancement of CEF. Therefore, mature
and young leaves of D. officinale employed different strategies
to adjust PSI redox state under FL. Furthermore, we observed
positive relationship between CEF activation and PSI over-
reduction (Figure 5B), suggesting that the CEF activation is
affected by Y(NA). Compared with mature leaves, CEF was
enhanced in young leaves to prevent the PSI over-reduction
under FL. The PSI over-reduction indicates the insufficient 1pH
across the thylakoid membranes (Munekage et al., 2002, 2004;
Yamamoto et al., 2016; Kanazawa et al., 2017; Takagi et al.,
2017). Under such condition, the rapid stimulation of CEF
helped 1pH formation and thus prevented an uncontrolled PSI
over-reduction in young leaves. By comparison, mature leaves
mainly used WWC to prevent the PSI over-reduction and the
major role of CEF was to balance ATP/NADPH production
ratio via additional ATP synthesis. Therefore, the role of CEF in
photosynthetic regulation under FL is flexible and can be affected
by the operation of WWC.

In addition to the electron sink downstream, the redox state
of PSI is affected by the PSII electron flow (Tikkanen et al.,
2014; Suorsa et al., 2016; Terashima et al., 2021). At moderate
PSII photoinhibition, the PSI over-reduction under high light
is alleviated in Arabidopsis pgr5 mutant (Tikkanen et al., 2014).
Furthermore, the minimal activity of oxygen-evolving complex
can rescue the lethal phenotype of pgr5 when grown under
FL (Suorsa et al., 2016). Therefore, when the capacity of CO2
assimilation rate is low, a low activity of oxygen-evolving complex

is beneficial for protecting the PSI under FL. In young leaves
of D. officinale, the maximum ETRII was much lower than
mature leaves. Furthermore, the maximum value of Y(NA) under
FL in young leaves was approximately 0.3, which was much
lower than those in Arabidopsis, tobacco, and rice. These results
indicated that the transient PSI over-reduction was slighter than
the high-photosynthesis plants lacking WWC activity. Therefore,
the relatively lower PSII activity in young leaves acts as a safety
valve for alleviating the FL-induced PSI over-reduction.

CONCLUSION

The response of PSI to FL varied among different plants and
can be affected by environmental conditions. In this study, we
examine the impacts of leaf ontogenetic stage on photosynthetic
strategies used by D. officinale plants to cope with the FL. In
mature leaves, WWC is mainly employed to avoid PSI over-
reduction upon any increase in illumination. Concomitantly,
CEF is stimulated to regulate the photosynthesis by adjusting the
ATP/NADPH production ratio. In contrast, young leaves display
PSI over-reduction under FL because WWC activity is absent. To
compensate for the lacking of WWC activity, CEF is enhanced
under FL to protect the PSI against photoinhibition. Therefore,
the response of PSI to FL and the related photoprotective
mechanisms are affected by leaf ontogenetic stage.
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